| //===-- sanitizer_common.h --------------------------------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file is shared between run-time libraries of sanitizers. |
| // |
| // It declares common functions and classes that are used in both runtimes. |
| // Implementation of some functions are provided in sanitizer_common, while |
| // others must be defined by run-time library itself. |
| //===----------------------------------------------------------------------===// |
| #ifndef SANITIZER_COMMON_H |
| #define SANITIZER_COMMON_H |
| |
| #include "sanitizer_flags.h" |
| #include "sanitizer_interface_internal.h" |
| #include "sanitizer_internal_defs.h" |
| #include "sanitizer_libc.h" |
| #include "sanitizer_list.h" |
| #include "sanitizer_mutex.h" |
| |
| #if defined(_MSC_VER) && !defined(__clang__) |
| extern "C" void _ReadWriteBarrier(); |
| #pragma intrinsic(_ReadWriteBarrier) |
| #endif |
| |
| namespace __sanitizer { |
| struct StackTrace; |
| struct AddressInfo; |
| |
| // Constants. |
| const uptr kWordSize = SANITIZER_WORDSIZE / 8; |
| const uptr kWordSizeInBits = 8 * kWordSize; |
| |
| #if defined(__powerpc__) || defined(__powerpc64__) |
| const uptr kCacheLineSize = 128; |
| #else |
| const uptr kCacheLineSize = 64; |
| #endif |
| |
| const uptr kMaxPathLength = 4096; |
| |
| const uptr kMaxThreadStackSize = 1 << 30; // 1Gb |
| |
| static const uptr kErrorMessageBufferSize = 1 << 16; |
| |
| // Denotes fake PC values that come from JIT/JAVA/etc. |
| // For such PC values __tsan_symbolize_external() will be called. |
| const u64 kExternalPCBit = 1ULL << 60; |
| |
| extern const char *SanitizerToolName; // Can be changed by the tool. |
| |
| extern atomic_uint32_t current_verbosity; |
| INLINE void SetVerbosity(int verbosity) { |
| atomic_store(¤t_verbosity, verbosity, memory_order_relaxed); |
| } |
| INLINE int Verbosity() { |
| return atomic_load(¤t_verbosity, memory_order_relaxed); |
| } |
| |
| uptr GetPageSize(); |
| extern uptr PageSizeCached; |
| INLINE uptr GetPageSizeCached() { |
| if (!PageSizeCached) |
| PageSizeCached = GetPageSize(); |
| return PageSizeCached; |
| } |
| uptr GetMmapGranularity(); |
| uptr GetMaxVirtualAddress(); |
| // Threads |
| uptr GetTid(); |
| uptr GetThreadSelf(); |
| void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top, |
| uptr *stack_bottom); |
| void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size, |
| uptr *tls_addr, uptr *tls_size); |
| |
| // Memory management |
| void *MmapOrDie(uptr size, const char *mem_type, bool raw_report = false); |
| INLINE void *MmapOrDieQuietly(uptr size, const char *mem_type) { |
| return MmapOrDie(size, mem_type, /*raw_report*/ true); |
| } |
| void UnmapOrDie(void *addr, uptr size); |
| void *MmapFixedNoReserve(uptr fixed_addr, uptr size, |
| const char *name = nullptr); |
| void *MmapNoReserveOrDie(uptr size, const char *mem_type); |
| void *MmapFixedOrDie(uptr fixed_addr, uptr size); |
| void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name = nullptr); |
| void *MmapNoAccess(uptr size); |
| // Map aligned chunk of address space; size and alignment are powers of two. |
| void *MmapAlignedOrDie(uptr size, uptr alignment, const char *mem_type); |
| // Disallow access to a memory range. Use MmapFixedNoAccess to allocate an |
| // unaccessible memory. |
| bool MprotectNoAccess(uptr addr, uptr size); |
| bool MprotectReadOnly(uptr addr, uptr size); |
