| //===-- sanitizer_coverage.cc ---------------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Sanitizer Coverage. |
| // This file implements run-time support for a poor man's coverage tool. |
| // |
| // Compiler instrumentation: |
| // For every interesting basic block the compiler injects the following code: |
| // if (Guard < 0) { |
| // __sanitizer_cov(&Guard); |
| // } |
| // At the module start up time __sanitizer_cov_module_init sets the guards |
| // to consecutive negative numbers (-1, -2, -3, ...). |
| // It's fine to call __sanitizer_cov more than once for a given block. |
| // |
| // Run-time: |
| // - __sanitizer_cov(): record that we've executed the PC (GET_CALLER_PC). |
| // and atomically set Guard to -Guard. |
| // - __sanitizer_cov_dump: dump the coverage data to disk. |
| // For every module of the current process that has coverage data |
| // this will create a file module_name.PID.sancov. |
| // |
| // The file format is simple: the first 8 bytes is the magic, |
| // one of 0xC0BFFFFFFFFFFF64 and 0xC0BFFFFFFFFFFF32. The last byte of the |
| // magic defines the size of the following offsets. |
| // The rest of the data is the offsets in the module. |
| // |
| // Eventually, this coverage implementation should be obsoleted by a more |
| // powerful general purpose Clang/LLVM coverage instrumentation. |
| // Consider this implementation as prototype. |
| // |
| // FIXME: support (or at least test with) dlclose. |
| //===----------------------------------------------------------------------===// |
| |
| #include "sanitizer_allocator_internal.h" |
| #include "sanitizer_common.h" |
| #include "sanitizer_libc.h" |
| #include "sanitizer_mutex.h" |
| #include "sanitizer_procmaps.h" |
| #include "sanitizer_stacktrace.h" |
| #include "sanitizer_symbolizer.h" |
| #include "sanitizer_flags.h" |
| |
| static const u64 kMagic64 = 0xC0BFFFFFFFFFFF64ULL; |
| static const u64 kMagic32 = 0xC0BFFFFFFFFFFF32ULL; |
| static const uptr kNumWordsForMagic = SANITIZER_WORDSIZE == 64 ? 1 : 2; |
| static const u64 kMagic = SANITIZER_WORDSIZE == 64 ? kMagic64 : kMagic32; |
| |
| static atomic_uint32_t dump_once_guard; // Ensure that CovDump runs only once. |
| |
| static atomic_uintptr_t coverage_counter; |
| static atomic_uintptr_t caller_callee_counter; |
| |
| static void ResetGlobalCounters() { |
| return atomic_store(&coverage_counter, 0, memory_order_relaxed); |
| return atomic_store(&caller_callee_counter, 0, memory_order_relaxed); |
| } |
| |
| // pc_array is the array containing the covered PCs. |
| // To make the pc_array thread- and async-signal-safe it has to be large enough. |
| // 128M counters "ought to be enough for anybody" (4M on 32-bit). |
| |
| // With coverage_direct=1 in ASAN_OPTIONS, pc_array memory is mapped to a file. |
| // In this mode, __sanitizer_cov_dump does nothing, and CovUpdateMapping() |
| // dump current memory layout to another file. |
| |
| static bool cov_sandboxed = false; |
| static fd_t cov_fd = kInvalidFd; |
| static unsigned int cov_max_block_size = 0; |
| static bool coverage_enabled = false; |
| static const char *coverage_dir; |
| |
| namespace __sanitizer { |
| |
| class CoverageData { |
| public: |
| void Init(); |
| void Enable(); |
| void Disable(); |
| void ReInit(); |
| void BeforeFork(); |
| void AfterFork(int child_pid); |
| void Extend(uptr npcs); |
| void Add(uptr pc, u32 *guard); |
| void IndirCall(uptr caller, uptr callee, uptr callee_cache[], |
| uptr cache_size); |
| void DumpCallerCalleePairs(); |
| void DumpTrace(); |
| void DumpAsBitSet(); |
| void DumpCounters(); |
| void DumpOffsets(); |
| void DumpAll(); |
| |
| ALWAYS_INLINE |
| void TraceBasicBlock(u32 *id); |
| |
| void InitializeGuardArray(s32 *guards); |
| void InitializeGuards(s32 *guards, uptr n, const char *module_name, |
| uptr caller_pc); |
| void InitializeCounters(u8 *counters, uptr n); |
| void ReinitializeGuards(); |
| uptr GetNumberOf8bitCounters(); |
| uptr Update8bitCounterBitsetAndClearCounters(u8 *bitset); |
| |
| uptr *data(); |
| uptr size() const; |
| uptr *buffer() const { return pc_buffer; } |
| |
| private: |
| struct NamedPcRange { |
| const char *copied_module_name; |
| uptr beg, end; // elements [beg,end) in pc_array. |
| }; |
| |
| void DirectOpen(); |
| void UpdateModuleNameVec(uptr caller_pc, uptr range_beg, uptr range_end); |
| void GetRangeOffsets(const NamedPcRange& r, Symbolizer* s, |
| InternalMmapVector<uptr>* offsets) const; |
| |
| // Maximal size pc array may ever grow. |
| // We MmapNoReserve this space to ensure that the array is contiguous. |
