blob: f5bfb8046b0afb6cb693b123b09d7060978cd27b [file] [log] [blame]
//===-- asan_interface_test.cc --------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
//
//===----------------------------------------------------------------------===//
#include "asan_test_utils.h"
#include <sanitizer/allocator_interface.h>
#include <sanitizer/asan_interface.h>
TEST(AddressSanitizerInterface, GetEstimatedAllocatedSize) {
EXPECT_EQ(0U, __sanitizer_get_estimated_allocated_size(0));
const size_t sizes[] = { 1, 30, 1<<30 };
for (size_t i = 0; i < 3; i++) {
EXPECT_EQ(sizes[i], __sanitizer_get_estimated_allocated_size(sizes[i]));
}
}
static const char* kGetAllocatedSizeErrorMsg =
"attempting to call __sanitizer_get_allocated_size";
TEST(AddressSanitizerInterface, GetAllocatedSizeAndOwnershipTest) {
const size_t kArraySize = 100;
char *array = Ident((char*)malloc(kArraySize));
int *int_ptr = Ident(new int);
// Allocated memory is owned by allocator. Allocated size should be
// equal to requested size.
EXPECT_EQ(true, __sanitizer_get_ownership(array));
EXPECT_EQ(kArraySize, __sanitizer_get_allocated_size(array));
EXPECT_EQ(true, __sanitizer_get_ownership(int_ptr));
EXPECT_EQ(sizeof(int), __sanitizer_get_allocated_size(int_ptr));
// We cannot call GetAllocatedSize from the memory we didn't map,
// and from the interior pointers (not returned by previous malloc).
void *wild_addr = (void*)0x1;
EXPECT_FALSE(__sanitizer_get_ownership(wild_addr));
EXPECT_DEATH(__sanitizer_get_allocated_size(wild_addr),
kGetAllocatedSizeErrorMsg);
EXPECT_FALSE(__sanitizer_get_ownership(array + kArraySize / 2));
EXPECT_DEATH(__sanitizer_get_allocated_size(array + kArraySize / 2),
kGetAllocatedSizeErrorMsg);
// NULL is not owned, but is a valid argument for
// __sanitizer_get_allocated_size().
EXPECT_FALSE(__sanitizer_get_ownership(NULL));
EXPECT_EQ(0U, __sanitizer_get_allocated_size(NULL));
// When memory is freed, it's not owned, and call to GetAllocatedSize
// is forbidden.
free(array);
EXPECT_FALSE(__sanitizer_get_ownership(array));
EXPECT_DEATH(__sanitizer_get_allocated_size(array),
kGetAllocatedSizeErrorMsg);
delete int_ptr;
void *zero_alloc = Ident(malloc(0));
if (zero_alloc != 0) {
// If malloc(0) is not null, this pointer is owned and should have valid
// allocated size.
EXPECT_TRUE(__sanitizer_get_ownership(zero_alloc));
// Allocated size is 0 or 1 depending on the allocator used.
EXPECT_LT(__sanitizer_get_allocated_size(zero_alloc), 2U);
}
free(zero_alloc);
}
TEST(AddressSanitizerInterface, GetCurrentAllocatedBytesTest) {
size_t before_malloc, after_malloc, after_free;
char *array;
const size_t kMallocSize = 100;
before_malloc = __sanitizer_get_current_allocated_bytes();
array = Ident((char*)malloc(kMallocSize));
after_malloc = __sanitizer_get_current_allocated_bytes();
EXPECT_EQ(before_malloc + kMallocSize, after_malloc);
free(array);
after_free = __sanitizer_get_current_allocated_bytes();
EXPECT_EQ(before_malloc, after_free);
}
TEST(AddressSanitizerInterface, GetHeapSizeTest) {
// ASan allocator does not keep huge chunks in free list, but unmaps them.
// The chunk should be greater than the quarantine size,
// otherwise it will be stuck in quarantine instead of being unmaped.
static const size_t kLargeMallocSize = (1 << 28) + 1; // 256M
free(Ident(malloc(kLargeMallocSize))); // Drain quarantine.