| |
| // Used to check if we can map shadow memory to a fixed location. |
| bool MemoryRangeIsAvailable(uptr range_start, uptr range_end); |
| void FlushUnneededShadowMemory(uptr addr, uptr size); |
| void IncreaseTotalMmap(uptr size); |
| void DecreaseTotalMmap(uptr size); |
| uptr GetRSS(); |
| void NoHugePagesInRegion(uptr addr, uptr length); |
| void DontDumpShadowMemory(uptr addr, uptr length); |
| // Check if the built VMA size matches the runtime one. |
| void CheckVMASize(); |
| void RunMallocHooks(const void *ptr, uptr size); |
| void RunFreeHooks(const void *ptr); |
| |
| // InternalScopedBuffer can be used instead of large stack arrays to |
| // keep frame size low. |
| // FIXME: use InternalAlloc instead of MmapOrDie once |
| // InternalAlloc is made libc-free. |
| template<typename T> |
| class InternalScopedBuffer { |
| public: |
| explicit InternalScopedBuffer(uptr cnt) { |
| cnt_ = cnt; |
| ptr_ = (T*)MmapOrDie(cnt * sizeof(T), "InternalScopedBuffer"); |
| } |
| ~InternalScopedBuffer() { |
| UnmapOrDie(ptr_, cnt_ * sizeof(T)); |
| } |
| T &operator[](uptr i) { return ptr_[i]; } |
| T *data() { return ptr_; } |
| uptr size() { return cnt_ * sizeof(T); } |
| |
| private: |
| T *ptr_; |
| uptr cnt_; |
| // Disallow evil constructors. |
| InternalScopedBuffer(const InternalScopedBuffer&); |
| void operator=(const InternalScopedBuffer&); |
| }; |
| |
| class InternalScopedString : public InternalScopedBuffer<char> { |
| public: |
| explicit InternalScopedString(uptr max_length) |
| : InternalScopedBuffer<char>(max_length), length_(0) { |
| (*this)[0] = '\0'; |
| } |
| uptr length() { return length_; } |
| void clear() { |
| (*this)[0] = '\0'; |
| length_ = 0; |
| } |
| void append(const char *format, ...); |
| |
| private: |
| uptr length_; |
| }; |
| |
| // Simple low-level (mmap-based) allocator for internal use. Doesn't have |
| // constructor, so all instances of LowLevelAllocator should be |
| // linker initialized. |
| class LowLevelAllocator { |
| public: |
| // Requires an external lock. |
| void *Allocate(uptr size); |
| private: |
| char *allocated_end_; |
| char *allocated_current_; |
| }; |
| typedef void (*LowLevelAllocateCallback)(uptr ptr, uptr size); |
| // Allows to register tool-specific callbacks for LowLevelAllocator. |
| // Passing NULL removes the callback. |
| void SetLowLevelAllocateCallback(LowLevelAllocateCallback callback); |
| |
| // IO |
| void RawWrite(const char *buffer); |
| bool ColorizeReports(); |
| void RemoveANSIEscapeSequencesFromString(char *buffer); |
| void Printf(const char *format, ...); |
| void Report(const char *format, ...); |
| void SetPrintfAndReportCallback(void (*callback)(const char *)); |
| #define VReport(level, ...) \ |
| do { \ |
| if ((uptr)Verbosity() >= (level)) Report(__VA_ARGS__); \ |
| } while (0) |
| #define VPrintf(level, ...) \ |
| do { \ |
| if ((uptr)Verbosity() >= (level)) Printf(__VA_ARGS__); \ |
| } while (0) |
| |
| // Can be used to prevent mixing error reports from different sanitizers. |
| extern StaticSpinMutex CommonSanitizerReportMutex; |
| |
| struct ReportFile { |
| void Write(const char *buffer, uptr length); |
| bool SupportsColors(); |
| void SetReportPath(const char *path); |
| |
| // Don't use fields directly. They are only declared public to allow |
| // aggregate initialization. |
| |
| // Protects fields below. |
| StaticSpinMutex *mu; |