| static const uptr kPcArrayMaxSize = FIRST_32_SECOND_64( |
| 1 << (SANITIZER_ANDROID ? 24 : (SANITIZER_WINDOWS ? 27 : 26)), |
| 1 << 27); |
| // The amount file mapping for the pc array is grown by. |
| static const uptr kPcArrayMmapSize = 64 * 1024; |
| |
| // pc_array is allocated with MmapNoReserveOrDie and so it uses only as |
| // much RAM as it really needs. |
| uptr *pc_array; |
| // Index of the first available pc_array slot. |
| atomic_uintptr_t pc_array_index; |
| // Array size. |
| atomic_uintptr_t pc_array_size; |
| // Current file mapped size of the pc array. |
| uptr pc_array_mapped_size; |
| // Descriptor of the file mapped pc array. |
| fd_t pc_fd; |
| |
| uptr *pc_buffer; |
| |
| // Vector of coverage guard arrays, protected by mu. |
| InternalMmapVectorNoCtor<s32*> guard_array_vec; |
| |
| // Vector of module and compilation unit pc ranges. |
| InternalMmapVectorNoCtor<NamedPcRange> comp_unit_name_vec; |
| InternalMmapVectorNoCtor<NamedPcRange> module_name_vec; |
| |
| struct CounterAndSize { |
| u8 *counters; |
| uptr n; |
| }; |
| |
| InternalMmapVectorNoCtor<CounterAndSize> counters_vec; |
| uptr num_8bit_counters; |
| |
| // Caller-Callee (cc) array, size and current index. |
| static const uptr kCcArrayMaxSize = FIRST_32_SECOND_64(1 << 18, 1 << 24); |
| uptr **cc_array; |
| atomic_uintptr_t cc_array_index; |
| atomic_uintptr_t cc_array_size; |
| |
| // Tracing event array, size and current pointer. |
| // We record all events (basic block entries) in a global buffer of u32 |
| // values. Each such value is the index in pc_array. |
| // So far the tracing is highly experimental: |
| // - not thread-safe; |
| // - does not support long traces; |
| // - not tuned for performance. |
| static const uptr kTrEventArrayMaxSize = FIRST_32_SECOND_64(1 << 22, 1 << 30); |
| u32 *tr_event_array; |
| uptr tr_event_array_size; |
| u32 *tr_event_pointer; |
| static const uptr kTrPcArrayMaxSize = FIRST_32_SECOND_64(1 << 22, 1 << 27); |
| |
| StaticSpinMutex mu; |
| }; |
| |
| static CoverageData coverage_data; |
| |
| void CovUpdateMapping(const char *path, uptr caller_pc = 0); |
| |
| void CoverageData::DirectOpen() { |
| InternalScopedString path(kMaxPathLength); |
| internal_snprintf((char *)path.data(), path.size(), "%s/%zd.sancov.raw", |
| coverage_dir, internal_getpid()); |
| pc_fd = OpenFile(path.data(), RdWr); |
| if (pc_fd == kInvalidFd) { |
| Report("Coverage: failed to open %s for reading/writing\n", path.data()); |
| Die(); |
| } |
| |
| pc_array_mapped_size = 0; |
| CovUpdateMapping(coverage_dir); |
| } |
| |
| void CoverageData::Init() { |
| pc_fd = kInvalidFd; |
| } |
| |
| void CoverageData::Enable() { |
| if (pc_array) |
| return; |
| pc_array = reinterpret_cast<uptr *>( |
| MmapNoReserveOrDie(sizeof(uptr) * kPcArrayMaxSize, "CovInit")); |
| atomic_store(&pc_array_index, 0, memory_order_relaxed); |
| if (common_flags()->coverage_direct) { |
| atomic_store(&pc_array_size, 0, memory_order_relaxed); |
| } else { |
| atomic_store(&pc_array_size, kPcArrayMaxSize, memory_order_relaxed); |
| } |
| |
| pc_buffer = nullptr; |
| if (common_flags()->coverage_pc_buffer) |
| pc_buffer = reinterpret_cast<uptr *>(MmapNoReserveOrDie( |
| sizeof(uptr) * kPcArrayMaxSize, "CovInit::pc_buffer")); |
| |
| cc_array = reinterpret_cast<uptr **>(MmapNoReserveOrDie( |
| sizeof(uptr *) * kCcArrayMaxSize, "CovInit::cc_array")); |
| atomic_store(&cc_array_size, kCcArrayMaxSize, memory_order_relaxed); |
| atomic_store(&cc_array_index, 0, memory_order_relaxed); |
| |
| // Allocate tr_event_array with a guard page at the end. |
| tr_event_array = reinterpret_cast<u32 *>(MmapNoReserveOrDie( |
| sizeof(tr_event_array[0]) * kTrEventArrayMaxSize + GetMmapGranularity(), |
| "CovInit::tr_event_array")); |
| MprotectNoAccess( |
| reinterpret_cast<uptr>(&tr_event_array[kTrEventArrayMaxSize]), |
| GetMmapGranularity()); |
| tr_event_array_size = kTrEventArrayMaxSize; |
| tr_event_pointer = tr_event_array; |
| |
| num_8bit_counters = 0; |
| } |
| |
| void CoverageData::InitializeGuardArray(s32 *guards) { |
| Enable(); // Make sure coverage is enabled at this point. |
| s32 n = guards[0]; |
| for (s32 j = 1; j <= n; j++) { |
| uptr idx = atomic_load_relaxed(&pc_array_index); |
| atomic_store_relaxed(&pc_array_index, idx + 1); |
| guards[j] = -static_cast<s32>(idx + 1); |
| } |
| } |
| |
| void CoverageData::Disable() { |
| if (pc_array) { |
| UnmapOrDie(pc_array, sizeof(uptr) * kPcArrayMaxSize); |
| pc_array = nullptr; |
| } |
| if (cc_array) { |
| UnmapOrDie(cc_array, sizeof(uptr *) * kCcArrayMaxSize); |
