| //===-- asan_noinst_test.cc -----------------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file is a part of AddressSanitizer, an address sanity checker. |
| // |
| // This test file should be compiled w/o asan instrumentation. |
| //===----------------------------------------------------------------------===// |
| |
| #include "asan_allocator.h" |
| #include "asan_internal.h" |
| #include "asan_mapping.h" |
| #include "asan_test_utils.h" |
| #include <sanitizer/allocator_interface.h> |
| |
| #include <assert.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> // for memset() |
| #include <algorithm> |
| #include <vector> |
| #include <limits> |
| |
| // ATTENTION! |
| // Please don't call intercepted functions (including malloc() and friends) |
| // in this test. The static runtime library is linked explicitly (without |
| // -fsanitize=address), thus the interceptors do not work correctly on OS X. |
| |
| // Make sure __asan_init is called before any test case is run. |
| struct AsanInitCaller { |
| AsanInitCaller() { |
| __asan_init(); |
| } |
| }; |
| static AsanInitCaller asan_init_caller; |
| |
| TEST(AddressSanitizer, InternalSimpleDeathTest) { |
| EXPECT_DEATH(exit(1), ""); |
| } |
| |
| static void MallocStress(size_t n) { |
| u32 seed = my_rand(); |
| BufferedStackTrace stack1; |
| stack1.trace_buffer[0] = 0xa123; |
| stack1.trace_buffer[1] = 0xa456; |
| stack1.size = 2; |
| |
| BufferedStackTrace stack2; |
| stack2.trace_buffer[0] = 0xb123; |
| stack2.trace_buffer[1] = 0xb456; |
| stack2.size = 2; |
| |
| BufferedStackTrace stack3; |
| stack3.trace_buffer[0] = 0xc123; |
| stack3.trace_buffer[1] = 0xc456; |
| stack3.size = 2; |
| |
| std::vector<void *> vec; |
| for (size_t i = 0; i < n; i++) { |
| if ((i % 3) == 0) { |
| if (vec.empty()) continue; |
| size_t idx = my_rand_r(&seed) % vec.size(); |
| void *ptr = vec[idx]; |
| vec[idx] = vec.back(); |
| vec.pop_back(); |
| __asan::asan_free(ptr, &stack1, __asan::FROM_MALLOC); |
| } else { |
| size_t size = my_rand_r(&seed) % 1000 + 1; |
| switch ((my_rand_r(&seed) % 128)) { |
| case 0: size += 1024; break; |
| case 1: size += 2048; break; |
| case 2: size += 4096; break; |
| } |
| size_t alignment = 1 << (my_rand_r(&seed) % 10 + 1); |
| char *ptr = (char*)__asan::asan_memalign(alignment, size, |
| &stack2, __asan::FROM_MALLOC); |
| EXPECT_EQ(size, __asan::asan_malloc_usable_size(ptr, 0, 0)); |
| vec.push_back(ptr); |
| ptr[0] = 0; |
| ptr[size-1] = 0; |
| ptr[size/2] = 0; |
| } |
| } |
| for (size_t i = 0; i < vec.size(); i++) |
| __asan::asan_free(vec[i], &stack3, __asan::FROM_MALLOC); |
| } |
| |
| |
| TEST(AddressSanitizer, NoInstMallocTest) { |
| MallocStress(ASAN_LOW_MEMORY ? 300000 : 1000000); |
| } |
| |
| TEST(AddressSanitizer, ThreadedMallocStressTest) { |
| const int kNumThreads = 4; |
| const int kNumIterations = (ASAN_LOW_MEMORY) ? 10000 : 100000; |
| pthread_t t[kNumThreads]; |
| for (int i = 0; i < kNumThreads; i++) { |
| PTHREAD_CREATE(&t[i], 0, (void* (*)(void *x))MallocStress, |
| (void*)kNumIterations); |
| } |
| for (int i = 0; i < kNumThreads; i++) { |
| PTHREAD_JOIN(t[i], 0); |
| } |
| } |
| |
| static void PrintShadow(const char *tag, uptr ptr, size_t size) { |
| fprintf(stderr, "%s shadow: %lx size % 3ld: ", tag, (long)ptr, (long)size); |
| uptr prev_shadow = 0; |
| for (sptr i = -32; i < (sptr)size + 32; i++) { |
| uptr shadow = __asan::MemToShadow(ptr + i); |
| if (i == 0 || i == (sptr)size) |
| fprintf(stderr, "."); |
| if (shadow != prev_shadow) { |
| prev_shadow = shadow; |
| fprintf(stderr, "%02x", (int)*(u8*)shadow); |
| } |
| } |
| fprintf(stderr, "\n"); |
| } |
| |
| TEST(AddressSanitizer, DISABLED_InternalPrintShadow) { |
| for (size_t size = 1; size <= 513; size++) { |
| char *ptr = new char[size]; |
| PrintShadow("m", (uptr)ptr, size); |
| delete [] ptr; |
| PrintShadow("f", (uptr)ptr, size); |
| } |
| } |
| |