| // Opened file descriptor. Defaults to stderr. It may be equal to |
| // kInvalidFd, in which case new file will be opened when necessary. |
| fd_t fd; |
| // Path prefix of report file, set via __sanitizer_set_report_path. |
| char path_prefix[kMaxPathLength]; |
| // Full path to report, obtained as <path_prefix>.PID |
| char full_path[kMaxPathLength]; |
| // PID of the process that opened fd. If a fork() occurs, |
| // the PID of child will be different from fd_pid. |
| uptr fd_pid; |
| |
| private: |
| void ReopenIfNecessary(); |
| }; |
| extern ReportFile report_file; |
| |
| extern uptr stoptheworld_tracer_pid; |
| extern uptr stoptheworld_tracer_ppid; |
| |
| enum FileAccessMode { |
| RdOnly, |
| WrOnly, |
| RdWr |
| }; |
| |
| // Returns kInvalidFd on error. |
| fd_t OpenFile(const char *filename, FileAccessMode mode, |
| error_t *errno_p = nullptr); |
| void CloseFile(fd_t); |
| |
| // Return true on success, false on error. |
| bool ReadFromFile(fd_t fd, void *buff, uptr buff_size, |
| uptr *bytes_read = nullptr, error_t *error_p = nullptr); |
| bool WriteToFile(fd_t fd, const void *buff, uptr buff_size, |
| uptr *bytes_written = nullptr, error_t *error_p = nullptr); |
| |
| bool RenameFile(const char *oldpath, const char *newpath, |
| error_t *error_p = nullptr); |
| |
| // Scoped file handle closer. |
| struct FileCloser { |
| explicit FileCloser(fd_t fd) : fd(fd) {} |
| ~FileCloser() { CloseFile(fd); } |
| fd_t fd; |
| }; |
| |
| bool SupportsColoredOutput(fd_t fd); |
| |
| // Opens the file 'file_name" and reads up to 'max_len' bytes. |
| // The resulting buffer is mmaped and stored in '*buff'. |
| // The size of the mmaped region is stored in '*buff_size'. |
| // The total number of read bytes is stored in '*read_len'. |
| // Returns true if file was successfully opened and read. |
| bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size, |
| uptr *read_len, uptr max_len = 1 << 26, |
| error_t *errno_p = nullptr); |
| // Maps given file to virtual memory, and returns pointer to it |
| // (or NULL if mapping fails). Stores the size of mmaped region |
| // in '*buff_size'. |
| void *MapFileToMemory(const char *file_name, uptr *buff_size); |
| void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset); |
| |
| bool IsAccessibleMemoryRange(uptr beg, uptr size); |
| |
| // Error report formatting. |
| const char *StripPathPrefix(const char *filepath, |
| const char *strip_file_prefix); |
| // Strip the directories from the module name. |
| const char *StripModuleName(const char *module); |
| |
| // OS |
| uptr ReadBinaryName(/*out*/char *buf, uptr buf_len); |
| uptr ReadBinaryNameCached(/*out*/char *buf, uptr buf_len); |
| uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len); |
| const char *GetProcessName(); |
| void UpdateProcessName(); |
| void CacheBinaryName(); |
| void DisableCoreDumperIfNecessary(); |
| void DumpProcessMap(); |
| bool FileExists(const char *filename); |
| const char *GetEnv(const char *name); |
| bool SetEnv(const char *name, const char *value); |
| const char *GetPwd(); |
| char *FindPathToBinary(const char *name); |
| bool IsPathSeparator(const char c); |
| bool IsAbsolutePath(const char *path); |
| // Starts a subprocess and returs its pid. |
| // If *_fd parameters are not kInvalidFd their corresponding input/output |
| // streams will be redirect to the file. The files will always be closed |
