| //===-- sanitizer_allocator.h -----------------------------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Specialized memory allocator for ThreadSanitizer, MemorySanitizer, etc. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef SANITIZER_ALLOCATOR_H |
| #define SANITIZER_ALLOCATOR_H |
| |
| #include "sanitizer_internal_defs.h" |
| #include "sanitizer_common.h" |
| #include "sanitizer_libc.h" |
| #include "sanitizer_list.h" |
| #include "sanitizer_mutex.h" |
| #include "sanitizer_lfstack.h" |
| |
| namespace __sanitizer { |
| |
| // Prints error message and kills the program. |
| void NORETURN ReportAllocatorCannotReturnNull(); |
| |
| // SizeClassMap maps allocation sizes into size classes and back. |
| // Class 0 corresponds to size 0. |
| // Classes 1 - 16 correspond to sizes 16 to 256 (size = class_id * 16). |
| // Next 4 classes: 256 + i * 64 (i = 1 to 4). |
| // Next 4 classes: 512 + i * 128 (i = 1 to 4). |
| // ... |
| // Next 4 classes: 2^k + i * 2^(k-2) (i = 1 to 4). |
| // Last class corresponds to kMaxSize = 1 << kMaxSizeLog. |
| // |
| // This structure of the size class map gives us: |
| // - Efficient table-free class-to-size and size-to-class functions. |
| // - Difference between two consequent size classes is betweed 14% and 25% |
| // |
| // This class also gives a hint to a thread-caching allocator about the amount |
| // of chunks that need to be cached per-thread: |
| // - kMaxNumCached is the maximal number of chunks per size class. |
| // - (1 << kMaxBytesCachedLog) is the maximal number of bytes per size class. |
| // |
| // Part of output of SizeClassMap::Print(): |
| // c00 => s: 0 diff: +0 00% l 0 cached: 0 0; id 0 |
| // c01 => s: 16 diff: +16 00% l 4 cached: 256 4096; id 1 |
| // c02 => s: 32 diff: +16 100% l 5 cached: 256 8192; id 2 |
| // c03 => s: 48 diff: +16 50% l 5 cached: 256 12288; id 3 |
| // c04 => s: 64 diff: +16 33% l 6 cached: 256 16384; id 4 |
| // c05 => s: 80 diff: +16 25% l 6 cached: 256 20480; id 5 |
| // c06 => s: 96 diff: +16 20% l 6 cached: 256 24576; id 6 |
| // c07 => s: 112 diff: +16 16% l 6 cached: 256 28672; id 7 |
| // |
| // c08 => s: 128 diff: +16 14% l 7 cached: 256 32768; id 8 |
| // c09 => s: 144 diff: +16 12% l 7 cached: 256 36864; id 9 |
| // c10 => s: 160 diff: +16 11% l 7 cached: 256 40960; id 10 |
| // c11 => s: 176 diff: +16 10% l 7 cached: 256 45056; id 11 |
| // c12 => s: 192 diff: +16 09% l 7 cached: 256 49152; id 12 |
| // c13 => s: 208 diff: +16 08% l 7 cached: 256 53248; id 13 |
| // c14 => s: 224 diff: +16 07% l 7 cached: 256 57344; id 14 |
| // c15 => s: 240 diff: +16 07% l 7 cached: 256 61440; id 15 |
| // |
| // c16 => s: 256 diff: +16 06% l 8 cached: 256 65536; id 16 |
| // c17 => s: 320 diff: +64 25% l 8 cached: 204 65280; id 17 |
| // c18 => s: 384 diff: +64 20% l 8 cached: 170 65280; id 18 |
| // c19 => s: 448 diff: +64 16% l 8 cached: 146 65408; id 19 |
| // |
| // c20 => s: 512 diff: +64 14% l 9 cached: 128 65536; id 20 |
| // c21 => s: 640 diff: +128 25% l 9 cached: 102 65280; id 21 |
| // c22 => s: 768 diff: +128 20% l 9 cached: 85 65280; id 22 |
| // c23 => s: 896 diff: +128 16% l 9 cached: 73 65408; id 23 |
| // |
| // c24 => s: 1024 diff: +128 14% l 10 cached: 64 65536; id 24 |
| // c25 => s: 1280 diff: +256 25% l 10 cached: 51 65280; id 25 |
| // c26 => s: 1536 diff: +256 20% l 10 cached: 42 64512; id 26 |
| // c27 => s: 1792 diff: +256 16% l 10 cached: 36 64512; id 27 |
| // |
| // ... |
| // |
| // c48 => s: 65536 diff: +8192 14% l 16 cached: 1 65536; id 48 |
| // c49 => s: 81920 diff: +16384 25% l 16 cached: 1 81920; id 49 |
| // c50 => s: 98304 diff: +16384 20% l 16 cached: 1 98304; id 50 |
| // c51 => s: 114688 diff: +16384 16% l 16 cached: 1 114688; id 51 |
| // |
| // c52 => s: 131072 diff: +16384 14% l 17 cached: 1 131072; id 52 |
| |
| template <uptr kMaxSizeLog, uptr kMaxNumCachedT, uptr kMaxBytesCachedLog> |
| class SizeClassMap { |
| static const uptr kMinSizeLog = 4; |
| static const uptr kMidSizeLog = kMinSizeLog + 4; |
| static const uptr kMinSize = 1 << kMinSizeLog; |
| static const uptr kMidSize = 1 << kMidSizeLog; |
| static const uptr kMidClass = kMidSize / kMinSize; |
| static const uptr S = 2; |
| static const uptr M = (1 << S) - 1; |
| |
| public: |
| static const uptr kMaxNumCached = kMaxNumCachedT; |
| // We transfer chunks between central and thread-local free lists in batches. |
| // For small size classes we allocate batches separately. |
| // For large size classes we use one of the chunks to store the batch. |
| struct TransferBatch { |
| TransferBatch *next; |
| uptr count; |
| void *batch[kMaxNumCached]; |
| }; |
| |
| static const uptr kMaxSize = 1UL << kMaxSizeLog; |
| static const uptr kNumClasses = |
| kMidClass + ((kMaxSizeLog - kMidSizeLog) << S) + 1; |
| COMPILER_CHECK(kNumClasses >= 32 && kNumClasses <= 256); |
| static const uptr kNumClassesRounded = |
| kNumClasses == 32 ? 32 : |
| kNumClasses <= 64 ? 64 : |
| kNumClasses <= 128 ? 128 : 256; |
| |
| static uptr Size(uptr class_id) { |
| if (class_id <= kMidClass) |
| return kMinSize * class_id; |
| class_id -= kMidClass; |
| uptr t = kMidSize << (class_id >> S); |
| return t + (t >> S) * (class_id & M); |
| } |
| |
| static uptr ClassID(uptr size) { |
| if (size <= kMidSize) |
| return (size + kMinSize - 1) >> kMinSizeLog; |
| if (size > kMaxSize) return 0; |
| uptr l = MostSignificantSetBitIndex(size); |
| uptr hbits = (size >> (l - S)) & M; |
| uptr lbits = size & ((1 << (l - S)) - 1); |
| uptr l1 = l - kMidSizeLog; |
| return kMidClass + (l1 << S) + hbits + (lbits > 0); |
| } |
| |
| static uptr MaxCached(uptr class_id) { |
| if (class_id == 0) return 0; |
| uptr n = (1UL << kMaxBytesCachedLog) / Size(class_id); |
| return Max<uptr>(1, Min(kMaxNumCached, n)); |
| } |
| |
| static void Print() { |
| uptr prev_s = 0; |
| uptr total_cached = 0; |
| for (uptr i = 0; i < kNumClasses; i++) { |
| uptr s = Size(i); |
| if (s >= kMidSize / 2 && (s & (s - 1)) == 0) |
| Printf("\n"); |
| uptr d = s - prev_s; |
| uptr p = prev_s ? (d * 100 / prev_s) : 0; |
| uptr l = s ? MostSignificantSetBitIndex(s) : 0; |