| cc_array = nullptr; |
| } |
| if (pc_buffer) { |
| UnmapOrDie(pc_buffer, sizeof(uptr) * kPcArrayMaxSize); |
| pc_buffer = nullptr; |
| } |
| if (tr_event_array) { |
| UnmapOrDie(tr_event_array, |
| sizeof(tr_event_array[0]) * kTrEventArrayMaxSize + |
| GetMmapGranularity()); |
| tr_event_array = nullptr; |
| tr_event_pointer = nullptr; |
| } |
| if (pc_fd != kInvalidFd) { |
| CloseFile(pc_fd); |
| pc_fd = kInvalidFd; |
| } |
| } |
| |
| void CoverageData::ReinitializeGuards() { |
| // Assuming single thread. |
| atomic_store(&pc_array_index, 0, memory_order_relaxed); |
| for (uptr i = 0; i < guard_array_vec.size(); i++) |
| InitializeGuardArray(guard_array_vec[i]); |
| } |
| |
| void CoverageData::ReInit() { |
| Disable(); |
| if (coverage_enabled) { |
| if (common_flags()->coverage_direct) { |
| // In memory-mapped mode we must extend the new file to the known array |
| // size. |
| uptr size = atomic_load(&pc_array_size, memory_order_relaxed); |
| uptr npcs = size / sizeof(uptr); |
| Enable(); |
| if (size) Extend(npcs); |
| if (coverage_enabled) CovUpdateMapping(coverage_dir); |
| } else { |
| Enable(); |
| } |
| } |
| // Re-initialize the guards. |
| // We are single-threaded now, no need to grab any lock. |
| CHECK_EQ(atomic_load(&pc_array_index, memory_order_relaxed), 0); |
| ReinitializeGuards(); |
| } |
| |
| void CoverageData::BeforeFork() { |
| mu.Lock(); |
| } |
| |
| void CoverageData::AfterFork(int child_pid) { |
| // We are single-threaded so it's OK to release the lock early. |
| mu.Unlock(); |
| if (child_pid == 0) ReInit(); |
| } |
| |
| // Extend coverage PC array to fit additional npcs elements. |
| void CoverageData::Extend(uptr npcs) { |
| if (!common_flags()->coverage_direct) return; |
| SpinMutexLock l(&mu); |
| |
| uptr size = atomic_load(&pc_array_size, memory_order_relaxed); |
| size += npcs * sizeof(uptr); |
| |
| if (coverage_enabled && size > pc_array_mapped_size) { |
| if (pc_fd == kInvalidFd) DirectOpen(); |
| CHECK_NE(pc_fd, kInvalidFd); |
| |
| uptr new_mapped_size = pc_array_mapped_size; |
| while (size > new_mapped_size) new_mapped_size += kPcArrayMmapSize; |
| CHECK_LE(new_mapped_size, sizeof(uptr) * kPcArrayMaxSize); |
| |
| // Extend the file and map the new space at the end of pc_array. |
| uptr res = internal_ftruncate(pc_fd, new_mapped_size); |
| int err; |
| if (internal_iserror(res, &err)) { |
| Printf("failed to extend raw coverage file: %d\n", err); |
| Die(); |
| } |
| |
| uptr next_map_base = ((uptr)pc_array) + pc_array_mapped_size; |
| void *p = MapWritableFileToMemory((void *)next_map_base, |
| new_mapped_size - pc_array_mapped_size, |
| pc_fd, pc_array_mapped_size); |
| CHECK_EQ((uptr)p, next_map_base); |
| pc_array_mapped_size = new_mapped_size; |
| } |
| |
| atomic_store(&pc_array_size, size, memory_order_release); |
| } |
| |
| void CoverageData::InitializeCounters(u8 *counters, uptr n) { |
| if (!counters) return; |
| CHECK_EQ(reinterpret_cast<uptr>(counters) % 16, 0); |
| n = RoundUpTo(n, 16); // The compiler must ensure that counters is 16-aligned. |
| SpinMutexLock l(&mu); |
| counters_vec.push_back({counters, n}); |
| num_8bit_counters += n; |
| } |
| |
| void CoverageData::UpdateModuleNameVec(uptr caller_pc, uptr range_beg, |
| uptr range_end) { |
| auto sym = Symbolizer::GetOrInit(); |
| if (!sym) |
| return; |
| const char *module_name = sym->GetModuleNameForPc(caller_pc); |
| if (!module_name) return; |
| if (module_name_vec.empty() || |
| module_name_vec.back().copied_module_name != module_name) |
| module_name_vec.push_back({module_name, range_beg, range_end}); |
| else |
| module_name_vec.back().end = range_end; |
| } |
| |
| void CoverageData::InitializeGuards(s32 *guards, uptr n, |
| const char *comp_unit_name, |
| uptr caller_pc) { |
| // The array 'guards' has n+1 elements, we use the element zero |
| // to store 'n'. |
| CHECK_LT(n, 1 << 30); |
| guards[0] = static_cast<s32>(n); |
| InitializeGuardArray(guards); |
| SpinMutexLock l(&mu); |
| uptr range_end = atomic_load(&pc_array_index, memory_order_relaxed); |
| uptr range_beg = range_end - n; |
| comp_unit_name_vec.push_back({comp_unit_name, range_beg, range_end}); |
| guard_array_vec.push_back(guards); |
| UpdateModuleNameVec(caller_pc, range_beg, range_end); |
| } |
| |
| static const uptr kBundleCounterBits = 16; |
| |
| // When coverage_order_pcs==true and SANITIZER_WORDSIZE==64 |
| // we insert the global counter into the first 16 bits of the PC. |
| uptr BundlePcAndCounter(uptr pc, uptr counter) { |
| if (SANITIZER_WORDSIZE != 64 || !common_flags()->coverage_order_pcs) |