| // in parent process even in case of an error. |
| // The child process will close all fds after STDERR_FILENO |
| // before passing control to a program. |
| pid_t StartSubprocess(const char *filename, const char *const argv[], |
| fd_t stdin_fd = kInvalidFd, fd_t stdout_fd = kInvalidFd, |
| fd_t stderr_fd = kInvalidFd); |
| // Checks if specified process is still running |
| bool IsProcessRunning(pid_t pid); |
| // Waits for the process to finish and returns its exit code. |
| // Returns -1 in case of an error. |
| int WaitForProcess(pid_t pid); |
| |
| u32 GetUid(); |
| void ReExec(); |
| char **GetArgv(); |
| void PrintCmdline(); |
| bool StackSizeIsUnlimited(); |
| uptr GetStackSizeLimitInBytes(); |
| void SetStackSizeLimitInBytes(uptr limit); |
| bool AddressSpaceIsUnlimited(); |
| void SetAddressSpaceUnlimited(); |
| void AdjustStackSize(void *attr); |
| void PrepareForSandboxing(__sanitizer_sandbox_arguments *args); |
| void CovPrepareForSandboxing(__sanitizer_sandbox_arguments *args); |
| void SetSandboxingCallback(void (*f)()); |
| |
| void CoverageUpdateMapping(); |
| void CovBeforeFork(); |
| void CovAfterFork(int child_pid); |
| |
| void InitializeCoverage(bool enabled, const char *coverage_dir); |
| void ReInitializeCoverage(bool enabled, const char *coverage_dir); |
| |
| void InitTlsSize(); |
| uptr GetTlsSize(); |
| |
| // Other |
| void SleepForSeconds(int seconds); |
| void SleepForMillis(int millis); |
| u64 NanoTime(); |
| int Atexit(void (*function)(void)); |
| void SortArray(uptr *array, uptr size); |
| bool TemplateMatch(const char *templ, const char *str); |
| |
| // Exit |
| void NORETURN Abort(); |
| void NORETURN Die(); |
| void NORETURN |
| CheckFailed(const char *file, int line, const char *cond, u64 v1, u64 v2); |
| void NORETURN ReportMmapFailureAndDie(uptr size, const char *mem_type, |
| const char *mmap_type, error_t err, |
| bool raw_report = false); |
| |
| // Set the name of the current thread to 'name', return true on succees. |
| // The name may be truncated to a system-dependent limit. |
| bool SanitizerSetThreadName(const char *name); |
| // Get the name of the current thread (no more than max_len bytes), |
| // return true on succees. name should have space for at least max_len+1 bytes. |
| bool SanitizerGetThreadName(char *name, int max_len); |
| |
| // Specific tools may override behavior of "Die" and "CheckFailed" functions |
| // to do tool-specific job. |
| typedef void (*DieCallbackType)(void); |
| |
| // It's possible to add several callbacks that would be run when "Die" is |
| // called. The callbacks will be run in the opposite order. The tools are |
| // strongly recommended to setup all callbacks during initialization, when there |
| // is only a single thread. |
| bool AddDieCallback(DieCallbackType callback); |
| bool RemoveDieCallback(DieCallbackType callback); |
| |
| void SetUserDieCallback(DieCallbackType callback); |
| |
| typedef void (*CheckFailedCallbackType)(const char *, int, const char *, |
| u64, u64); |
| void SetCheckFailedCallback(CheckFailedCallbackType callback); |
| |
| // Callback will be called if soft_rss_limit_mb is given and the limit is |
| // exceeded (exceeded==true) or if rss went down below the limit |
| // (exceeded==false). |
| // The callback should be registered once at the tool init time. |
| void SetSoftRssLimitExceededCallback(void (*Callback)(bool exceeded)); |