| uptr cached = MaxCached(i) * s; |
| Printf("c%02zd => s: %zd diff: +%zd %02zd%% l %zd " |
| "cached: %zd %zd; id %zd\n", |
| i, Size(i), d, p, l, MaxCached(i), cached, ClassID(s)); |
| total_cached += cached; |
| prev_s = s; |
| } |
| Printf("Total cached: %zd\n", total_cached); |
| } |
| |
| static bool SizeClassRequiresSeparateTransferBatch(uptr class_id) { |
| return Size(class_id) < sizeof(TransferBatch) - |
| sizeof(uptr) * (kMaxNumCached - MaxCached(class_id)); |
| } |
| |
| static void Validate() { |
| for (uptr c = 1; c < kNumClasses; c++) { |
| // Printf("Validate: c%zd\n", c); |
| uptr s = Size(c); |
| CHECK_NE(s, 0U); |
| CHECK_EQ(ClassID(s), c); |
| if (c != kNumClasses - 1) |
| CHECK_EQ(ClassID(s + 1), c + 1); |
| CHECK_EQ(ClassID(s - 1), c); |
| if (c) |
| CHECK_GT(Size(c), Size(c-1)); |
| } |
| CHECK_EQ(ClassID(kMaxSize + 1), 0); |
| |
| for (uptr s = 1; s <= kMaxSize; s++) { |
| uptr c = ClassID(s); |
| // Printf("s%zd => c%zd\n", s, c); |
| CHECK_LT(c, kNumClasses); |
| CHECK_GE(Size(c), s); |
| if (c > 0) |
| CHECK_LT(Size(c-1), s); |
| } |
| } |
| }; |
| |
| typedef SizeClassMap<17, 128, 16> DefaultSizeClassMap; |
| typedef SizeClassMap<17, 64, 14> CompactSizeClassMap; |
| template<class SizeClassAllocator> struct SizeClassAllocatorLocalCache; |
| |
| // Memory allocator statistics |
| enum AllocatorStat { |
| AllocatorStatAllocated, |
| AllocatorStatMapped, |
| AllocatorStatCount |
| }; |
| |
| typedef uptr AllocatorStatCounters[AllocatorStatCount]; |
| |
| // Per-thread stats, live in per-thread cache. |
| class AllocatorStats { |
| public: |
| void Init() { |
| internal_memset(this, 0, sizeof(*this)); |
| } |
| void InitLinkerInitialized() {} |
| |
| void Add(AllocatorStat i, uptr v) { |
| v += atomic_load(&stats_[i], memory_order_relaxed); |
| atomic_store(&stats_[i], v, memory_order_relaxed); |
| } |
| |
| void Sub(AllocatorStat i, uptr v) { |
| v = atomic_load(&stats_[i], memory_order_relaxed) - v; |
| atomic_store(&stats_[i], v, memory_order_relaxed); |
| } |
| |
| void Set(AllocatorStat i, uptr v) { |
| atomic_store(&stats_[i], v, memory_order_relaxed); |
| } |
| |
| uptr Get(AllocatorStat i) const { |
| return atomic_load(&stats_[i], memory_order_relaxed); |
| } |
| |
| private: |
| friend class AllocatorGlobalStats; |
| AllocatorStats *next_; |
| AllocatorStats *prev_; |
| atomic_uintptr_t stats_[AllocatorStatCount]; |
| }; |
| |
| // Global stats, used for aggregation and querying. |
| class AllocatorGlobalStats : public AllocatorStats { |
| public: |
| void InitLinkerInitialized() { |
| next_ = this; |
| prev_ = this; |
| } |
| void Init() { |
| internal_memset(this, 0, sizeof(*this)); |
| InitLinkerInitialized(); |
| } |
| |
| void Register(AllocatorStats *s) { |
| SpinMutexLock l(&mu_); |
| s->next_ = next_; |
| s->prev_ = this; |
| next_->prev_ = s; |
| next_ = s; |
| } |
| |
| void Unregister(AllocatorStats *s) { |
| SpinMutexLock l(&mu_); |
| s->prev_->next_ = s->next_; |
| s->next_->prev_ = s->prev_; |
| for (int i = 0; i < AllocatorStatCount; i++) |
| Add(AllocatorStat(i), s->Get(AllocatorStat(i))); |
| } |
| |
| void Get(AllocatorStatCounters s) const { |
| internal_memset(s, 0, AllocatorStatCount * sizeof(uptr)); |
| SpinMutexLock l(&mu_); |
| const AllocatorStats *stats = this; |
| for (;;) { |
| for (int i = 0; i < AllocatorStatCount; i++) |
| s[i] += stats->Get(AllocatorStat(i)); |
| stats = stats->next_; |
| if (stats == this) |
| break; |
| } |
| // All stats must be non-negative. |
| for (int i = 0; i < AllocatorStatCount; i++) |
| s[i] = ((sptr)s[i]) >= 0 ? s[i] : 0; |
| } |
| |
| private: |
| mutable SpinMutex mu_; |
| }; |
| |
| // Allocators call these callbacks on mmap/munmap. |
| struct NoOpMapUnmapCallback { |
| void OnMap(uptr p, uptr size) const { } |
| void OnUnmap(uptr p, uptr size) const { } |
| }; |
| |
| // Callback type for iterating over chunks. |
| typedef void (*ForEachChunkCallback)(uptr chunk, void *arg); |
| |
| // SizeClassAllocator64 -- allocator for 64-bit address space. |
| // |
| // Space: a portion of address space of kSpaceSize bytes starting at SpaceBeg. |
| // If kSpaceBeg is ~0 then SpaceBeg is chosen dynamically my mmap. |
| // Otherwise SpaceBeg=kSpaceBeg (fixed address). |
| // kSpaceSize is a power of two. |
| // At the beginning the entire space is mprotect-ed, then small parts of it |
| // are mapped on demand. |
| // |
| // Region: a part of Space dedicated to a single size class. |
| // There are kNumClasses Regions of equal size. |
| // |
| // UserChunk: a piece of memory returned to user. |
| // MetaChunk: kMetadataSize bytes of metadata associated with a UserChunk. |
| // |
| // A Region looks like this: |
| // UserChunk1 ... UserChunkN <gap> MetaChunkN ... MetaChunk1 |
| template <const uptr kSpaceBeg, const uptr kSpaceSize, |
| const uptr kMetadataSize, class SizeClassMap, |
| class MapUnmapCallback = NoOpMapUnmapCallback> |
| class SizeClassAllocator64 { |
| public: |
| typedef typename SizeClassMap::TransferBatch Batch; |
| typedef SizeClassAllocator64<kSpaceBeg, kSpaceSize, kMetadataSize, |
| SizeClassMap, MapUnmapCallback> ThisT; |
| typedef SizeClassAllocatorLocalCache<ThisT> AllocatorCache; |
| |
| void Init() { |
| uptr TotalSpaceSize = kSpaceSize + AdditionalSize(); |
| if (kUsingConstantSpaceBeg) { |
| CHECK_EQ(kSpaceBeg, reinterpret_cast<uptr>( |
| MmapFixedNoAccess(kSpaceBeg, TotalSpaceSize))); |
| } else { |
| NonConstSpaceBeg = |
| reinterpret_cast<uptr>(MmapNoAccess(TotalSpaceSize)); |
| CHECK_NE(NonConstSpaceBeg, ~(uptr)0); |
| } |
| MapWithCallback(SpaceEnd(), AdditionalSize()); |
| } |
| |
| void MapWithCallback(uptr beg, uptr size) { |
| CHECK_EQ(beg, reinterpret_cast<uptr>(MmapFixedOrDie(beg, size))); |
| MapUnmapCallback().OnMap(beg, size); |
| } |
| |
| void UnmapWithCallback(uptr beg, uptr size) { |
| MapUnmapCallback().OnUnmap(beg, size); |
| UnmapOrDie(reinterpret_cast<void *>(beg), size); |
| } |
| |
| static bool CanAllocate(uptr size, uptr alignment) { |
| return size <= SizeClassMap::kMaxSize && |
| alignment <= SizeClassMap::kMaxSize; |
| } |
| |
