| /* LibTomCrypt, modular cryptographic library -- Tom St Denis |
| * |
| * LibTomCrypt is a library that provides various cryptographic |
| * algorithms in a highly modular and flexible manner. |
| * |
| * The library is free for all purposes without any express |
| * guarantee it works. |
| * |
| * Tom St Denis, [email protected], http://libtomcrypt.com |
| */ |
| |
| /** |
| @file rc5.c |
| RC5 code by Tom St Denis |
| */ |
| |
| #include "tomcrypt.h" |
| |
| #ifdef RC5 |
| |
| const struct ltc_cipher_descriptor rc5_desc = |
| { |
| "rc5", |
| 2, |
| 8, 128, 8, 12, |
| &rc5_setup, |
| &rc5_ecb_encrypt, |
| &rc5_ecb_decrypt, |
| &rc5_test, |
| &rc5_done, |
| &rc5_keysize, |
| NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL |
| }; |
| |
| static const ulong32 stab[50] = { |
| 0xb7e15163UL, 0x5618cb1cUL, 0xf45044d5UL, 0x9287be8eUL, 0x30bf3847UL, 0xcef6b200UL, 0x6d2e2bb9UL, 0x0b65a572UL, |
| 0xa99d1f2bUL, 0x47d498e4UL, 0xe60c129dUL, 0x84438c56UL, 0x227b060fUL, 0xc0b27fc8UL, 0x5ee9f981UL, 0xfd21733aUL, |
| 0x9b58ecf3UL, 0x399066acUL, 0xd7c7e065UL, 0x75ff5a1eUL, 0x1436d3d7UL, 0xb26e4d90UL, 0x50a5c749UL, 0xeedd4102UL, |
| 0x8d14babbUL, 0x2b4c3474UL, 0xc983ae2dUL, 0x67bb27e6UL, 0x05f2a19fUL, 0xa42a1b58UL, 0x42619511UL, 0xe0990ecaUL, |
| 0x7ed08883UL, 0x1d08023cUL, 0xbb3f7bf5UL, 0x5976f5aeUL, 0xf7ae6f67UL, 0x95e5e920UL, 0x341d62d9UL, 0xd254dc92UL, |
| 0x708c564bUL, 0x0ec3d004UL, 0xacfb49bdUL, 0x4b32c376UL, 0xe96a3d2fUL, 0x87a1b6e8UL, 0x25d930a1UL, 0xc410aa5aUL, |
| 0x62482413UL, 0x007f9dccUL |
| }; |
| |
| /** |
| Initialize the RC5 block cipher |
| @param key The symmetric key you wish to pass |
| @param keylen The key length in bytes |
| @param num_rounds The number of rounds desired (0 for default) |
| @param skey The key in as scheduled by this function. |
| @return CRYPT_OK if successful |
| */ |
| #ifdef LTC_CLEAN_STACK |
| static int _rc5_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) |
| #else |
| int rc5_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) |
| #endif |
| { |
| ulong32 L[64], *S, A, B, i, j, v, s, t, l; |
| |
| LTC_ARGCHK(skey != NULL); |
| LTC_ARGCHK(key != NULL); |
| |
| /* test parameters */ |
| if (num_rounds == 0) { |
| num_rounds = rc5_desc.default_rounds; |
| } |
| |
| if (num_rounds < 12 || num_rounds > 24) { |
| return CRYPT_INVALID_ROUNDS; |
| } |
| |
| /* key must be between 64 and 1024 bits */ |
| if (keylen < 8 || keylen > 128) { |
| return CRYPT_INVALID_KEYSIZE; |
| } |
| |
| skey->rc5.rounds = num_rounds; |
| S = skey->rc5.K; |
| |
| /* copy the key into the L array */ |
| for (A = i = j = 0; i < (ulong32)keylen; ) { |
| A = (A << 8) | ((ulong32)(key[i++] & 255)); |
| if ((i & 3) == 0) { |
| L[j++] = BSWAP(A); |
| A = 0; |
| } |
| } |
| |
| if ((keylen & 3) != 0) { |
| A <<= (ulong32)((8 * (4 - (keylen&3)))); |
| L[j++] = BSWAP(A); |
| } |
| |
| /* setup the S array */ |
| t = (ulong32)(2 * (num_rounds + 1)); |