| |
| // Functions related to signal handling. |
| typedef void (*SignalHandlerType)(int, void *, void *); |
| bool IsHandledDeadlySignal(int signum); |
| void InstallDeadlySignalHandlers(SignalHandlerType handler); |
| // Alternative signal stack (POSIX-only). |
| void SetAlternateSignalStack(); |
| void UnsetAlternateSignalStack(); |
| |
| // We don't want a summary too long. |
| const int kMaxSummaryLength = 1024; |
| // Construct a one-line string: |
| // SUMMARY: SanitizerToolName: error_message |
| // and pass it to __sanitizer_report_error_summary. |
| void ReportErrorSummary(const char *error_message); |
| // Same as above, but construct error_message as: |
| // error_type file:line[:column][ function] |
| void ReportErrorSummary(const char *error_type, const AddressInfo &info); |
| // Same as above, but obtains AddressInfo by symbolizing top stack trace frame. |
| void ReportErrorSummary(const char *error_type, StackTrace *trace); |
| |
| // Math |
| #if SANITIZER_WINDOWS && !defined(__clang__) && !defined(__GNUC__) |
| extern "C" { |
| unsigned char _BitScanForward(unsigned long *index, unsigned long mask); // NOLINT |
| unsigned char _BitScanReverse(unsigned long *index, unsigned long mask); // NOLINT |
| #if defined(_WIN64) |
| unsigned char _BitScanForward64(unsigned long *index, unsigned __int64 mask); // NOLINT |
| unsigned char _BitScanReverse64(unsigned long *index, unsigned __int64 mask); // NOLINT |
| #endif |
| } |
| #endif |
| |
| INLINE uptr MostSignificantSetBitIndex(uptr x) { |
| CHECK_NE(x, 0U); |
| unsigned long up; // NOLINT |
| #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__) |
| # ifdef _WIN64 |
| up = SANITIZER_WORDSIZE - 1 - __builtin_clzll(x); |
| # else |
| up = SANITIZER_WORDSIZE - 1 - __builtin_clzl(x); |
| # endif |
| #elif defined(_WIN64) |
| _BitScanReverse64(&up, x); |
| #else |
| _BitScanReverse(&up, x); |
| #endif |
| return up; |
| } |
| |
| INLINE uptr LeastSignificantSetBitIndex(uptr x) { |
| CHECK_NE(x, 0U); |
| unsigned long up; // NOLINT |
| #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__) |
| # ifdef _WIN64 |
| up = __builtin_ctzll(x); |
| # else |
| up = __builtin_ctzl(x); |
| # endif |
| #elif defined(_WIN64) |
| _BitScanForward64(&up, x); |
| #else |
| _BitScanForward(&up, x); |
| #endif |
| return up; |
| } |
| |
| INLINE bool IsPowerOfTwo(uptr x) { |
| return (x & (x - 1)) == 0; |
| } |
| |
| INLINE uptr RoundUpToPowerOfTwo(uptr size) { |
| CHECK(size); |
| if (IsPowerOfTwo(size)) return size; |
| |
| uptr up = MostSignificantSetBitIndex(size); |
| CHECK(size < (1ULL << (up + 1))); |
| CHECK(size > (1ULL << up)); |
| return 1ULL << (up + 1); |
| } |
| |
| INLINE uptr RoundUpTo(uptr size, uptr boundary) { |
| RAW_CHECK(IsPowerOfTwo(boundary)); |
| return (size + boundary - 1) & ~(boundary - 1); |
| } |
| |
| INLINE uptr RoundDownTo(uptr x, uptr boundary) { |
| return x & ~(boundary - 1); |
| } |
| |
| INLINE bool IsAligned(uptr a, uptr alignment) { |
| return (a & (alignment - 1)) == 0; |
| } |
| |
| INLINE uptr Log2(uptr x) { |
| CHECK(IsPowerOfTwo(x)); |
| return LeastSignificantSetBitIndex(x); |
| } |
| |
| // Don't use std::min, std::max or std::swap, to minimize dependency |
| // on libstdc++. |
| template<class T> T Min(T a, T b) { return a < b ? a : b; } |
| template<class T> T Max(T a, T b) { return a > b ? a : b; } |
| template<class T> void Swap(T& a, T& b) { |