| NOINLINE Batch* AllocateBatch(AllocatorStats *stat, AllocatorCache *c, |
| uptr class_id) { |
| CHECK_LT(class_id, kNumClasses); |
| RegionInfo *region = GetRegionInfo(class_id); |
| Batch *b = region->free_list.Pop(); |
| if (!b) |
| b = PopulateFreeList(stat, c, class_id, region); |
| region->n_allocated += b->count; |
| return b; |
| } |
| |
| NOINLINE void DeallocateBatch(AllocatorStats *stat, uptr class_id, Batch *b) { |
| RegionInfo *region = GetRegionInfo(class_id); |
| CHECK_GT(b->count, 0); |
| region->free_list.Push(b); |
| region->n_freed += b->count; |
| } |
| |
| bool PointerIsMine(const void *p) { |
| uptr P = reinterpret_cast<uptr>(p); |
| if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0) |
| return P / kSpaceSize == kSpaceBeg / kSpaceSize; |
| return P >= SpaceBeg() && P < SpaceEnd(); |
| } |
| |
| uptr GetSizeClass(const void *p) { |
| if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0) |
| return ((reinterpret_cast<uptr>(p)) / kRegionSize) % kNumClassesRounded; |
| return ((reinterpret_cast<uptr>(p) - SpaceBeg()) / kRegionSize) % |
| kNumClassesRounded; |
| } |
| |
| void *GetBlockBegin(const void *p) { |
| uptr class_id = GetSizeClass(p); |
| uptr size = SizeClassMap::Size(class_id); |
| if (!size) return nullptr; |
| uptr chunk_idx = GetChunkIdx((uptr)p, size); |
| uptr reg_beg = (uptr)p & ~(kRegionSize - 1); |
| uptr beg = chunk_idx * size; |
| uptr next_beg = beg + size; |
| if (class_id >= kNumClasses) return nullptr; |
| RegionInfo *region = GetRegionInfo(class_id); |
| if (region->mapped_user >= next_beg) |
| return reinterpret_cast<void*>(reg_beg + beg); |
| return nullptr; |
| } |
| |
| uptr GetActuallyAllocatedSize(void *p) { |
| CHECK(PointerIsMine(p)); |
| return SizeClassMap::Size(GetSizeClass(p)); |
| } |
| |
| uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); } |
| |
| void *GetMetaData(const void *p) { |
| uptr class_id = GetSizeClass(p); |
| uptr size = SizeClassMap::Size(class_id); |
| uptr chunk_idx = GetChunkIdx(reinterpret_cast<uptr>(p), size); |
| return reinterpret_cast<void *>(SpaceBeg() + |
| (kRegionSize * (class_id + 1)) - |
| (1 + chunk_idx) * kMetadataSize); |
| } |
| |
| uptr TotalMemoryUsed() { |
| uptr res = 0; |
| for (uptr i = 0; i < kNumClasses; i++) |
| res += GetRegionInfo(i)->allocated_user; |
| return res; |
| } |
| |
| // Test-only. |
| void TestOnlyUnmap() { |
| UnmapWithCallback(SpaceBeg(), kSpaceSize + AdditionalSize()); |
| } |
| |
| void PrintStats() { |
| uptr total_mapped = 0; |
| uptr n_allocated = 0; |
| uptr n_freed = 0; |
| for (uptr class_id = 1; class_id < kNumClasses; class_id++) { |
| RegionInfo *region = GetRegionInfo(class_id); |
| total_mapped += region->mapped_user; |
| n_allocated += region->n_allocated; |
| n_freed += region->n_freed; |
| } |
| Printf("Stats: SizeClassAllocator64: %zdM mapped in %zd allocations; " |
| "remains %zd\n", |
| total_mapped >> 20, n_allocated, n_allocated - n_freed); |
| for (uptr class_id = 1; class_id < kNumClasses; class_id++) { |
| RegionInfo *region = GetRegionInfo(class_id); |
| if (region->mapped_user == 0) continue; |
| Printf(" %02zd (%zd): total: %zd K allocs: %zd remains: %zd\n", |
| class_id, |
| SizeClassMap::Size(class_id), |
| region->mapped_user >> 10, |
| region->n_allocated, |
| region->n_allocated - region->n_freed); |
| } |
| } |
| |
| // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone |
| // introspection API. |
| void ForceLock() { |
| for (uptr i = 0; i < kNumClasses; i++) { |
| GetRegionInfo(i)->mutex.Lock(); |
| } |
| } |
| |
| void ForceUnlock() { |
| for (int i = (int)kNumClasses - 1; i >= 0; i--) { |
| GetRegionInfo(i)->mutex.Unlock(); |
| } |
| } |
| |
| // Iterate over all existing chunks. |
| // The allocator must be locked when calling this function. |
| void ForEachChunk(ForEachChunkCallback callback, void *arg) { |
| for (uptr class_id = 1; class_id < kNumClasses; class_id++) { |
| RegionInfo *region = GetRegionInfo(class_id); |
| uptr chunk_size = SizeClassMap::Size(class_id); |
| uptr region_beg = SpaceBeg() + class_id * kRegionSize; |
| for (uptr chunk = region_beg; |
| chunk < region_beg + region->allocated_user; |
| chunk += chunk_size) { |
| // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk)); |
| callback(chunk, arg); |
| } |
| } |
| } |
| |
| static uptr AdditionalSize() { |
| return RoundUpTo(sizeof(RegionInfo) * kNumClassesRounded, |
| GetPageSizeCached()); |
| } |
| |
| typedef SizeClassMap SizeClassMapT; |
| static const uptr kNumClasses = SizeClassMap::kNumClasses; |
| static const uptr kNumClassesRounded = SizeClassMap::kNumClassesRounded; |
| |
| private: |
| static const uptr kRegionSize = kSpaceSize / kNumClassesRounded; |
| |
| static const bool kUsingConstantSpaceBeg = kSpaceBeg != ~(uptr)0; |
| uptr NonConstSpaceBeg; |
| uptr SpaceBeg() const { |
| return kUsingConstantSpaceBeg ? kSpaceBeg : NonConstSpaceBeg; |
| } |
| uptr SpaceEnd() const { return SpaceBeg() + kSpaceSize; } |
| // kRegionSize must be >= 2^32. |
| COMPILER_CHECK((kRegionSize) >= (1ULL << (SANITIZER_WORDSIZE / 2))); |
| // Populate the free list with at most this number of bytes at once |
| // or with one element if its size is greater. |
| static const uptr kPopulateSize = 1 << 14; |
| // Call mmap for user memory with at least this size. |
| static const uptr kUserMapSize = 1 << 16; |
| // Call mmap for metadata memory with at least this size. |
| static const uptr kMetaMapSize = 1 << 16; |
| |
| struct RegionInfo { |
| BlockingMutex mutex; |
| LFStack<Batch> free_list; |
| uptr allocated_user; // Bytes allocated for user memory. |
| uptr allocated_meta; // Bytes allocated for metadata. |
| uptr mapped_user; // Bytes mapped for user memory. |
| uptr mapped_meta; // Bytes mapped for metadata. |
| uptr n_allocated, n_freed; // Just stats. |
| }; |
| COMPILER_CHECK(sizeof(RegionInfo) >= kCacheLineSize); |
| |
| RegionInfo *GetRegionInfo(uptr class_id) { |
| CHECK_LT(class_id, kNumClasses); |
| RegionInfo *regions = |
| reinterpret_cast<RegionInfo *>(SpaceBeg() + kSpaceSize); |
| return ®ions[class_id]; |
| } |
| |
| static uptr GetChunkIdx(uptr chunk, uptr size) { |