| return pc; |
| static const uptr kMaxCounter = (1 << kBundleCounterBits) - 1; |
| if (counter > kMaxCounter) |
| counter = kMaxCounter; |
| CHECK_EQ(0, pc >> (SANITIZER_WORDSIZE - kBundleCounterBits)); |
| return pc | (counter << (SANITIZER_WORDSIZE - kBundleCounterBits)); |
| } |
| |
| uptr UnbundlePc(uptr bundle) { |
| if (SANITIZER_WORDSIZE != 64 || !common_flags()->coverage_order_pcs) |
| return bundle; |
| return (bundle << kBundleCounterBits) >> kBundleCounterBits; |
| } |
| |
| uptr UnbundleCounter(uptr bundle) { |
| if (SANITIZER_WORDSIZE != 64 || !common_flags()->coverage_order_pcs) |
| return 0; |
| return bundle >> (SANITIZER_WORDSIZE - kBundleCounterBits); |
| } |
| |
| // If guard is negative, atomically set it to -guard and store the PC in |
| // pc_array. |
| void CoverageData::Add(uptr pc, u32 *guard) { |
| atomic_uint32_t *atomic_guard = reinterpret_cast<atomic_uint32_t*>(guard); |
| s32 guard_value = atomic_load(atomic_guard, memory_order_relaxed); |
| if (guard_value >= 0) return; |
| |
| atomic_store(atomic_guard, -guard_value, memory_order_relaxed); |
| if (!pc_array) return; |
| |
| uptr idx = -guard_value - 1; |
| if (idx >= atomic_load(&pc_array_index, memory_order_acquire)) |
| return; // May happen after fork when pc_array_index becomes 0. |
| CHECK_LT(idx * sizeof(uptr), |
| atomic_load(&pc_array_size, memory_order_acquire)); |
| uptr counter = atomic_fetch_add(&coverage_counter, 1, memory_order_relaxed); |
| pc_array[idx] = BundlePcAndCounter(pc, counter); |
| if (pc_buffer) pc_buffer[counter] = pc; |
| } |
| |
| // Registers a pair caller=>callee. |
| // When a given caller is seen for the first time, the callee_cache is added |
| // to the global array cc_array, callee_cache[0] is set to caller and |
| // callee_cache[1] is set to cache_size. |
| // Then we are trying to add callee to callee_cache [2,cache_size) if it is |
| // not there yet. |
| // If the cache is full we drop the callee (may want to fix this later). |
| void CoverageData::IndirCall(uptr caller, uptr callee, uptr callee_cache[], |
| uptr cache_size) { |
| if (!cc_array) return; |
| atomic_uintptr_t *atomic_callee_cache = |
| reinterpret_cast<atomic_uintptr_t *>(callee_cache); |
| uptr zero = 0; |
| if (atomic_compare_exchange_strong(&atomic_callee_cache[0], &zero, caller, |
| memory_order_seq_cst)) { |
| uptr idx = atomic_fetch_add(&cc_array_index, 1, memory_order_relaxed); |
| CHECK_LT(idx * sizeof(uptr), |
| atomic_load(&cc_array_size, memory_order_acquire)); |
| callee_cache[1] = cache_size; |
| cc_array[idx] = callee_cache; |
| } |
| CHECK_EQ(atomic_load(&atomic_callee_cache[0], memory_order_relaxed), caller); |
| for (uptr i = 2; i < cache_size; i++) { |
| uptr was = 0; |
| if (atomic_compare_exchange_strong(&atomic_callee_cache[i], &was, callee, |
| memory_order_seq_cst)) { |
| atomic_fetch_add(&caller_callee_counter, 1, memory_order_relaxed); |
| return; |
| } |
| if (was == callee) // Already have this callee. |
| return; |
| } |
| } |
| |
| uptr CoverageData::GetNumberOf8bitCounters() { |
| return num_8bit_counters; |
| } |
| |
| // Map every 8bit counter to a 8-bit bitset and clear the counter. |
| uptr CoverageData::Update8bitCounterBitsetAndClearCounters(u8 *bitset) { |
| uptr num_new_bits = 0; |
| uptr cur = 0; |
| // For better speed we map 8 counters to 8 bytes of bitset at once. |
| static const uptr kBatchSize = 8; |
| CHECK_EQ(reinterpret_cast<uptr>(bitset) % kBatchSize, 0); |
| for (uptr i = 0, len = counters_vec.size(); i < len; i++) { |
| u8 *c = counters_vec[i].counters; |
| uptr n = counters_vec[i].n; |
| CHECK_EQ(n % 16, 0); |
| CHECK_EQ(cur % kBatchSize, 0); |
| CHECK_EQ(reinterpret_cast<uptr>(c) % kBatchSize, 0); |
| if (!bitset) { |
| internal_bzero_aligned16(c, n); |
| cur += n; |
| continue; |
| } |
| for (uptr j = 0; j < n; j += kBatchSize, cur += kBatchSize) { |
| CHECK_LT(cur, num_8bit_counters); |
| u64 *pc64 = reinterpret_cast<u64*>(c + j); |
| u64 *pb64 = reinterpret_cast<u64*>(bitset + cur); |
| u64 c64 = *pc64; |
| u64 old_bits_64 = *pb64; |
| u64 new_bits_64 = old_bits_64; |
| if (c64) { |
| *pc64 = 0; |
| for (uptr k = 0; k < kBatchSize; k++) { |
| u64 x = (c64 >> (8 * k)) & 0xff; |
| if (x) { |
| u64 bit = 0; |
| /**/ if (x >= 128) bit = 128; |
| else if (x >= 32) bit = 64; |
| else if (x >= 16) bit = 32; |
| else if (x >= 8) bit = 16; |
| else if (x >= 4) bit = 8; |
| else if (x >= 3) bit = 4; |
| else if (x >= 2) bit = 2; |
| else if (x >= 1) bit = 1; |
| u64 mask = bit << (8 * k); |
| if (!(new_bits_64 & mask)) { |
| num_new_bits++; |