size_t old_heap_size = __sanitizer_get_heap_size();
for (int i = 0; i < 3; i++) {
// fprintf(stderr, "allocating %zu bytes:\n", kLargeMallocSize);
free(Ident(malloc(kLargeMallocSize)));
EXPECT_EQ(old_heap_size, __sanitizer_get_heap_size());
}
}
static const size_t kManyThreadsMallocSizes[] = {5, 1UL<<10, 1UL<<14, 357};
static const size_t kManyThreadsIterations = 250;
static const size_t kManyThreadsNumThreads =
(SANITIZER_WORDSIZE == 32) ? 40 : 200;
static void *ManyThreadsWithStatsWorker(void *arg) {
(void)arg;
for (size_t iter = 0; iter < kManyThreadsIterations; iter++) {
for (size_t size_index = 0; size_index < 4; size_index++) {
free(Ident(malloc(kManyThreadsMallocSizes[size_index])));
}
}
// Just one large allocation.
free(Ident(malloc(1 << 20)));
return 0;
}
TEST(AddressSanitizerInterface, ManyThreadsWithStatsStressTest) {
size_t before_test, after_test, i;
pthread_t threads[kManyThreadsNumThreads];
before_test = __sanitizer_get_current_allocated_bytes();
for (i = 0; i < kManyThreadsNumThreads; i++) {
PTHREAD_CREATE(&threads[i], 0,
(void* (*)(void *x))ManyThreadsWithStatsWorker, (void*)i);
}
for (i = 0; i < kManyThreadsNumThreads; i++) {
PTHREAD_JOIN(threads[i], 0);
}
after_test = __sanitizer_get_current_allocated_bytes();
// ASan stats also reflect memory usage of internal ASan RTL structs,
// so we can't check for equality here.
EXPECT_LT(after_test, before_test + (1UL<<20));
}
static void DoDoubleFree() {
int *x = Ident(new int);
delete Ident(x);
delete Ident(x);
}
static void MyDeathCallback() {
fprintf(stderr, "MyDeathCallback\n");
fflush(0); // On Windows, stderr doesn't flush on crash.
}
TEST(AddressSanitizerInterface, DeathCallbackTest) {
__asan_set_death_callback(MyDeathCallback);
EXPECT_DEATH(DoDoubleFree(), "MyDeathCallback");
__asan_set_death_callback(NULL);
}
static const char* kUseAfterPoisonErrorMessage = "use-after-poison";
#define GOOD_ACCESS(ptr, offset) \
EXPECT_FALSE(__asan_address_is_poisoned(ptr + offset))
#define BAD_ACCESS(ptr, offset) \
EXPECT_TRUE(__asan_address_is_poisoned(ptr + offset))
TEST(AddressSanitizerInterface, SimplePoisonMemoryRegionTest) {
char *array = Ident((char*)malloc(120));
// poison array[40..80)
__asan_poison_memory_region(array + 40, 40);
GOOD_ACCESS(array, 39);
GOOD_ACCESS(array, 80);
BAD_ACCESS(array, 40);
BAD_ACCESS(array, 60);
BAD_ACCESS(array, 79);
char value;
EXPECT_DEATH(value = Ident(array[40]), kUseAfterPoisonErrorMessage);
__asan_unpoison_memory_region(array + 40, 40);
// access previously poisoned memory.
GOOD_ACCESS(array, 40);
GOOD_ACCESS(array, 79);
free(array);
}
TEST(AddressSanitizerInterface, OverlappingPoisonMemoryRegionTest) {
char *array = Ident((char*)malloc(120));
// Poison [0..40) and [80..120)
__asan_poison_memory_region(array, 40);
__asan_poison_memory_region(array + 80, 40);
BAD_ACCESS(array, 20);
GOOD_ACCESS(array, 60);
BAD_ACCESS(array, 100);
// Poison whole array - [0..120)
__asan_poison_memory_region(array, 120);
BAD_ACCESS(array, 60);
// Unpoison [24..96)
__asan_unpoison_memory_region(array + 24, 72);
BAD_ACCESS(array, 23);
GOOD_ACCESS(array, 24);
GOOD_ACCESS(array, 60);
GOOD_ACCESS(array, 95);
BAD_ACCESS(array, 96);
free(array);
}
TEST(AddressSanitizerInterface, PushAndPopWithPoisoningTest) {
// Vector of capacity 20
char *vec = Ident((char*)malloc(20));
__asan_poison_memory_region(vec, 20);
for (size_t i = 0; i < 7; i++) {
// Simulate push_back.
__asan_unpoison_memory_region(vec + i, 1);
GOOD_ACCESS(vec, i);
BAD_ACCESS(vec, i + 1);
}
for (size_t i = 7; i > 0; i--) {
// Simulate pop_back.