| uptr offset = chunk % kRegionSize; |
| // Here we divide by a non-constant. This is costly. |
| // size always fits into 32-bits. If the offset fits too, use 32-bit div. |
| if (offset >> (SANITIZER_WORDSIZE / 2)) |
| return offset / size; |
| return (u32)offset / (u32)size; |
| } |
| |
| NOINLINE Batch* PopulateFreeList(AllocatorStats *stat, AllocatorCache *c, |
| uptr class_id, RegionInfo *region) { |
| BlockingMutexLock l(®ion->mutex); |
| Batch *b = region->free_list.Pop(); |
| if (b) |
| return b; |
| uptr size = SizeClassMap::Size(class_id); |
| uptr count = size < kPopulateSize ? SizeClassMap::MaxCached(class_id) : 1; |
| uptr beg_idx = region->allocated_user; |
| uptr end_idx = beg_idx + count * size; |
| uptr region_beg = SpaceBeg() + kRegionSize * class_id; |
| if (end_idx + size > region->mapped_user) { |
| // Do the mmap for the user memory. |
| uptr map_size = kUserMapSize; |
| while (end_idx + size > region->mapped_user + map_size) |
| map_size += kUserMapSize; |
| CHECK_GE(region->mapped_user + map_size, end_idx); |
| MapWithCallback(region_beg + region->mapped_user, map_size); |
| stat->Add(AllocatorStatMapped, map_size); |
| region->mapped_user += map_size; |
| } |
| uptr total_count = (region->mapped_user - beg_idx - size) |
| / size / count * count; |
| region->allocated_meta += total_count * kMetadataSize; |
| if (region->allocated_meta > region->mapped_meta) { |
| uptr map_size = kMetaMapSize; |
| while (region->allocated_meta > region->mapped_meta + map_size) |
| map_size += kMetaMapSize; |
| // Do the mmap for the metadata. |
| CHECK_GE(region->mapped_meta + map_size, region->allocated_meta); |
| MapWithCallback(region_beg + kRegionSize - |
| region->mapped_meta - map_size, map_size); |
| region->mapped_meta += map_size; |
| } |
| CHECK_LE(region->allocated_meta, region->mapped_meta); |
| if (region->mapped_user + region->mapped_meta > kRegionSize) { |
| Printf("%s: Out of memory. Dying. ", SanitizerToolName); |
| Printf("The process has exhausted %zuMB for size class %zu.\n", |
| kRegionSize / 1024 / 1024, size); |
| Die(); |
| } |
| for (;;) { |
| if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id)) |
| b = (Batch*)c->Allocate(this, SizeClassMap::ClassID(sizeof(Batch))); |
| else |
| b = (Batch*)(region_beg + beg_idx); |
| b->count = count; |
| for (uptr i = 0; i < count; i++) |
| b->batch[i] = (void*)(region_beg + beg_idx + i * size); |
| region->allocated_user += count * size; |
| CHECK_LE(region->allocated_user, region->mapped_user); |
| beg_idx += count * size; |
| if (beg_idx + count * size + size > region->mapped_user) |
| break; |
| CHECK_GT(b->count, 0); |
| region->free_list.Push(b); |
| } |
| return b; |
| } |
| }; |
| |
| // Maps integers in rage [0, kSize) to u8 values. |
| template<u64 kSize> |
| class FlatByteMap { |
| public: |
| void TestOnlyInit() { |
| internal_memset(map_, 0, sizeof(map_)); |
| } |
| |
| void set(uptr idx, u8 val) { |
| CHECK_LT(idx, kSize); |
| CHECK_EQ(0U, map_[idx]); |
| map_[idx] = val; |
| } |
| u8 operator[] (uptr idx) { |
| CHECK_LT(idx, kSize); |
| // FIXME: CHECK may be too expensive here. |
| return map_[idx]; |
| } |
| private: |
| u8 map_[kSize]; |
| }; |
| |
| // TwoLevelByteMap maps integers in range [0, kSize1*kSize2) to u8 values. |
| // It is implemented as a two-dimensional array: array of kSize1 pointers |
| // to kSize2-byte arrays. The secondary arrays are mmaped on demand. |
| // Each value is initially zero and can be set to something else only once. |
| // Setting and getting values from multiple threads is safe w/o extra locking. |
| template <u64 kSize1, u64 kSize2, class MapUnmapCallback = NoOpMapUnmapCallback> |
| class TwoLevelByteMap { |
| public: |
| void TestOnlyInit() { |
| internal_memset(map1_, 0, sizeof(map1_)); |
| mu_.Init(); |
| } |
| |
| void TestOnlyUnmap() { |
| for (uptr i = 0; i < kSize1; i++) { |
| u8 *p = Get(i); |
| if (!p) continue; |
| MapUnmapCallback().OnUnmap(reinterpret_cast<uptr>(p), kSize2); |
| UnmapOrDie(p, kSize2); |
| } |
| } |
| |
| uptr size() const { return kSize1 * kSize2; } |
| uptr size1() const { return kSize1; } |
| uptr size2() const { return kSize2; } |
| |
| void set(uptr idx, u8 val) { |
| CHECK_LT(idx, kSize1 * kSize2); |
| u8 *map2 = GetOrCreate(idx / kSize2); |
| CHECK_EQ(0U, map2[idx % kSize2]); |
| map2[idx % kSize2] = val; |
| } |
| |
| u8 operator[] (uptr idx) const { |
| CHECK_LT(idx, kSize1 * kSize2); |
| u8 *map2 = Get(idx / kSize2); |
| if (!map2) return 0; |
| return map2[idx % kSize2]; |
| } |
| |
| private: |
| u8 *Get(uptr idx) const { |
| CHECK_LT(idx, kSize1); |
| return reinterpret_cast<u8 *>( |
| atomic_load(&map1_[idx], memory_order_acquire)); |
| } |
| |
| u8 *GetOrCreate(uptr idx) { |
| u8 *res = Get(idx); |
| if (!res) { |
| SpinMutexLock l(&mu_); |
| if (!(res = Get(idx))) { |
| res = (u8*)MmapOrDie(kSize2, "TwoLevelByteMap"); |
| MapUnmapCallback().OnMap(reinterpret_cast<uptr>(res), kSize2); |
| atomic_store(&map1_[idx], reinterpret_cast<uptr>(res), |
| memory_order_release); |
| } |
| } |
| return res; |
| } |
| |
| atomic_uintptr_t map1_[kSize1]; |
| StaticSpinMutex mu_; |
| }; |
| |
| // SizeClassAllocator32 -- allocator for 32-bit address space. |
| // This allocator can theoretically be used on 64-bit arch, but there it is less |
| // efficient than SizeClassAllocator64. |
| // |
| // [kSpaceBeg, kSpaceBeg + kSpaceSize) is the range of addresses which can |
| // be returned by MmapOrDie(). |
| // |
| // Region: |
| // a result of a single call to MmapAlignedOrDie(kRegionSize, kRegionSize). |
| // Since the regions are aligned by kRegionSize, there are exactly |
| // kNumPossibleRegions possible regions in the address space and so we keep |
| // a ByteMap possible_regions to store the size classes of each Region. |
| // 0 size class means the region is not used by the allocator. |
| // |
| // One Region is used to allocate chunks of a single size class. |
| // A Region looks like this: |
| // UserChunk1 .. UserChunkN <gap> MetaChunkN .. MetaChunk1 |
| // |
| // In order to avoid false sharing the objects of this class should be |