| new_bits_64 |= mask; |
| } |
| } |
| } |
| *pb64 = new_bits_64; |
| } |
| } |
| } |
| CHECK_EQ(cur, num_8bit_counters); |
| return num_new_bits; |
| } |
| |
| uptr *CoverageData::data() { |
| return pc_array; |
| } |
| |
| uptr CoverageData::size() const { |
| return atomic_load(&pc_array_index, memory_order_relaxed); |
| } |
| |
| // Block layout for packed file format: header, followed by module name (no |
| // trailing zero), followed by data blob. |
| struct CovHeader { |
| int pid; |
| unsigned int module_name_length; |
| unsigned int data_length; |
| }; |
| |
| static void CovWritePacked(int pid, const char *module, const void *blob, |
| unsigned int blob_size) { |
| if (cov_fd == kInvalidFd) return; |
| unsigned module_name_length = internal_strlen(module); |
| CovHeader header = {pid, module_name_length, blob_size}; |
| |
| if (cov_max_block_size == 0) { |
| // Writing to a file. Just go ahead. |
| WriteToFile(cov_fd, &header, sizeof(header)); |
| WriteToFile(cov_fd, module, module_name_length); |
| WriteToFile(cov_fd, blob, blob_size); |
| } else { |
| // Writing to a socket. We want to split the data into appropriately sized |
| // blocks. |
| InternalScopedBuffer<char> block(cov_max_block_size); |
| CHECK_EQ((uptr)block.data(), (uptr)(CovHeader *)block.data()); |
| uptr header_size_with_module = sizeof(header) + module_name_length; |
| CHECK_LT(header_size_with_module, cov_max_block_size); |
| unsigned int max_payload_size = |
| cov_max_block_size - header_size_with_module; |
| char *block_pos = block.data(); |
| internal_memcpy(block_pos, &header, sizeof(header)); |
| block_pos += sizeof(header); |
| internal_memcpy(block_pos, module, module_name_length); |
| block_pos += module_name_length; |
| char *block_data_begin = block_pos; |
| const char *blob_pos = (const char *)blob; |
| while (blob_size > 0) { |
| unsigned int payload_size = Min(blob_size, max_payload_size); |
| blob_size -= payload_size; |
| internal_memcpy(block_data_begin, blob_pos, payload_size); |
| blob_pos += payload_size; |
| ((CovHeader *)block.data())->data_length = payload_size; |
| WriteToFile(cov_fd, block.data(), header_size_with_module + payload_size); |
| } |
| } |
| } |
| |
| // If packed = false: <name>.<pid>.<sancov> (name = module name). |
| // If packed = true and name == 0: <pid>.<sancov>.<packed>. |
| // If packed = true and name != 0: <name>.<sancov>.<packed> (name is |
| // user-supplied). |
| static fd_t CovOpenFile(InternalScopedString *path, bool packed, |
| const char *name, const char *extension = "sancov") { |
| path->clear(); |
| if (!packed) { |
| CHECK(name); |
| path->append("%s/%s.%zd.%s", coverage_dir, name, internal_getpid(), |
| extension); |
| } else { |
| if (!name) |
| path->append("%s/%zd.%s.packed", coverage_dir, internal_getpid(), |
| extension); |
| else |
| path->append("%s/%s.%s.packed", coverage_dir, name, extension); |
| } |
| error_t err; |
| fd_t fd = OpenFile(path->data(), WrOnly, &err); |
| if (fd == kInvalidFd) |
| Report("SanitizerCoverage: failed to open %s for writing (reason: %d)\n", |
| path->data(), err); |
| return fd; |
| } |
| |
| // Dump trace PCs and trace events into two separate files. |
| void CoverageData::DumpTrace() { |
| uptr max_idx = tr_event_pointer - tr_event_array; |
| if (!max_idx) return; |
| auto sym = Symbolizer::GetOrInit(); |
| if (!sym) |
| return; |
| InternalScopedString out(32 << 20); |
| for (uptr i = 0, n = size(); i < n; i++) { |
| const char *module_name = "<unknown>"; |
| uptr module_address = 0; |
| sym->GetModuleNameAndOffsetForPC(UnbundlePc(pc_array[i]), &module_name, |
| &module_address); |
| out.append("%s 0x%zx\n", module_name, module_address); |
| } |
| InternalScopedString path(kMaxPathLength); |
| fd_t fd = CovOpenFile(&path, false, "trace-points"); |
| if (fd == kInvalidFd) return; |
| WriteToFile(fd, out.data(), out.length()); |
| CloseFile(fd); |
| |
| fd = CovOpenFile(&path, false, "trace-compunits"); |
| if (fd == kInvalidFd) return; |
| out.clear(); |
| for (uptr i = 0; i < comp_unit_name_vec.size(); i++) |
| out.append("%s\n", comp_unit_name_vec[i].copied_module_name); |
| WriteToFile(fd, out.data(), out.length()); |
| CloseFile(fd); |
| |
| fd = CovOpenFile(&path, false, "trace-events"); |
| if (fd == kInvalidFd) return; |
| uptr bytes_to_write = max_idx * sizeof(tr_event_array[0]); |
| u8 *event_bytes = reinterpret_cast<u8*>(tr_event_array); |
| // The trace file could be huge, and may not be written with a single syscall. |
| while (bytes_to_write) { |
| uptr actually_written; |