| TEST(AddressSanitizer, QuarantineTest) { |
| BufferedStackTrace stack; |
| stack.trace_buffer[0] = 0x890; |
| stack.size = 1; |
| |
| const int size = 1024; |
| void *p = __asan::asan_malloc(size, &stack); |
| __asan::asan_free(p, &stack, __asan::FROM_MALLOC); |
| size_t i; |
| size_t max_i = 1 << 30; |
| for (i = 0; i < max_i; i++) { |
| void *p1 = __asan::asan_malloc(size, &stack); |
| __asan::asan_free(p1, &stack, __asan::FROM_MALLOC); |
| if (p1 == p) break; |
| } |
| EXPECT_GE(i, 10000U); |
| EXPECT_LT(i, max_i); |
| } |
| |
| void *ThreadedQuarantineTestWorker(void *unused) { |
| (void)unused; |
| u32 seed = my_rand(); |
| BufferedStackTrace stack; |
| stack.trace_buffer[0] = 0x890; |
| stack.size = 1; |
| |
| for (size_t i = 0; i < 1000; i++) { |
| void *p = __asan::asan_malloc(1 + (my_rand_r(&seed) % 4000), &stack); |
| __asan::asan_free(p, &stack, __asan::FROM_MALLOC); |
| } |
| return NULL; |
| } |
| |
| // Check that the thread local allocators are flushed when threads are |
| // destroyed. |
| TEST(AddressSanitizer, ThreadedQuarantineTest) { |
| const int n_threads = 3000; |
| size_t mmaped1 = __sanitizer_get_heap_size(); |
| for (int i = 0; i < n_threads; i++) { |
| pthread_t t; |
| PTHREAD_CREATE(&t, NULL, ThreadedQuarantineTestWorker, 0); |
| PTHREAD_JOIN(t, 0); |
| size_t mmaped2 = __sanitizer_get_heap_size(); |
| EXPECT_LT(mmaped2 - mmaped1, 320U * (1 << 20)); |
| } |
| } |
| |
| void *ThreadedOneSizeMallocStress(void *unused) { |
| (void)unused; |
| BufferedStackTrace stack; |
| stack.trace_buffer[0] = 0x890; |
| stack.size = 1; |
| const size_t kNumMallocs = 1000; |
| for (int iter = 0; iter < 1000; iter++) { |
| void *p[kNumMallocs]; |
| for (size_t i = 0; i < kNumMallocs; i++) { |
| p[i] = __asan::asan_malloc(32, &stack); |
| } |
| for (size_t i = 0; i < kNumMallocs; i++) { |
| __asan::asan_free(p[i], &stack, __asan::FROM_MALLOC); |
| } |
| } |
| return NULL; |
| } |
| |
| TEST(AddressSanitizer, ThreadedOneSizeMallocStressTest) { |
| const int kNumThreads = 4; |
| pthread_t t[kNumThreads]; |
| for (int i = 0; i < kNumThreads; i++) { |
| PTHREAD_CREATE(&t[i], 0, ThreadedOneSizeMallocStress, 0); |
| } |
| for (int i = 0; i < kNumThreads; i++) { |
| PTHREAD_JOIN(t[i], 0); |
| } |
| } |
| |
| TEST(AddressSanitizer, ShadowRegionIsPoisonedTest) { |
| using __asan::kHighMemEnd; |
| // Check that __asan_region_is_poisoned works for shadow regions. |
| uptr ptr = kLowShadowBeg + 200; |
| EXPECT_EQ(ptr, __asan_region_is_poisoned(ptr, 100)); |
| ptr = kShadowGapBeg + 200; |
| EXPECT_EQ(ptr, __asan_region_is_poisoned(ptr, 100)); |
| ptr = kHighShadowBeg + 200; |
| EXPECT_EQ(ptr, __asan_region_is_poisoned(ptr, 100)); |
| } |
| |
| // Test __asan_load1 & friends. |
| TEST(AddressSanitizer, LoadStoreCallbacks) { |
| typedef void (*CB)(uptr p); |
| CB cb[2][5] = { |
| { |
| __asan_load1, __asan_load2, __asan_load4, __asan_load8, __asan_load16, |
| }, { |
| __asan_store1, __asan_store2, __asan_store4, __asan_store8, |
| __asan_store16, |
| } |
| }; |
| |
| uptr buggy_ptr; |
| |
| __asan_test_only_reported_buggy_pointer = &buggy_ptr; |
| BufferedStackTrace stack; |
| stack.trace_buffer[0] = 0x890; |
| stack.size = 1; |
| |
| for (uptr len = 16; len <= 32; len++) { |
| char *ptr = (char*) __asan::asan_malloc(len, &stack); |
| uptr p = reinterpret_cast<uptr>(ptr); |
| for (uptr is_write = 0; is_write <= 1; is_write++) { |
| for (uptr size_log = 0; size_log <= 4; size_log++) { |
| uptr size = 1 << size_log; |
| CB call = cb[is_write][size_log]; |
| // Iterate only size-aligned offsets. |
| for (uptr offset = 0; offset <= len; offset += size) { |
| buggy_ptr = 0; |
| call(p + offset); |
| if (offset + size <= len) |
| EXPECT_EQ(buggy_ptr, 0U); |
| else |
| EXPECT_EQ(buggy_ptr, p + offset); |
| } |
| } |
| } |
| __asan::asan_free(ptr, &stack, __asan::FROM_MALLOC); |
| } |
| __asan_test_only_reported_buggy_pointer = 0; |
| } |