| // chache-line aligned. |
| template <const uptr kSpaceBeg, const u64 kSpaceSize, |
| const uptr kMetadataSize, class SizeClassMap, |
| const uptr kRegionSizeLog, |
| class ByteMap, |
| class MapUnmapCallback = NoOpMapUnmapCallback> |
| class SizeClassAllocator32 { |
| public: |
| typedef typename SizeClassMap::TransferBatch Batch; |
| typedef SizeClassAllocator32<kSpaceBeg, kSpaceSize, kMetadataSize, |
| SizeClassMap, kRegionSizeLog, ByteMap, MapUnmapCallback> ThisT; |
| typedef SizeClassAllocatorLocalCache<ThisT> AllocatorCache; |
| |
| void Init() { |
| possible_regions.TestOnlyInit(); |
| internal_memset(size_class_info_array, 0, sizeof(size_class_info_array)); |
| } |
| |
| void *MapWithCallback(uptr size) { |
| size = RoundUpTo(size, GetPageSizeCached()); |
| void *res = MmapOrDie(size, "SizeClassAllocator32"); |
| MapUnmapCallback().OnMap((uptr)res, size); |
| return res; |
| } |
| |
| void UnmapWithCallback(uptr beg, uptr size) { |
| MapUnmapCallback().OnUnmap(beg, size); |
| UnmapOrDie(reinterpret_cast<void *>(beg), size); |
| } |
| |
| static bool CanAllocate(uptr size, uptr alignment) { |
| return size <= SizeClassMap::kMaxSize && |
| alignment <= SizeClassMap::kMaxSize; |
| } |
| |
| void *GetMetaData(const void *p) { |
| CHECK(PointerIsMine(p)); |
| uptr mem = reinterpret_cast<uptr>(p); |
| uptr beg = ComputeRegionBeg(mem); |
| uptr size = SizeClassMap::Size(GetSizeClass(p)); |
| u32 offset = mem - beg; |
| uptr n = offset / (u32)size; // 32-bit division |
| uptr meta = (beg + kRegionSize) - (n + 1) * kMetadataSize; |
| return reinterpret_cast<void*>(meta); |
| } |
| |
| NOINLINE Batch* AllocateBatch(AllocatorStats *stat, AllocatorCache *c, |
| uptr class_id) { |
| CHECK_LT(class_id, kNumClasses); |
| SizeClassInfo *sci = GetSizeClassInfo(class_id); |
| SpinMutexLock l(&sci->mutex); |
| if (sci->free_list.empty()) |
| PopulateFreeList(stat, c, sci, class_id); |
| CHECK(!sci->free_list.empty()); |
| Batch *b = sci->free_list.front(); |
| sci->free_list.pop_front(); |
| return b; |
| } |
| |
| NOINLINE void DeallocateBatch(AllocatorStats *stat, uptr class_id, Batch *b) { |
| CHECK_LT(class_id, kNumClasses); |
| SizeClassInfo *sci = GetSizeClassInfo(class_id); |
| SpinMutexLock l(&sci->mutex); |
| CHECK_GT(b->count, 0); |
| sci->free_list.push_front(b); |
| } |
| |
| bool PointerIsMine(const void *p) { |
| uptr mem = reinterpret_cast<uptr>(p); |
| if (mem < kSpaceBeg || mem >= kSpaceBeg + kSpaceSize) |
| return false; |
| return GetSizeClass(p) != 0; |
| } |
| |
| uptr GetSizeClass(const void *p) { |
| return possible_regions[ComputeRegionId(reinterpret_cast<uptr>(p))]; |
| } |
| |
| void *GetBlockBegin(const void *p) { |
| CHECK(PointerIsMine(p)); |
| uptr mem = reinterpret_cast<uptr>(p); |
| uptr beg = ComputeRegionBeg(mem); |
| uptr size = SizeClassMap::Size(GetSizeClass(p)); |
| u32 offset = mem - beg; |
| u32 n = offset / (u32)size; // 32-bit division |
| uptr res = beg + (n * (u32)size); |
| return reinterpret_cast<void*>(res); |
| } |
| |
| uptr GetActuallyAllocatedSize(void *p) { |
| CHECK(PointerIsMine(p)); |
| return SizeClassMap::Size(GetSizeClass(p)); |
| } |
| |
| uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); } |
| |
| uptr TotalMemoryUsed() { |
| // No need to lock here. |
| uptr res = 0; |
| for (uptr i = 0; i < kNumPossibleRegions; i++) |
| if (possible_regions[i]) |
| res += kRegionSize; |
| return res; |
| } |
| |
| void TestOnlyUnmap() { |
| for (uptr i = 0; i < kNumPossibleRegions; i++) |
| if (possible_regions[i]) |
| UnmapWithCallback((i * kRegionSize), kRegionSize); |
| } |
| |
| // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone |
| // introspection API. |
| void ForceLock() { |
| for (uptr i = 0; i < kNumClasses; i++) { |
| GetSizeClassInfo(i)->mutex.Lock(); |
| } |
| } |
| |
| void ForceUnlock() { |
| for (int i = kNumClasses - 1; i >= 0; i--) { |
| GetSizeClassInfo(i)->mutex.Unlock(); |
| } |
| } |
| |
| // Iterate over all existing chunks. |
| // The allocator must be locked when calling this function. |
| void ForEachChunk(ForEachChunkCallback callback, void *arg) { |
| for (uptr region = 0; region < kNumPossibleRegions; region++) |
| if (possible_regions[region]) { |
| uptr chunk_size = SizeClassMap::Size(possible_regions[region]); |
| uptr max_chunks_in_region = kRegionSize / (chunk_size + kMetadataSize); |
| uptr region_beg = region * kRegionSize; |
| for (uptr chunk = region_beg; |
| chunk < region_beg + max_chunks_in_region * chunk_size; |
| chunk += chunk_size) { |
| // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk)); |
| callback(chunk, arg); |
| } |
| } |
| } |
| |
| void PrintStats() { |
| } |
| |
| static uptr AdditionalSize() { |
| return 0; |
| } |
| |
| typedef SizeClassMap SizeClassMapT; |
| static const uptr kNumClasses = SizeClassMap::kNumClasses; |
| |
| private: |
| static const uptr kRegionSize = 1 << kRegionSizeLog; |
| static const uptr kNumPossibleRegions = kSpaceSize / kRegionSize; |
| |
| struct SizeClassInfo { |
| SpinMutex mutex; |
| IntrusiveList<Batch> free_list; |
| char padding[kCacheLineSize - sizeof(uptr) - sizeof(IntrusiveList<Batch>)]; |
| }; |
| COMPILER_CHECK(sizeof(SizeClassInfo) == kCacheLineSize); |
| |
| uptr ComputeRegionId(uptr mem) { |
| uptr res = mem >> kRegionSizeLog; |
| CHECK_LT(res, kNumPossibleRegions); |
| return res; |
| } |
| |
| uptr ComputeRegionBeg(uptr mem) { |
| return mem & ~(kRegionSize - 1); |
| } |
| |
| uptr AllocateRegion(AllocatorStats *stat, uptr class_id) { |
| CHECK_LT(class_id, kNumClasses); |
| uptr res = reinterpret_cast<uptr>(MmapAlignedOrDie(kRegionSize, kRegionSize, |
| "SizeClassAllocator32")); |
| MapUnmapCallback().OnMap(res, kRegionSize); |
| stat->Add(AllocatorStatMapped, kRegionSize); |
| CHECK_EQ(0U, (res & (kRegionSize - 1))); |
| possible_regions.set(ComputeRegionId(res), static_cast<u8>(class_id)); |
| return res; |
| } |
| |
| SizeClassInfo *GetSizeClassInfo(uptr class_id) { |
| CHECK_LT(class_id, kNumClasses); |
| return &size_class_info_array[class_id]; |
| } |
| |
| void PopulateFreeList(AllocatorStats *stat, AllocatorCache *c, |