| if (WriteToFile(fd, event_bytes, bytes_to_write, &actually_written) && |
| actually_written <= bytes_to_write) { |
| bytes_to_write -= actually_written; |
| event_bytes += actually_written; |
| } else { |
| break; |
| } |
| } |
| CloseFile(fd); |
| VReport(1, " CovDump: Trace: %zd PCs written\n", size()); |
| VReport(1, " CovDump: Trace: %zd Events written\n", max_idx); |
| } |
| |
| // This function dumps the caller=>callee pairs into a file as a sequence of |
| // lines like "module_name offset". |
| void CoverageData::DumpCallerCalleePairs() { |
| uptr max_idx = atomic_load(&cc_array_index, memory_order_relaxed); |
| if (!max_idx) return; |
| auto sym = Symbolizer::GetOrInit(); |
| if (!sym) |
| return; |
| InternalScopedString out(32 << 20); |
| uptr total = 0; |
| for (uptr i = 0; i < max_idx; i++) { |
| uptr *cc_cache = cc_array[i]; |
| CHECK(cc_cache); |
| uptr caller = cc_cache[0]; |
| uptr n_callees = cc_cache[1]; |
| const char *caller_module_name = "<unknown>"; |
| uptr caller_module_address = 0; |
| sym->GetModuleNameAndOffsetForPC(caller, &caller_module_name, |
| &caller_module_address); |
| for (uptr j = 2; j < n_callees; j++) { |
| uptr callee = cc_cache[j]; |
| if (!callee) break; |
| total++; |
| const char *callee_module_name = "<unknown>"; |
| uptr callee_module_address = 0; |
| sym->GetModuleNameAndOffsetForPC(callee, &callee_module_name, |
| &callee_module_address); |
| out.append("%s 0x%zx\n%s 0x%zx\n", caller_module_name, |
| caller_module_address, callee_module_name, |
| callee_module_address); |
| } |
| } |
| InternalScopedString path(kMaxPathLength); |
| fd_t fd = CovOpenFile(&path, false, "caller-callee"); |
| if (fd == kInvalidFd) return; |
| WriteToFile(fd, out.data(), out.length()); |
| CloseFile(fd); |
| VReport(1, " CovDump: %zd caller-callee pairs written\n", total); |
| } |
| |
| // Record the current PC into the event buffer. |
| // Every event is a u32 value (index in tr_pc_array_index) so we compute |
| // it once and then cache in the provided 'cache' storage. |
| // |
| // This function will eventually be inlined by the compiler. |
| void CoverageData::TraceBasicBlock(u32 *id) { |
| // Will trap here if |
| // 1. coverage is not enabled at run-time. |
| // 2. The array tr_event_array is full. |
| *tr_event_pointer = *id - 1; |
| tr_event_pointer++; |
| } |
| |
| void CoverageData::DumpCounters() { |
| if (!common_flags()->coverage_counters) return; |
| uptr n = coverage_data.GetNumberOf8bitCounters(); |
| if (!n) return; |
| InternalScopedBuffer<u8> bitset(n); |
| coverage_data.Update8bitCounterBitsetAndClearCounters(bitset.data()); |
| InternalScopedString path(kMaxPathLength); |
| |
| for (uptr m = 0; m < module_name_vec.size(); m++) { |
| auto r = module_name_vec[m]; |
| CHECK(r.copied_module_name); |
| CHECK_LE(r.beg, r.end); |
| CHECK_LE(r.end, size()); |
| const char *base_name = StripModuleName(r.copied_module_name); |
| fd_t fd = |
| CovOpenFile(&path, /* packed */ false, base_name, "counters-sancov"); |
| if (fd == kInvalidFd) return; |
| WriteToFile(fd, bitset.data() + r.beg, r.end - r.beg); |
| CloseFile(fd); |
| VReport(1, " CovDump: %zd counters written for '%s'\n", r.end - r.beg, |
| base_name); |
| } |
| } |
| |
| void CoverageData::DumpAsBitSet() { |
| if (!common_flags()->coverage_bitset) return; |
| if (!size()) return; |
| InternalScopedBuffer<char> out(size()); |
| InternalScopedString path(kMaxPathLength); |
| for (uptr m = 0; m < module_name_vec.size(); m++) { |
| uptr n_set_bits = 0; |
| auto r = module_name_vec[m]; |
| CHECK(r.copied_module_name); |
| CHECK_LE(r.beg, r.end); |
| CHECK_LE(r.end, size()); |
| for (uptr i = r.beg; i < r.end; i++) { |
| uptr pc = UnbundlePc(pc_array[i]); |
| out[i] = pc ? '1' : '0'; |
| if (pc) |
| n_set_bits++; |
| } |
| const char *base_name = StripModuleName(r.copied_module_name); |
| fd_t fd = CovOpenFile(&path, /* packed */false, base_name, "bitset-sancov"); |
| if (fd == kInvalidFd) return; |
| WriteToFile(fd, out.data() + r.beg, r.end - r.beg); |
| CloseFile(fd); |
| VReport(1, |
| " CovDump: bitset of %zd bits written for '%s', %zd bits are set\n", |
| r.end - r.beg, base_name, n_set_bits); |
| } |
| } |
| |
| |
| void CoverageData::GetRangeOffsets(const NamedPcRange& r, Symbolizer* sym, |
| InternalMmapVector<uptr>* offsets) const { |
| offsets->clear(); |
| for (uptr i = 0; i < kNumWordsForMagic; i++) |
| offsets->push_back(0); |
| CHECK(r.copied_module_name); |
| CHECK_LE(r.beg, r.end); |
| CHECK_LE(r.end, size()); |
| for (uptr i = r.beg; i < r.end; i++) { |
| uptr pc = UnbundlePc(pc_array[i]); |