| T tmp = a; |
| a = b; |
| b = tmp; |
| } |
| |
| // Char handling |
| INLINE bool IsSpace(int c) { |
| return (c == ' ') || (c == '\n') || (c == '\t') || |
| (c == '\f') || (c == '\r') || (c == '\v'); |
| } |
| INLINE bool IsDigit(int c) { |
| return (c >= '0') && (c <= '9'); |
| } |
| INLINE int ToLower(int c) { |
| return (c >= 'A' && c <= 'Z') ? (c + 'a' - 'A') : c; |
| } |
| |
| // A low-level vector based on mmap. May incur a significant memory overhead for |
| // small vectors. |
| // WARNING: The current implementation supports only POD types. |
| template<typename T> |
| class InternalMmapVectorNoCtor { |
| public: |
| void Initialize(uptr initial_capacity) { |
| capacity_ = Max(initial_capacity, (uptr)1); |
| size_ = 0; |
| data_ = (T *)MmapOrDie(capacity_ * sizeof(T), "InternalMmapVectorNoCtor"); |
| } |
| void Destroy() { |
| UnmapOrDie(data_, capacity_ * sizeof(T)); |
| } |
| T &operator[](uptr i) { |
| CHECK_LT(i, size_); |
| return data_[i]; |
| } |
| const T &operator[](uptr i) const { |
| CHECK_LT(i, size_); |
| return data_[i]; |
| } |
| void push_back(const T &element) { |
| CHECK_LE(size_, capacity_); |
| if (size_ == capacity_) { |
| uptr new_capacity = RoundUpToPowerOfTwo(size_ + 1); |
| Resize(new_capacity); |
| } |
| internal_memcpy(&data_[size_++], &element, sizeof(T)); |
| } |
| T &back() { |
| CHECK_GT(size_, 0); |
| return data_[size_ - 1]; |
| } |
| void pop_back() { |
| CHECK_GT(size_, 0); |
| size_--; |
| } |
| uptr size() const { |
| return size_; |
| } |
| const T *data() const { |
| return data_; |
| } |
| T *data() { |
| return data_; |
| } |
| uptr capacity() const { |
| return capacity_; |
| } |
| |
| void clear() { size_ = 0; } |
| bool empty() const { return size() == 0; } |
| |
| const T *begin() const { |
| return data(); |
| } |
| T *begin() { |
| return data(); |
| } |
| const T *end() const { |
| return data() + size(); |
| } |
| T *end() { |
| return data() + size(); |
| } |
| |
| private: |
| void Resize(uptr new_capacity) { |
| CHECK_GT(new_capacity, 0); |
| CHECK_LE(size_, new_capacity); |
| T *new_data = (T *)MmapOrDie(new_capacity * sizeof(T), |
| "InternalMmapVector"); |
| internal_memcpy(new_data, data_, size_ * sizeof(T)); |
| T *old_data = data_; |
| data_ = new_data; |
| UnmapOrDie(old_data, capacity_ * sizeof(T)); |
| capacity_ = new_capacity; |
| } |
| |
| T *data_; |
| uptr capacity_; |
| uptr size_; |
| }; |
| |
| template<typename T> |
| class InternalMmapVector : public InternalMmapVectorNoCtor<T> { |
| public: |
| explicit InternalMmapVector(uptr initial_capacity) { |
| InternalMmapVectorNoCtor<T>::Initialize(initial_capacity); |
| } |
| ~InternalMmapVector() { InternalMmapVectorNoCtor<T>::Destroy(); } |
| // Disallow evil constructors. |
| InternalMmapVector(const InternalMmapVector&); |
| void operator=(const InternalMmapVector&); |
| }; |
| |
| // HeapSort for arrays and InternalMmapVector. |
| template<class Container, class Compare> |
| void InternalSort(Container *v, uptr size, Compare comp) { |
| if (size < 2) |
| return; |
| // Stage 1: insert elements to the heap. |
| for (uptr i = 1; i < size; i++) { |
| uptr j, p; |
| for (j = i; j > 0; j = p) { |
| p = (j - 1) / 2; |
| if (comp((*v)[p], (*v)[j])) |
| Swap((*v)[j], (*v)[p]); |
| else |
| break; |
| } |
| } |
| // Stage 2: swap largest element with the last one, |
| // and sink the new top. |
| for (uptr i = size - 1; i > 0; i--) { |