| SizeClassInfo *sci, uptr class_id) { |
| uptr size = SizeClassMap::Size(class_id); |
| uptr reg = AllocateRegion(stat, class_id); |
| uptr n_chunks = kRegionSize / (size + kMetadataSize); |
| uptr max_count = SizeClassMap::MaxCached(class_id); |
| Batch *b = nullptr; |
| for (uptr i = reg; i < reg + n_chunks * size; i += size) { |
| if (!b) { |
| if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id)) |
| b = (Batch*)c->Allocate(this, SizeClassMap::ClassID(sizeof(Batch))); |
| else |
| b = (Batch*)i; |
| b->count = 0; |
| } |
| b->batch[b->count++] = (void*)i; |
| if (b->count == max_count) { |
| CHECK_GT(b->count, 0); |
| sci->free_list.push_back(b); |
| b = nullptr; |
| } |
| } |
| if (b) { |
| CHECK_GT(b->count, 0); |
| sci->free_list.push_back(b); |
| } |
| } |
| |
| ByteMap possible_regions; |
| SizeClassInfo size_class_info_array[kNumClasses]; |
| }; |
| |
| // Objects of this type should be used as local caches for SizeClassAllocator64 |
| // or SizeClassAllocator32. Since the typical use of this class is to have one |
| // object per thread in TLS, is has to be POD. |
| template<class SizeClassAllocator> |
| struct SizeClassAllocatorLocalCache { |
| typedef SizeClassAllocator Allocator; |
| static const uptr kNumClasses = SizeClassAllocator::kNumClasses; |
| |
| void Init(AllocatorGlobalStats *s) { |
| stats_.Init(); |
| if (s) |
| s->Register(&stats_); |
| } |
| |
| void Destroy(SizeClassAllocator *allocator, AllocatorGlobalStats *s) { |
| Drain(allocator); |
| if (s) |
| s->Unregister(&stats_); |
| } |
| |
| void *Allocate(SizeClassAllocator *allocator, uptr class_id) { |
| CHECK_NE(class_id, 0UL); |
| CHECK_LT(class_id, kNumClasses); |
| stats_.Add(AllocatorStatAllocated, SizeClassMap::Size(class_id)); |
| PerClass *c = &per_class_[class_id]; |
| if (UNLIKELY(c->count == 0)) |
| Refill(allocator, class_id); |
| void *res = c->batch[--c->count]; |
| PREFETCH(c->batch[c->count - 1]); |
| return res; |
| } |
| |
| void Deallocate(SizeClassAllocator *allocator, uptr class_id, void *p) { |
| CHECK_NE(class_id, 0UL); |
| CHECK_LT(class_id, kNumClasses); |
| // If the first allocator call on a new thread is a deallocation, then |
| // max_count will be zero, leading to check failure. |
| InitCache(); |
| stats_.Sub(AllocatorStatAllocated, SizeClassMap::Size(class_id)); |
| PerClass *c = &per_class_[class_id]; |
| CHECK_NE(c->max_count, 0UL); |
| if (UNLIKELY(c->count == c->max_count)) |
| Drain(allocator, class_id); |
| c->batch[c->count++] = p; |
| } |
| |
| void Drain(SizeClassAllocator *allocator) { |
| for (uptr class_id = 0; class_id < kNumClasses; class_id++) { |
| PerClass *c = &per_class_[class_id]; |
| while (c->count > 0) |
| Drain(allocator, class_id); |
| } |
| } |
| |
| // private: |
| typedef typename SizeClassAllocator::SizeClassMapT SizeClassMap; |
| typedef typename SizeClassMap::TransferBatch Batch; |
| struct PerClass { |
| uptr count; |
| uptr max_count; |
| void *batch[2 * SizeClassMap::kMaxNumCached]; |
| }; |
| PerClass per_class_[kNumClasses]; |
| AllocatorStats stats_; |
| |
| void InitCache() { |
| if (per_class_[1].max_count) |
| return; |
| for (uptr i = 0; i < kNumClasses; i++) { |
| PerClass *c = &per_class_[i]; |
| c->max_count = 2 * SizeClassMap::MaxCached(i); |
| } |
| } |
| |
| NOINLINE void Refill(SizeClassAllocator *allocator, uptr class_id) { |
| InitCache(); |
| PerClass *c = &per_class_[class_id]; |
| Batch *b = allocator->AllocateBatch(&stats_, this, class_id); |
| CHECK_GT(b->count, 0); |
| for (uptr i = 0; i < b->count; i++) |
| c->batch[i] = b->batch[i]; |
| c->count = b->count; |
| if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id)) |
| Deallocate(allocator, SizeClassMap::ClassID(sizeof(Batch)), b); |
| } |
| |
| NOINLINE void Drain(SizeClassAllocator *allocator, uptr class_id) { |
| InitCache(); |
| PerClass *c = &per_class_[class_id]; |
| Batch *b; |
| if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id)) |
| b = (Batch*)Allocate(allocator, SizeClassMap::ClassID(sizeof(Batch))); |
| else |
| b = (Batch*)c->batch[0]; |
| uptr cnt = Min(c->max_count / 2, c->count); |
| for (uptr i = 0; i < cnt; i++) { |
| b->batch[i] = c->batch[i]; |
| c->batch[i] = c->batch[i + c->max_count / 2]; |
| } |
| b->count = cnt; |
| c->count -= cnt; |
| CHECK_GT(b->count, 0); |
| allocator->DeallocateBatch(&stats_, class_id, b); |
| } |
| }; |
| |
| // This class can (de)allocate only large chunks of memory using mmap/unmap. |
| // The main purpose of this allocator is to cover large and rare allocation |
| // sizes not covered by more efficient allocators (e.g. SizeClassAllocator64). |
| template <class MapUnmapCallback = NoOpMapUnmapCallback> |
| class LargeMmapAllocator { |
| public: |
| void InitLinkerInitialized(bool may_return_null) { |
| page_size_ = GetPageSizeCached(); |
| atomic_store(&may_return_null_, may_return_null, memory_order_relaxed); |
| } |
| |
| void Init(bool may_return_null) { |
| internal_memset(this, 0, sizeof(*this)); |
| InitLinkerInitialized(may_return_null); |
| } |
| |
| void *Allocate(AllocatorStats *stat, uptr size, uptr alignment) { |
| CHECK(IsPowerOfTwo(alignment)); |
| uptr map_size = RoundUpMapSize(size); |
| if (alignment > page_size_) |
| map_size += alignment; |
| // Overflow. |
| if (map_size < size) |
| return ReturnNullOrDie(); |
| uptr map_beg = reinterpret_cast<uptr>( |
| MmapOrDie(map_size, "LargeMmapAllocator")); |
| CHECK(IsAligned(map_beg, page_size_)); |
| MapUnmapCallback().OnMap(map_beg, map_size); |
| uptr map_end = map_beg + map_size; |
| uptr res = map_beg + page_size_; |
| if (res & (alignment - 1)) // Align. |
| res += alignment - (res & (alignment - 1)); |
| CHECK(IsAligned(res, alignment)); |
| CHECK(IsAligned(res, page_size_)); |
| CHECK_GE(res + size, map_beg); |
| CHECK_LE(res + size, map_end); |
| Header *h = GetHeader(res); |
| h->size = size; |
| h->map_beg = map_beg; |
| h->map_size = map_size; |
| uptr size_log = MostSignificantSetBitIndex(map_size); |
| CHECK_LT(size_log, ARRAY_SIZE(stats.by_size_log)); |
| { |
| SpinMutexLock l(&mutex_); |
| uptr idx = n_chunks_++; |