| uptr counter = UnbundleCounter(pc_array[i]); |
| if (!pc) continue; // Not visited. |
| uptr offset = 0; |
| sym->GetModuleNameAndOffsetForPC(pc, nullptr, &offset); |
| offsets->push_back(BundlePcAndCounter(offset, counter)); |
| } |
| |
| CHECK_GE(offsets->size(), kNumWordsForMagic); |
| SortArray(offsets->data(), offsets->size()); |
| for (uptr i = 0; i < offsets->size(); i++) |
| (*offsets)[i] = UnbundlePc((*offsets)[i]); |
| } |
| |
| static void GenerateHtmlReport(const InternalMmapVector<char *> &cov_files) { |
| if (!common_flags()->html_cov_report) { |
| return; |
| } |
| char *sancov_path = FindPathToBinary(common_flags()->sancov_path); |
| if (sancov_path == nullptr) { |
| return; |
| } |
| |
| InternalMmapVector<char *> sancov_argv(cov_files.size() * 2 + 3); |
| sancov_argv.push_back(sancov_path); |
| sancov_argv.push_back(internal_strdup("-html-report")); |
| auto argv_deleter = at_scope_exit([&] { |
| for (uptr i = 0; i < sancov_argv.size(); ++i) { |
| InternalFree(sancov_argv[i]); |
| } |
| }); |
| |
| for (const auto &cov_file : cov_files) { |
| sancov_argv.push_back(internal_strdup(cov_file)); |
| } |
| |
| { |
| ListOfModules modules; |
| modules.init(); |
| for (const LoadedModule &module : modules) { |
| sancov_argv.push_back(internal_strdup(module.full_name())); |
| } |
| } |
| |
| InternalScopedString report_path(kMaxPathLength); |
| fd_t report_fd = |
| CovOpenFile(&report_path, false /* packed */, GetProcessName(), "html"); |
| int pid = StartSubprocess(sancov_argv[0], sancov_argv.data(), |
| kInvalidFd /* stdin */, report_fd /* std_out */); |
| if (pid > 0) { |
| int result = WaitForProcess(pid); |
| if (result == 0) |
| Printf("coverage report generated to %s\n", report_path.data()); |
| } |
| } |
| |
| void CoverageData::DumpOffsets() { |
| auto sym = Symbolizer::GetOrInit(); |
| if (!common_flags()->coverage_pcs) return; |
| CHECK_NE(sym, nullptr); |
| InternalMmapVector<uptr> offsets(0); |
| InternalScopedString path(kMaxPathLength); |
| |
| InternalMmapVector<char *> cov_files(module_name_vec.size()); |
| auto cov_files_deleter = at_scope_exit([&] { |
| for (uptr i = 0; i < cov_files.size(); ++i) { |
| InternalFree(cov_files[i]); |
| } |
| }); |
| |
| for (uptr m = 0; m < module_name_vec.size(); m++) { |
| auto r = module_name_vec[m]; |
| GetRangeOffsets(r, sym, &offsets); |
| |
| uptr num_offsets = offsets.size() - kNumWordsForMagic; |
| u64 *magic_p = reinterpret_cast<u64*>(offsets.data()); |
| CHECK_EQ(*magic_p, 0ULL); |
| // FIXME: we may want to write 32-bit offsets even in 64-mode |
| // if all the offsets are small enough. |
| *magic_p = kMagic; |
| |
| const char *module_name = StripModuleName(r.copied_module_name); |
| if (cov_sandboxed) { |
| if (cov_fd != kInvalidFd) { |
| CovWritePacked(internal_getpid(), module_name, offsets.data(), |
| offsets.size() * sizeof(offsets[0])); |
| VReport(1, " CovDump: %zd PCs written to packed file\n", num_offsets); |
| } |
| } else { |
| // One file per module per process. |
| fd_t fd = CovOpenFile(&path, false /* packed */, module_name); |
| if (fd == kInvalidFd) continue; |
| WriteToFile(fd, offsets.data(), offsets.size() * sizeof(offsets[0])); |
| CloseFile(fd); |
| cov_files.push_back(internal_strdup(path.data())); |
| VReport(1, " CovDump: %s: %zd PCs written\n", path.data(), num_offsets); |
| } |
| } |
| if (cov_fd != kInvalidFd) |
| CloseFile(cov_fd); |
| |
| GenerateHtmlReport(cov_files); |
| } |
| |
| void CoverageData::DumpAll() { |
| if (!coverage_enabled || common_flags()->coverage_direct) return; |
| if (atomic_fetch_add(&dump_once_guard, 1, memory_order_relaxed)) |
| return; |
| DumpAsBitSet(); |
| DumpCounters(); |
| DumpTrace(); |
| DumpOffsets(); |
| DumpCallerCalleePairs(); |
| } |
| |
| void CovPrepareForSandboxing(__sanitizer_sandbox_arguments *args) { |
| if (!args) return; |
| if (!coverage_enabled) return; |
| cov_sandboxed = args->coverage_sandboxed; |
| if (!cov_sandboxed) return; |
| cov_max_block_size = args->coverage_max_block_size; |
| if (args->coverage_fd >= 0) { |
| cov_fd = (fd_t)args->coverage_fd; |
| } else { |
| InternalScopedString path(kMaxPathLength); |
| // Pre-open the file now. The sandbox won't allow us to do it later. |
| cov_fd = CovOpenFile(&path, true /* packed */, nullptr); |
| } |
| } |
| |
| fd_t MaybeOpenCovFile(const char *name) { |
| CHECK(name); |
| if (!coverage_enabled) return kInvalidFd; |
| InternalScopedString path(kMaxPathLength); |
| return CovOpenFile(&path, true /* packed */, name); |
| } |
| |
| void CovBeforeFork() { |
| coverage_data.BeforeFork(); |
| } |
| |