| XMEMCPY(S, stab, t * sizeof(*S)); |
| |
| /* mix buffer */ |
| s = 3 * MAX(t, j); |
| l = j; |
| for (A = B = i = j = v = 0; v < s; v++) { |
| A = S[i] = ROLc(S[i] + A + B, 3); |
| B = L[j] = ROL(L[j] + A + B, (A+B)); |
| if (++i == t) { i = 0; } |
| if (++j == l) { j = 0; } |
| } |
| return CRYPT_OK; |
| } |
| |
| #ifdef LTC_CLEAN_STACK |
| int rc5_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) |
| { |
| int x; |
| x = _rc5_setup(key, keylen, num_rounds, skey); |
| burn_stack(sizeof(ulong32) * 122 + sizeof(int)); |
| return x; |
| } |
| #endif |
| |
| /** |
| Encrypts a block of text with RC5 |
| @param pt The input plaintext (8 bytes) |
| @param ct The output ciphertext (8 bytes) |
| @param skey The key as scheduled |
| @return CRYPT_OK if successful |
| */ |
| #ifdef LTC_CLEAN_STACK |
| static int _rc5_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) |
| #else |
| int rc5_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) |
| #endif |
| { |
| ulong32 A, B, *K; |
| int r; |
| LTC_ARGCHK(skey != NULL); |
| LTC_ARGCHK(pt != NULL); |
| LTC_ARGCHK(ct != NULL); |
| |
| LOAD32L(A, &pt[0]); |
| LOAD32L(B, &pt[4]); |
| A += skey->rc5.K[0]; |
| B += skey->rc5.K[1]; |
| K = skey->rc5.K + 2; |
| |
| if ((skey->rc5.rounds & 1) == 0) { |
| for (r = 0; r < skey->rc5.rounds; r += 2) { |
| A = ROL(A ^ B, B) + K[0]; |
| B = ROL(B ^ A, A) + K[1]; |
| A = ROL(A ^ B, B) + K[2]; |
| B = ROL(B ^ A, A) + K[3]; |
| K += 4; |
| } |
| } else { |
| for (r = 0; r < skey->rc5.rounds; r++) { |
| A = ROL(A ^ B, B) + K[0]; |
| B = ROL(B ^ A, A) + K[1]; |
| K += 2; |
| } |
| } |
| STORE32L(A, &ct[0]); |
| STORE32L(B, &ct[4]); |
| |
| return CRYPT_OK; |
| } |
| |
| #ifdef LTC_CLEAN_STACK |
| int rc5_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) |
| { |
| int err = _rc5_ecb_encrypt(pt, ct, skey); |
| burn_stack(sizeof(ulong32) * 2 + sizeof(int)); |
| return err; |
| } |
| #endif |
| |
| /** |
| Decrypts a block of text with RC5 |
| @param ct The input ciphertext (8 bytes) |
| @param pt The output plaintext (8 bytes) |
| @param skey The key as scheduled |
| @return CRYPT_OK if successful |
| */ |
| #ifdef LTC_CLEAN_STACK |
| static int _rc5_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) |
| #else |
| int rc5_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) |
| #endif |
| { |
| ulong32 A, B, *K; |
| int r; |
| LTC_ARGCHK(skey != NULL); |
| LTC_ARGCHK(pt != NULL); |
| LTC_ARGCHK(ct != NULL); |
| |
| LOAD32L(A, &ct[0]); |
| LOAD32L(B, &ct[4]); |
| K = skey->rc5.K + (skey->rc5.rounds << 1); |
| |
| if ((skey->rc5.rounds & 1) == 0) { |
| K -= 2; |
| for (r = skey->rc5.rounds - 1; r >= 0; r -= 2) { |
| B = ROR(B - K[3], A) ^ A; |
| A = ROR(A - K[2], B) ^ B; |
| B = ROR(B - K[1], A) ^ A; |
| A = ROR(A - K[0], B) ^ B; |
| K -= 4; |
| } |
| } else { |
| for (r = skey->rc5.rounds - 1; r >= 0; r--) { |
| B = ROR(B - K[1], A) ^ A; |
| A = ROR(A - K[0], B) ^ B; |
| K -= 2; |
| } |
| } |