__asan_poison_memory_region(vec + i - 1, 1);
BAD_ACCESS(vec, i - 1);
if (i > 1) GOOD_ACCESS(vec, i - 2);
}
free(vec);
}
// Make sure that each aligned block of size "2^granularity" doesn't have
// "true" value before "false" value.
static void MakeShadowValid(bool *shadow, int length, int granularity) {
bool can_be_poisoned = true;
for (int i = length - 1; i >= 0; i--) {
if (!shadow[i])
can_be_poisoned = false;
if (!can_be_poisoned)
shadow[i] = false;
if (i % (1 << granularity) == 0) {
can_be_poisoned = true;
}
}
}
TEST(AddressSanitizerInterface, PoisoningStressTest) {
const size_t kSize = 24;
bool expected[kSize];
char *arr = Ident((char*)malloc(kSize));
for (size_t l1 = 0; l1 < kSize; l1++) {
for (size_t s1 = 1; l1 + s1 <= kSize; s1++) {
for (size_t l2 = 0; l2 < kSize; l2++) {
for (size_t s2 = 1; l2 + s2 <= kSize; s2++) {
// Poison [l1, l1+s1), [l2, l2+s2) and check result.
__asan_unpoison_memory_region(arr, kSize);
__asan_poison_memory_region(arr + l1, s1);
__asan_poison_memory_region(arr + l2, s2);
memset(expected, false, kSize);
memset(expected + l1, true, s1);
MakeShadowValid(expected, kSize, /*granularity*/ 3);
memset(expected + l2, true, s2);
MakeShadowValid(expected, kSize, /*granularity*/ 3);
for (size_t i = 0; i < kSize; i++) {
ASSERT_EQ(expected[i], __asan_address_is_poisoned(arr + i));
}
// Unpoison [l1, l1+s1) and [l2, l2+s2) and check result.
__asan_poison_memory_region(arr, kSize);
__asan_unpoison_memory_region(arr + l1, s1);
__asan_unpoison_memory_region(arr + l2, s2);
memset(expected, true, kSize);
memset(expected + l1, false, s1);
MakeShadowValid(expected, kSize, /*granularity*/ 3);
memset(expected + l2, false, s2);
MakeShadowValid(expected, kSize, /*granularity*/ 3);
for (size_t i = 0; i < kSize; i++) {
ASSERT_EQ(expected[i], __asan_address_is_poisoned(arr + i));
}
}
}
}
}
free(arr);
}
TEST(AddressSanitizerInterface, GlobalRedzones) {
GOOD_ACCESS(glob1, 1 - 1);
GOOD_ACCESS(glob2, 2 - 1);
GOOD_ACCESS(glob3, 3 - 1);
GOOD_ACCESS(glob4, 4 - 1);
GOOD_ACCESS(glob5, 5 - 1);
GOOD_ACCESS(glob6, 6 - 1);
GOOD_ACCESS(glob7, 7 - 1);
GOOD_ACCESS(glob8, 8 - 1);
GOOD_ACCESS(glob9, 9 - 1);
GOOD_ACCESS(glob10, 10 - 1);
GOOD_ACCESS(glob11, 11 - 1);
GOOD_ACCESS(glob12, 12 - 1);
GOOD_ACCESS(glob13, 13 - 1);
GOOD_ACCESS(glob14, 14 - 1);
GOOD_ACCESS(glob15, 15 - 1);
GOOD_ACCESS(glob16, 16 - 1);
GOOD_ACCESS(glob17, 17 - 1);
GOOD_ACCESS(glob1000, 1000 - 1);
GOOD_ACCESS(glob10000, 10000 - 1);
GOOD_ACCESS(glob100000, 100000 - 1);
BAD_ACCESS(glob1, 1);
BAD_ACCESS(glob2, 2);
BAD_ACCESS(glob3, 3);
BAD_ACCESS(glob4, 4);
BAD_ACCESS(glob5, 5);
BAD_ACCESS(glob6, 6);
BAD_ACCESS(glob7, 7);
BAD_ACCESS(glob8, 8);
BAD_ACCESS(glob9, 9);
BAD_ACCESS(glob10, 10);
BAD_ACCESS(glob11, 11);
BAD_ACCESS(glob12, 12);
BAD_ACCESS(glob13, 13);
BAD_ACCESS(glob14, 14);
BAD_ACCESS(glob15, 15);
BAD_ACCESS(glob16, 16);
BAD_ACCESS(glob17, 17);
BAD_ACCESS(glob1000, 1000);
BAD_ACCESS(glob1000, 1100); // Redzone is at least 101 bytes.
BAD_ACCESS(glob10000, 10000);
BAD_ACCESS(glob10000, 11000); // Redzone is at least 1001 bytes.