| void CovAfterFork(int child_pid) { |
| coverage_data.AfterFork(child_pid); |
| } |
| |
| static void MaybeDumpCoverage() { |
| if (common_flags()->coverage) |
| __sanitizer_cov_dump(); |
| } |
| |
| void InitializeCoverage(bool enabled, const char *dir) { |
| if (coverage_enabled) |
| return; // May happen if two sanitizer enable coverage in the same process. |
| coverage_enabled = enabled; |
| coverage_dir = dir; |
| coverage_data.Init(); |
| if (enabled) coverage_data.Enable(); |
| if (!common_flags()->coverage_direct) Atexit(__sanitizer_cov_dump); |
| AddDieCallback(MaybeDumpCoverage); |
| } |
| |
| void ReInitializeCoverage(bool enabled, const char *dir) { |
| coverage_enabled = enabled; |
| coverage_dir = dir; |
| coverage_data.ReInit(); |
| } |
| |
| void CoverageUpdateMapping() { |
| if (coverage_enabled) |
| CovUpdateMapping(coverage_dir); |
| } |
| |
| } // namespace __sanitizer |
| |
| extern "C" { |
| SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_cov(u32 *guard) { |
| coverage_data.Add(StackTrace::GetPreviousInstructionPc(GET_CALLER_PC()), |
| guard); |
| } |
| SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_cov_with_check(u32 *guard) { |
| atomic_uint32_t *atomic_guard = reinterpret_cast<atomic_uint32_t*>(guard); |
| if (static_cast<s32>( |
| __sanitizer::atomic_load(atomic_guard, memory_order_relaxed)) < 0) |
| __sanitizer_cov(guard); |
| } |
| SANITIZER_INTERFACE_ATTRIBUTE void |
| __sanitizer_cov_indir_call16(uptr callee, uptr callee_cache16[]) { |
| coverage_data.IndirCall(StackTrace::GetPreviousInstructionPc(GET_CALLER_PC()), |
| callee, callee_cache16, 16); |
| } |
| SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_cov_init() { |
| coverage_enabled = true; |
| coverage_dir = common_flags()->coverage_dir; |
| coverage_data.Init(); |
| } |
| SANITIZER_INTERFACE_ATTRIBUTE void __sanitizer_cov_dump() { |
| coverage_data.DumpAll(); |
| } |
| SANITIZER_INTERFACE_ATTRIBUTE void |
| __sanitizer_cov_module_init(s32 *guards, uptr npcs, u8 *counters, |
| const char *comp_unit_name) { |
| coverage_data.InitializeGuards(guards, npcs, comp_unit_name, GET_CALLER_PC()); |
| coverage_data.InitializeCounters(counters, npcs); |
| if (!common_flags()->coverage_direct) return; |
| if (SANITIZER_ANDROID && coverage_enabled) { |
| // dlopen/dlclose interceptors do not work on Android, so we rely on |
| // Extend() calls to update .sancov.map. |
| CovUpdateMapping(coverage_dir, GET_CALLER_PC()); |
| } |
| coverage_data.Extend(npcs); |
| } |
| SANITIZER_INTERFACE_ATTRIBUTE |
| sptr __sanitizer_maybe_open_cov_file(const char *name) { |
| return (sptr)MaybeOpenCovFile(name); |
| } |
| SANITIZER_INTERFACE_ATTRIBUTE |
| uptr __sanitizer_get_total_unique_coverage() { |
| return atomic_load(&coverage_counter, memory_order_relaxed); |
| } |
| |
| SANITIZER_INTERFACE_ATTRIBUTE |
| uptr __sanitizer_get_total_unique_caller_callee_pairs() { |
| return atomic_load(&caller_callee_counter, memory_order_relaxed); |
| } |
| |
| SANITIZER_INTERFACE_ATTRIBUTE |
| void __sanitizer_cov_trace_func_enter(u32 *id) { |
| __sanitizer_cov_with_check(id); |
| coverage_data.TraceBasicBlock(id); |
| } |
| SANITIZER_INTERFACE_ATTRIBUTE |
| void __sanitizer_cov_trace_basic_block(u32 *id) { |
| __sanitizer_cov_with_check(id); |
| coverage_data.TraceBasicBlock(id); |
| } |
| SANITIZER_INTERFACE_ATTRIBUTE |
| void __sanitizer_reset_coverage() { |
| ResetGlobalCounters(); |
| coverage_data.ReinitializeGuards(); |
| internal_bzero_aligned16( |
| coverage_data.data(), |
| RoundUpTo(coverage_data.size() * sizeof(coverage_data.data()[0]), 16)); |
| } |
| SANITIZER_INTERFACE_ATTRIBUTE |
| uptr __sanitizer_get_coverage_guards(uptr **data) { |
| *data = coverage_data.data(); |
| return coverage_data.size(); |
| } |
| |
| SANITIZER_INTERFACE_ATTRIBUTE |
| uptr __sanitizer_get_coverage_pc_buffer(uptr **data) { |
| *data = coverage_data.buffer(); |
| return __sanitizer_get_total_unique_coverage(); |
| } |
| |
| SANITIZER_INTERFACE_ATTRIBUTE |
| uptr __sanitizer_get_number_of_counters() { |
| return coverage_data.GetNumberOf8bitCounters(); |
| } |
| |
| SANITIZER_INTERFACE_ATTRIBUTE |
| uptr __sanitizer_update_counter_bitset_and_clear_counters(u8 *bitset) { |
| return coverage_data.Update8bitCounterBitsetAndClearCounters(bitset); |
| } |
| // Default empty implementations (weak). Users should redefine them. |
| SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE |
| void __sanitizer_cov_trace_cmp() {} |
| SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE |
| void __sanitizer_cov_trace_switch() {} |
| } // extern "C" |