| Swap((*v)[0], (*v)[i]); |
| uptr j, max_ind; |
| for (j = 0; j < i; j = max_ind) { |
| uptr left = 2 * j + 1; |
| uptr right = 2 * j + 2; |
| max_ind = j; |
| if (left < i && comp((*v)[max_ind], (*v)[left])) |
| max_ind = left; |
| if (right < i && comp((*v)[max_ind], (*v)[right])) |
| max_ind = right; |
| if (max_ind != j) |
| Swap((*v)[j], (*v)[max_ind]); |
| else |
| break; |
| } |
| } |
| } |
| |
| template<class Container, class Value, class Compare> |
| uptr InternalBinarySearch(const Container &v, uptr first, uptr last, |
| const Value &val, Compare comp) { |
| uptr not_found = last + 1; |
| while (last >= first) { |
| uptr mid = (first + last) / 2; |
| if (comp(v[mid], val)) |
| first = mid + 1; |
| else if (comp(val, v[mid])) |
| last = mid - 1; |
| else |
| return mid; |
| } |
| return not_found; |
| } |
| |
| // Represents a binary loaded into virtual memory (e.g. this can be an |
| // executable or a shared object). |
| class LoadedModule { |
| public: |
| LoadedModule() : full_name_(nullptr), base_address_(0) { ranges_.clear(); } |
| void set(const char *module_name, uptr base_address); |
| void clear(); |
| void addAddressRange(uptr beg, uptr end, bool executable); |
| bool containsAddress(uptr address) const; |
| |
| const char *full_name() const { return full_name_; } |
| uptr base_address() const { return base_address_; } |
| |
| struct AddressRange { |
| AddressRange *next; |
| uptr beg; |
| uptr end; |
| bool executable; |
| |
| AddressRange(uptr beg, uptr end, bool executable) |
| : next(nullptr), beg(beg), end(end), executable(executable) {} |
| }; |
| |
| const IntrusiveList<AddressRange> &ranges() const { return ranges_; } |
| |
| private: |
| char *full_name_; // Owned. |
| uptr base_address_; |
| IntrusiveList<AddressRange> ranges_; |
| }; |
| |
| // List of LoadedModules. OS-dependent implementation is responsible for |
| // filling this information. |
| class ListOfModules { |
| public: |
| ListOfModules() : modules_(kInitialCapacity) {} |
| ~ListOfModules() { clear(); } |
| void init(); |
| const LoadedModule *begin() const { return modules_.begin(); } |
| LoadedModule *begin() { return modules_.begin(); } |
| const LoadedModule *end() const { return modules_.end(); } |
| LoadedModule *end() { return modules_.end(); } |
| uptr size() const { return modules_.size(); } |
| const LoadedModule &operator[](uptr i) const { |
| CHECK_LT(i, modules_.size()); |
| return modules_[i]; |
| } |
| |
| private: |
| void clear() { |
| for (auto &module : modules_) module.clear(); |
| modules_.clear(); |
| } |
| |
| InternalMmapVector<LoadedModule> modules_; |
| // We rarely have more than 16K loaded modules. |
| static const uptr kInitialCapacity = 1 << 14; |
| }; |
| |
| // Callback type for iterating over a set of memory ranges. |
| typedef void (*RangeIteratorCallback)(uptr begin, uptr end, void *arg); |
| |
| enum AndroidApiLevel { |
| ANDROID_NOT_ANDROID = 0, |
| ANDROID_KITKAT = 19, |
| ANDROID_LOLLIPOP_MR1 = 22, |
| ANDROID_POST_LOLLIPOP = 23 |
| }; |
| |
| void WriteToSyslog(const char *buffer); |
| |
| #if SANITIZER_MAC |
| void LogFullErrorReport(const char *buffer); |
| #else |
| INLINE void LogFullErrorReport(const char *buffer) {} |
| #endif |
| |
| #if SANITIZER_LINUX || SANITIZER_MAC |
| void WriteOneLineToSyslog(const char *s); |
| void LogMessageOnPrintf(const char *str); |
| #else |