BAD_ACCESS(glob100000, 100000);
BAD_ACCESS(glob100000, 110000); // Redzone is at least 10001 bytes.
}
TEST(AddressSanitizerInterface, PoisonedRegion) {
size_t rz = 16;
for (size_t size = 1; size <= 64; size++) {
char *p = new char[size];
for (size_t beg = 0; beg < size + rz; beg++) {
for (size_t end = beg; end < size + rz; end++) {
void *first_poisoned = __asan_region_is_poisoned(p + beg, end - beg);
if (beg == end) {
EXPECT_FALSE(first_poisoned);
} else if (beg < size && end <= size) {
EXPECT_FALSE(first_poisoned);
} else if (beg >= size) {
EXPECT_EQ(p + beg, first_poisoned);
} else {
EXPECT_GT(end, size);
EXPECT_EQ(p + size, first_poisoned);
}
}
}
delete [] p;
}
}
// This is a performance benchmark for manual runs.
// asan's memset interceptor calls mem_is_zero for the entire shadow region.
// the profile should look like this:
// 89.10% [.] __memset_sse2
// 10.50% [.] __sanitizer::mem_is_zero
// I.e. mem_is_zero should consume ~ SHADOW_GRANULARITY less CPU cycles
// than memset itself.
TEST(AddressSanitizerInterface, DISABLED_StressLargeMemset) {
size_t size = 1 << 20;
char *x = new char[size];
for (int i = 0; i < 100000; i++)
Ident(memset)(x, 0, size);
delete [] x;
}
// Same here, but we run memset with small sizes.
TEST(AddressSanitizerInterface, DISABLED_StressSmallMemset) {
size_t size = 32;
char *x = new char[size];
for (int i = 0; i < 100000000; i++)
Ident(memset)(x, 0, size);
delete [] x;
}
static const char *kInvalidPoisonMessage = "invalid-poison-memory-range";
static const char *kInvalidUnpoisonMessage = "invalid-unpoison-memory-range";
TEST(AddressSanitizerInterface, DISABLED_InvalidPoisonAndUnpoisonCallsTest) {
char *array = Ident((char*)malloc(120));
__asan_unpoison_memory_region(array, 120);
// Try to unpoison not owned memory
EXPECT_DEATH(__asan_unpoison_memory_region(array, 121),
kInvalidUnpoisonMessage);
EXPECT_DEATH(__asan_unpoison_memory_region(array - 1, 120),
kInvalidUnpoisonMessage);
__asan_poison_memory_region(array, 120);
// Try to poison not owned memory.
EXPECT_DEATH(__asan_poison_memory_region(array, 121), kInvalidPoisonMessage);
EXPECT_DEATH(__asan_poison_memory_region(array - 1, 120),
kInvalidPoisonMessage);
free(array);
}
#if !defined(_WIN32) // FIXME: This should really be a lit test.
static void ErrorReportCallbackOneToZ(const char *report) {
int report_len = strlen(report);
ASSERT_EQ(6, write(2, "ABCDEF", 6));
ASSERT_EQ(report_len, write(2, report, report_len));
ASSERT_EQ(6, write(2, "ABCDEF", 6));
_exit(1);
}
TEST(AddressSanitizerInterface, SetErrorReportCallbackTest) {
__asan_set_error_report_callback(ErrorReportCallbackOneToZ);
EXPECT_DEATH(__asan_report_error(0, 0, 0, 0, true, 1),
ASAN_PCRE_DOTALL "ABCDEF.*AddressSanitizer.*WRITE.*ABCDEF");
__asan_set_error_report_callback(NULL);
}
#endif
TEST(AddressSanitizerInterface, GetOwnershipStressTest) {
std::vector<char *> pointers;
std::vector<size_t> sizes;
const size_t kNumMallocs = 1 << 9;
for (size_t i = 0; i < kNumMallocs; i++) {
size_t size = i * 100 + 1;
pointers.push_back((char*)malloc(size));
sizes.push_back(size);
}
for (size_t i = 0; i < 4000000; i++) {
EXPECT_FALSE(__sanitizer_get_ownership(&pointers));
EXPECT_FALSE(__sanitizer_get_ownership((void*)0x1234));
size_t idx = i % kNumMallocs;
EXPECT_TRUE(__sanitizer_get_ownership(pointers[idx]));
EXPECT_EQ(sizes[idx], __sanitizer_get_allocated_size(pointers[idx]));
}
for (size_t i = 0, n = pointers.size(); i < n; i++)
free(pointers[i]);
}