| chunks_sorted_ = false; |
| CHECK_LT(idx, kMaxNumChunks); |
| h->chunk_idx = idx; |
| chunks_[idx] = h; |
| stats.n_allocs++; |
| stats.currently_allocated += map_size; |
| stats.max_allocated = Max(stats.max_allocated, stats.currently_allocated); |
| stats.by_size_log[size_log]++; |
| stat->Add(AllocatorStatAllocated, map_size); |
| stat->Add(AllocatorStatMapped, map_size); |
| } |
| return reinterpret_cast<void*>(res); |
| } |
| |
| void *ReturnNullOrDie() { |
| if (atomic_load(&may_return_null_, memory_order_acquire)) |
| return nullptr; |
| ReportAllocatorCannotReturnNull(); |
| } |
| |
| void SetMayReturnNull(bool may_return_null) { |
| atomic_store(&may_return_null_, may_return_null, memory_order_release); |
| } |
| |
| void Deallocate(AllocatorStats *stat, void *p) { |
| Header *h = GetHeader(p); |
| { |
| SpinMutexLock l(&mutex_); |
| uptr idx = h->chunk_idx; |
| CHECK_EQ(chunks_[idx], h); |
| CHECK_LT(idx, n_chunks_); |
| chunks_[idx] = chunks_[n_chunks_ - 1]; |
| chunks_[idx]->chunk_idx = idx; |
| n_chunks_--; |
| chunks_sorted_ = false; |
| stats.n_frees++; |
| stats.currently_allocated -= h->map_size; |
| stat->Sub(AllocatorStatAllocated, h->map_size); |
| stat->Sub(AllocatorStatMapped, h->map_size); |
| } |
| MapUnmapCallback().OnUnmap(h->map_beg, h->map_size); |
| UnmapOrDie(reinterpret_cast<void*>(h->map_beg), h->map_size); |
| } |
| |
| uptr TotalMemoryUsed() { |
| SpinMutexLock l(&mutex_); |
| uptr res = 0; |
| for (uptr i = 0; i < n_chunks_; i++) { |
| Header *h = chunks_[i]; |
| CHECK_EQ(h->chunk_idx, i); |
| res += RoundUpMapSize(h->size); |
| } |
| return res; |
| } |
| |
| bool PointerIsMine(const void *p) { |
| return GetBlockBegin(p) != nullptr; |
| } |
| |
| uptr GetActuallyAllocatedSize(void *p) { |
| return RoundUpTo(GetHeader(p)->size, page_size_); |
| } |
| |
| // At least page_size_/2 metadata bytes is available. |
| void *GetMetaData(const void *p) { |
| // Too slow: CHECK_EQ(p, GetBlockBegin(p)); |
| if (!IsAligned(reinterpret_cast<uptr>(p), page_size_)) { |
| Printf("%s: bad pointer %p\n", SanitizerToolName, p); |
| CHECK(IsAligned(reinterpret_cast<uptr>(p), page_size_)); |
| } |
| return GetHeader(p) + 1; |
| } |
| |
| void *GetBlockBegin(const void *ptr) { |
| uptr p = reinterpret_cast<uptr>(ptr); |
| SpinMutexLock l(&mutex_); |
| uptr nearest_chunk = 0; |
| // Cache-friendly linear search. |
| for (uptr i = 0; i < n_chunks_; i++) { |
| uptr ch = reinterpret_cast<uptr>(chunks_[i]); |
| if (p < ch) continue; // p is at left to this chunk, skip it. |
| if (p - ch < p - nearest_chunk) |
| nearest_chunk = ch; |
| } |
| if (!nearest_chunk) |
| return nullptr; |
| Header *h = reinterpret_cast<Header *>(nearest_chunk); |
| CHECK_GE(nearest_chunk, h->map_beg); |
| CHECK_LT(nearest_chunk, h->map_beg + h->map_size); |
| CHECK_LE(nearest_chunk, p); |
| if (h->map_beg + h->map_size <= p) |
| return nullptr; |
| return GetUser(h); |
| } |
| |
| // This function does the same as GetBlockBegin, but is much faster. |
| // Must be called with the allocator locked. |
| void *GetBlockBeginFastLocked(void *ptr) { |
| mutex_.CheckLocked(); |
| uptr p = reinterpret_cast<uptr>(ptr); |
| uptr n = n_chunks_; |
| if (!n) return nullptr; |
| if (!chunks_sorted_) { |
| // Do one-time sort. chunks_sorted_ is reset in Allocate/Deallocate. |
| SortArray(reinterpret_cast<uptr*>(chunks_), n); |
| for (uptr i = 0; i < n; i++) |
| chunks_[i]->chunk_idx = i; |
| chunks_sorted_ = true; |
| min_mmap_ = reinterpret_cast<uptr>(chunks_[0]); |
| max_mmap_ = reinterpret_cast<uptr>(chunks_[n - 1]) + |
| chunks_[n - 1]->map_size; |
| } |
| if (p < min_mmap_ || p >= max_mmap_) |
| return nullptr; |
| uptr beg = 0, end = n - 1; |
| // This loop is a log(n) lower_bound. It does not check for the exact match |
| // to avoid expensive cache-thrashing loads. |
| while (end - beg >= 2) { |
| uptr mid = (beg + end) / 2; // Invariant: mid >= beg + 1 |
| if (p < reinterpret_cast<uptr>(chunks_[mid])) |
| end = mid - 1; // We are not interested in chunks_[mid]. |
| else |
| beg = mid; // chunks_[mid] may still be what we want. |
| } |
| |
| if (beg < end) { |
| CHECK_EQ(beg + 1, end); |
| // There are 2 chunks left, choose one. |
| if (p >= reinterpret_cast<uptr>(chunks_[end])) |
| beg = end; |
| } |
| |
| Header *h = chunks_[beg]; |
| if (h->map_beg + h->map_size <= p || p < h->map_beg) |
| return nullptr; |
| return GetUser(h); |
| } |
| |
| void PrintStats() { |
| Printf("Stats: LargeMmapAllocator: allocated %zd times, " |
| "remains %zd (%zd K) max %zd M; by size logs: ", |
| stats.n_allocs, stats.n_allocs - stats.n_frees, |
| stats.currently_allocated >> 10, stats.max_allocated >> 20); |
| for (uptr i = 0; i < ARRAY_SIZE(stats.by_size_log); i++) { |
| uptr c = stats.by_size_log[i]; |
| if (!c) continue; |
| Printf("%zd:%zd; ", i, c); |
| } |
| Printf("\n"); |
| } |
| |
| // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone |
| // introspection API. |
| void ForceLock() { |
| mutex_.Lock(); |
| } |
| |
| void ForceUnlock() { |
| mutex_.Unlock(); |
| } |
| |
| // Iterate over all existing chunks. |
| // The allocator must be locked when calling this function. |
| void ForEachChunk(ForEachChunkCallback callback, void *arg) { |
| for (uptr i = 0; i < n_chunks_; i++) |
| callback(reinterpret_cast<uptr>(GetUser(chunks_[i])), arg); |
| } |
| |
| private: |
| static const int kMaxNumChunks = 1 << FIRST_32_SECOND_64(15, 18); |
| struct Header { |
| uptr map_beg; |
| uptr map_size; |
| uptr size; |
| uptr chunk_idx; |
| }; |
| |
| Header *GetHeader(uptr p) { |
| CHECK(IsAligned(p, page_size_)); |
| return reinterpret_cast<Header*>(p - page_size_); |
| } |
| Header *GetHeader(const void *p) { |
| return GetHeader(reinterpret_cast<uptr>(p)); |
| } |
| |
| void *GetUser(Header *h) { |
| CHECK(IsAligned((uptr)h, page_size_)); |
| return reinterpret_cast<void*>(reinterpret_cast<uptr>(h) + page_size_); |
| } |
| |
| uptr RoundUpMapSize(uptr size) { |
| return RoundUpTo(size, page_size_) + page_size_; |
| } |
| |
| uptr page_size_; |
| Header *chunks_[kMaxNumChunks]; |
| uptr n_chunks_; |
| uptr min_mmap_, max_mmap_; |