| INLINE void WriteOneLineToSyslog(const char *s) {} |
| INLINE void LogMessageOnPrintf(const char *str) {} |
| #endif |
| |
| #if SANITIZER_LINUX |
| // Initialize Android logging. Any writes before this are silently lost. |
| void AndroidLogInit(); |
| #else |
| INLINE void AndroidLogInit() {} |
| #endif |
| |
| #if SANITIZER_ANDROID |
| void SanitizerInitializeUnwinder(); |
| AndroidApiLevel AndroidGetApiLevel(); |
| #else |
| INLINE void AndroidLogWrite(const char *buffer_unused) {} |
| INLINE void SanitizerInitializeUnwinder() {} |
| INLINE AndroidApiLevel AndroidGetApiLevel() { return ANDROID_NOT_ANDROID; } |
| #endif |
| |
| INLINE uptr GetPthreadDestructorIterations() { |
| #if SANITIZER_ANDROID |
| return (AndroidGetApiLevel() == ANDROID_LOLLIPOP_MR1) ? 8 : 4; |
| #elif SANITIZER_POSIX |
| return 4; |
| #else |
| // Unused on Windows. |
| return 0; |
| #endif |
| } |
| |
| void *internal_start_thread(void(*func)(void*), void *arg); |
| void internal_join_thread(void *th); |
| void MaybeStartBackgroudThread(); |
| |
| // Make the compiler think that something is going on there. |
| // Use this inside a loop that looks like memset/memcpy/etc to prevent the |
| // compiler from recognising it and turning it into an actual call to |
| // memset/memcpy/etc. |
| static inline void SanitizerBreakOptimization(void *arg) { |
| #if defined(_MSC_VER) && !defined(__clang__) |
| _ReadWriteBarrier(); |
| #else |
| __asm__ __volatile__("" : : "r" (arg) : "memory"); |
| #endif |
| } |
| |
| struct SignalContext { |
| void *context; |
| uptr addr; |
| uptr pc; |
| uptr sp; |
| uptr bp; |
| bool is_memory_access; |
| |
| enum WriteFlag { UNKNOWN, READ, WRITE } write_flag; |
| |
| SignalContext(void *context, uptr addr, uptr pc, uptr sp, uptr bp, |
| bool is_memory_access, WriteFlag write_flag) |
| : context(context), |
| addr(addr), |
| pc(pc), |
| sp(sp), |
| bp(bp), |
| is_memory_access(is_memory_access), |
| write_flag(write_flag) {} |
| |
| // Creates signal context in a platform-specific manner. |
| static SignalContext Create(void *siginfo, void *context); |
| |
| // Returns true if the "context" indicates a memory write. |
| static WriteFlag GetWriteFlag(void *context); |
| }; |
| |
| void GetPcSpBp(void *context, uptr *pc, uptr *sp, uptr *bp); |
| |
| void MaybeReexec(); |
| |
| template <typename Fn> |
| class RunOnDestruction { |
| public: |
| explicit RunOnDestruction(Fn fn) : fn_(fn) {} |
| ~RunOnDestruction() { fn_(); } |
| |
| private: |
| Fn fn_; |
| }; |
| |
| // A simple scope guard. Usage: |
| // auto cleanup = at_scope_exit([]{ do_cleanup; }); |
| template <typename Fn> |
| RunOnDestruction<Fn> at_scope_exit(Fn fn) { |
| return RunOnDestruction<Fn>(fn); |
| } |
| |
| // Linux on 64-bit s390 had a nasty bug that crashes the whole machine |
| // if a process uses virtual memory over 4TB (as many sanitizers like |
| // to do). This function will abort the process if running on a kernel |
| // that looks vulnerable. |
| #if SANITIZER_LINUX && SANITIZER_S390_64 |
| void AvoidCVE_2016_2143(); |
| #else |
| INLINE void AvoidCVE_2016_2143() {} |
| #endif |
| |
| } // namespace __sanitizer |
| |
| inline void *operator new(__sanitizer::operator_new_size_type size, |
| __sanitizer::LowLevelAllocator &alloc) { |
| return alloc.Allocate(size); |
| } |
| |
| struct StackDepotStats { |
| uptr n_uniq_ids; |
| uptr allocated; |
| }; |
| |
| #endif // SANITIZER_COMMON_H |