| A -= skey->rc5.K[0]; |
| B -= skey->rc5.K[1]; |
| STORE32L(A, &pt[0]); |
| STORE32L(B, &pt[4]); |
| |
| return CRYPT_OK; |
| } |
| |
| #ifdef LTC_CLEAN_STACK |
| int rc5_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) |
| { |
| int err = _rc5_ecb_decrypt(ct, pt, skey); |
| burn_stack(sizeof(ulong32) * 2 + sizeof(int)); |
| return err; |
| } |
| #endif |
| |
| /** |
| Performs a self-test of the RC5 block cipher |
| @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled |
| */ |
| int rc5_test(void) |
| { |
| #ifndef LTC_TEST |
| return CRYPT_NOP; |
| #else |
| static const struct { |
| unsigned char key[16], pt[8], ct[8]; |
| } tests[] = { |
| { |
| { 0x91, 0x5f, 0x46, 0x19, 0xbe, 0x41, 0xb2, 0x51, |
| 0x63, 0x55, 0xa5, 0x01, 0x10, 0xa9, 0xce, 0x91 }, |
| { 0x21, 0xa5, 0xdb, 0xee, 0x15, 0x4b, 0x8f, 0x6d }, |
| { 0xf7, 0xc0, 0x13, 0xac, 0x5b, 0x2b, 0x89, 0x52 } |
| }, |
| { |
| { 0x78, 0x33, 0x48, 0xe7, 0x5a, 0xeb, 0x0f, 0x2f, |
| 0xd7, 0xb1, 0x69, 0xbb, 0x8d, 0xc1, 0x67, 0x87 }, |
| { 0xF7, 0xC0, 0x13, 0xAC, 0x5B, 0x2B, 0x89, 0x52 }, |
| { 0x2F, 0x42, 0xB3, 0xB7, 0x03, 0x69, 0xFC, 0x92 } |
| }, |
| { |
| { 0xDC, 0x49, 0xdb, 0x13, 0x75, 0xa5, 0x58, 0x4f, |
| 0x64, 0x85, 0xb4, 0x13, 0xb5, 0xf1, 0x2b, 0xaf }, |
| { 0x2F, 0x42, 0xB3, 0xB7, 0x03, 0x69, 0xFC, 0x92 }, |
| { 0x65, 0xc1, 0x78, 0xb2, 0x84, 0xd1, 0x97, 0xcc } |
| } |
| }; |
| unsigned char tmp[2][8]; |
| int x, y, err; |
| symmetric_key key; |
| |
| for (x = 0; x < (int)(sizeof(tests) / sizeof(tests[0])); x++) { |
| /* setup key */ |
| if ((err = rc5_setup(tests[x].key, 16, 12, &key)) != CRYPT_OK) { |
| return err; |
| } |
| |
| /* encrypt and decrypt */ |
| rc5_ecb_encrypt(tests[x].pt, tmp[0], &key); |
| rc5_ecb_decrypt(tmp[0], tmp[1], &key); |
| |
| /* compare */ |
| if (XMEMCMP(tmp[0], tests[x].ct, 8) != 0 || XMEMCMP(tmp[1], tests[x].pt, 8) != 0) { |
| return CRYPT_FAIL_TESTVECTOR; |
| } |
| |
| /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */ |
| for (y = 0; y < 8; y++) tmp[0][y] = 0; |
| for (y = 0; y < 1000; y++) rc5_ecb_encrypt(tmp[0], tmp[0], &key); |
| for (y = 0; y < 1000; y++) rc5_ecb_decrypt(tmp[0], tmp[0], &key); |
| for (y = 0; y < 8; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR; |
| } |
| return CRYPT_OK; |
| #endif |
| } |
| |
| /** Terminate the context |
| @param skey The scheduled key |
| */ |
| void rc5_done(symmetric_key *skey) |
| { |
| } |
| |
| /** |
| Gets suitable key size |
| @param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable. |
| @return CRYPT_OK if the input key size is acceptable. |
| */ |
| int rc5_keysize(int *keysize) |
| { |
| LTC_ARGCHK(keysize != NULL); |
| if (*keysize < 8) { |
| return CRYPT_INVALID_KEYSIZE; |
| } else if (*keysize > 128) { |
| *keysize = 128; |
| } |
| return CRYPT_OK; |
| } |
| |
| #endif |
| |
| |
| |
| |
| /* $Source: /cvs/libtom/libtomcrypt/src/ciphers/rc5.c,v $ */ |
| /* $Revision: 1.12 $ */ |
| /* $Date: 2006/11/08 23:01:06 $ */ |