| bool chunks_sorted_; |
| struct Stats { |
| uptr n_allocs, n_frees, currently_allocated, max_allocated, by_size_log[64]; |
| } stats; |
| atomic_uint8_t may_return_null_; |
| SpinMutex mutex_; |
| }; |
| |
| // This class implements a complete memory allocator by using two |
| // internal allocators: |
| // PrimaryAllocator is efficient, but may not allocate some sizes (alignments). |
| // When allocating 2^x bytes it should return 2^x aligned chunk. |
| // PrimaryAllocator is used via a local AllocatorCache. |
| // SecondaryAllocator can allocate anything, but is not efficient. |
| template <class PrimaryAllocator, class AllocatorCache, |
| class SecondaryAllocator> // NOLINT |
| class CombinedAllocator { |
| public: |
| void InitCommon(bool may_return_null) { |
| primary_.Init(); |
| atomic_store(&may_return_null_, may_return_null, memory_order_relaxed); |
| } |
| |
| void InitLinkerInitialized(bool may_return_null) { |
| secondary_.InitLinkerInitialized(may_return_null); |
| stats_.InitLinkerInitialized(); |
| InitCommon(may_return_null); |
| } |
| |
| void Init(bool may_return_null) { |
| secondary_.Init(may_return_null); |
| stats_.Init(); |
| InitCommon(may_return_null); |
| } |
| |
| void *Allocate(AllocatorCache *cache, uptr size, uptr alignment, |
| bool cleared = false, bool check_rss_limit = false) { |
| // Returning 0 on malloc(0) may break a lot of code. |
| if (size == 0) |
| size = 1; |
| if (size + alignment < size) |
| return ReturnNullOrDie(); |
| if (check_rss_limit && RssLimitIsExceeded()) |
| return ReturnNullOrDie(); |
| if (alignment > 8) |
| size = RoundUpTo(size, alignment); |
| void *res; |
| bool from_primary = primary_.CanAllocate(size, alignment); |
| if (from_primary) |
| res = cache->Allocate(&primary_, primary_.ClassID(size)); |
| else |
| res = secondary_.Allocate(&stats_, size, alignment); |
| if (alignment > 8) |
| CHECK_EQ(reinterpret_cast<uptr>(res) & (alignment - 1), 0); |
| if (cleared && res && from_primary) |
| internal_bzero_aligned16(res, RoundUpTo(size, 16)); |
| return res; |
| } |
| |
| bool MayReturnNull() const { |
| return atomic_load(&may_return_null_, memory_order_acquire); |
| } |
| |
| void *ReturnNullOrDie() { |
| if (MayReturnNull()) |
| return nullptr; |
| ReportAllocatorCannotReturnNull(); |
| } |
| |
| void SetMayReturnNull(bool may_return_null) { |
| secondary_.SetMayReturnNull(may_return_null); |
| atomic_store(&may_return_null_, may_return_null, memory_order_release); |
| } |
| |
| bool RssLimitIsExceeded() { |
| return atomic_load(&rss_limit_is_exceeded_, memory_order_acquire); |
| } |
| |
| void SetRssLimitIsExceeded(bool rss_limit_is_exceeded) { |
| atomic_store(&rss_limit_is_exceeded_, rss_limit_is_exceeded, |
| memory_order_release); |
| } |
| |
| void Deallocate(AllocatorCache *cache, void *p) { |
| if (!p) return; |
| if (primary_.PointerIsMine(p)) |
| cache->Deallocate(&primary_, primary_.GetSizeClass(p), p); |
| else |
| secondary_.Deallocate(&stats_, p); |
| } |
| |
| void *Reallocate(AllocatorCache *cache, void *p, uptr new_size, |
| uptr alignment) { |
| if (!p) |
| return Allocate(cache, new_size, alignment); |
| if (!new_size) { |
| Deallocate(cache, p); |
| return nullptr; |
| } |
| CHECK(PointerIsMine(p)); |
| uptr old_size = GetActuallyAllocatedSize(p); |
| uptr memcpy_size = Min(new_size, old_size); |
| void *new_p = Allocate(cache, new_size, alignment); |
| if (new_p) |
| internal_memcpy(new_p, p, memcpy_size); |
| Deallocate(cache, p); |
| return new_p; |
| } |
| |
| bool PointerIsMine(void *p) { |
| if (primary_.PointerIsMine(p)) |
| return true; |
| return secondary_.PointerIsMine(p); |
| } |
| |
| bool FromPrimary(void *p) { |
| return primary_.PointerIsMine(p); |
| } |
| |
| void *GetMetaData(const void *p) { |
| if (primary_.PointerIsMine(p)) |
| return primary_.GetMetaData(p); |
| return secondary_.GetMetaData(p); |
| } |
| |
| void *GetBlockBegin(const void *p) { |
| if (primary_.PointerIsMine(p)) |
| return primary_.GetBlockBegin(p); |
| return secondary_.GetBlockBegin(p); |
| } |
| |
| // This function does the same as GetBlockBegin, but is much faster. |
| // Must be called with the allocator locked. |
| void *GetBlockBeginFastLocked(void *p) { |
| if (primary_.PointerIsMine(p)) |
| return primary_.GetBlockBegin(p); |
| return secondary_.GetBlockBeginFastLocked(p); |
| } |
| |
| uptr GetActuallyAllocatedSize(void *p) { |
| if (primary_.PointerIsMine(p)) |
| return primary_.GetActuallyAllocatedSize(p); |
| return secondary_.GetActuallyAllocatedSize(p); |
| } |
| |
| uptr TotalMemoryUsed() { |
| return primary_.TotalMemoryUsed() + secondary_.TotalMemoryUsed(); |
| } |
| |
| void TestOnlyUnmap() { primary_.TestOnlyUnmap(); } |
| |
| void InitCache(AllocatorCache *cache) { |
| cache->Init(&stats_); |
| } |
| |
| void DestroyCache(AllocatorCache *cache) { |
| cache->Destroy(&primary_, &stats_); |
| } |
| |
| void SwallowCache(AllocatorCache *cache) { |
| cache->Drain(&primary_); |
| } |
| |
| void GetStats(AllocatorStatCounters s) const { |
| stats_.Get(s); |
| } |
| |
| void PrintStats() { |
| primary_.PrintStats(); |
| secondary_.PrintStats(); |
| } |
| |
| // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone |
| // introspection API. |
| void ForceLock() { |
| primary_.ForceLock(); |
| secondary_.ForceLock(); |
| } |
| |
| void ForceUnlock() { |
| secondary_.ForceUnlock(); |
| primary_.ForceUnlock(); |
| } |
| |
| // Iterate over all existing chunks. |
| // The allocator must be locked when calling this function. |
| void ForEachChunk(ForEachChunkCallback callback, void *arg) { |
| primary_.ForEachChunk(callback, arg); |
| secondary_.ForEachChunk(callback, arg); |
| } |
| |
| private: |
| PrimaryAllocator primary_; |
| SecondaryAllocator secondary_; |
| AllocatorGlobalStats stats_; |
| atomic_uint8_t may_return_null_; |
| atomic_uint8_t rss_limit_is_exceeded_; |
| }; |
| |
| // Returns true if calloc(size, n) should return 0 due to overflow in size*n. |
| bool CallocShouldReturnNullDueToOverflow(uptr size, uptr n); |
| |
| } // namespace __sanitizer |
| |
| #endif // SANITIZER_ALLOCATOR_H |