blob: 7000b70de289710c8c39917aa498abd0db5e62c5 [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright 2006-2012 Red Hat, Inc.
* Copyright 2018-2020 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
*
* Author: Adam Jackson <[email protected]>
* Maintainer: Hans Verkuil <[email protected]>
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include "edid-decode.h"
static char *manufacturer_name(const unsigned char *x)
{
static char name[4];
name[0] = ((x[0] & 0x7c) >> 2) + '@';
name[1] = ((x[0] & 0x03) << 3) + ((x[1] & 0xe0) >> 5) + '@';
name[2] = (x[1] & 0x1f) + '@';
name[3] = 0;
if (!isupper(name[0]) || !isupper(name[1]) || !isupper(name[2]))
fail("Manufacturer name field contains garbage.\n");
return name;
}
static const struct {
unsigned dmt_id;
unsigned std_id;
unsigned cvt_id;
struct timings t;
} dmt_timings[] = {
{ 0x01, 0x0000, 0x000000, { 640, 350, 64, 35, 31500, 0, false,
32, 64, 96, true, 32, 3, 60, false } },
{ 0x02, 0x3119, 0x000000, { 640, 400, 16, 10, 31500, 0, false,
32, 64, 96, false, 1, 3, 41, true } },
{ 0x03, 0x0000, 0x000000, { 720, 400, 9, 5, 35500, 0, false,
36, 72, 108, false, 1, 3, 42, true } },
{ 0x04, 0x3140, 0x000000, { 640, 480, 4, 3, 25175, 0, false,
16, 96, 48, false, 10, 2, 33, false, 8, 8 } },
{ 0x05, 0x314c, 0x000000, { 640, 480, 4, 3, 31500, 0, false,
24, 40, 128, false, 9, 3, 28, false, 8, 8 } },
{ 0x06, 0x314f, 0x000000, { 640, 480, 4, 3, 31500, 0, false,
16, 64, 120, false, 1, 3, 16, false } },
{ 0x07, 0x3159, 0x000000, { 640, 480, 4, 3, 36000, 0, false,
56, 56, 80, false, 1, 3, 25, false } },
{ 0x08, 0x0000, 0x000000, { 800, 600, 4, 3, 36000, 0, false,
24, 72, 128, true, 1, 2, 22, true } },
{ 0x09, 0x4540, 0x000000, { 800, 600, 4, 3, 40000, 0, false,
40, 128, 88, true, 1, 4, 23, true } },
{ 0x0a, 0x454c, 0x000000, { 800, 600, 4, 3, 50000, 0, false,
56, 120, 64, true, 37, 6, 23, true } },
{ 0x0b, 0x454f, 0x000000, { 800, 600, 4, 3, 49500, 0, false,
16, 80, 160, true, 1, 3, 21, true } },
{ 0x0c, 0x4559, 0x000000, { 800, 600, 4, 3, 56250, 0, false,
32, 64, 152, true, 1, 3, 27, true } },
{ 0x0d, 0x0000, 0x000000, { 800, 600, 4, 3, 73250, 1, false,
48, 32, 80, true, 3, 4, 29, false } },
{ 0x0e, 0x0000, 0x000000, { 848, 480, 16, 9, 33750, 0, false,
16, 112, 112, true, 6, 8, 23, true } },
{ 0x0f, 0x0000, 0x000000, { 1024, 768, 4, 3, 44900, 0, true,
8, 176, 56, true, 0, 4, 20, true } },
{ 0x10, 0x6140, 0x000000, { 1024, 768, 4, 3, 65000, 0, false,
24, 136, 160, false, 3, 6, 29, false } },
{ 0x11, 0x614c, 0x000000, { 1024, 768, 4, 3, 75000, 0, false,
24, 136, 144, false, 3, 6, 29, false } },
{ 0x12, 0x614f, 0x000000, { 1024, 768, 4, 3, 78750, 0, false,
16, 96, 176, true, 1, 3, 28, true } },
{ 0x13, 0x6159, 0x000000, { 1024, 768, 4, 3, 94500, 0, false,
48, 96, 208, true, 1, 3, 36, true } },
{ 0x14, 0x0000, 0x000000, { 1024, 768, 4, 3, 115500, 1, false,
48, 32, 80, true, 3, 4, 38, false } },
{ 0x15, 0x714f, 0x000000, { 1152, 864, 4, 3, 108000, 0, false,
64, 128, 256, true, 1, 3, 32, true } },
{ 0x55, 0x81c0, 0x000000, { 1280, 720, 16, 9, 74250, 0, false,
110, 40, 220, true, 5, 5, 20, true } },
{ 0x16, 0x0000, 0x7f1c21, { 1280, 768, 5, 3, 68250, 1, false,
48, 32, 80, true, 3, 7, 12, false } },
{ 0x17, 0x0000, 0x7f1c28, { 1280, 768, 5, 3, 79500, 0, false,
64, 128, 192, false, 3, 7, 20, true } },
{ 0x18, 0x0000, 0x7f1c44, { 1280, 768, 5, 3, 102250, 0, false,
80, 128, 208, false, 3, 7, 27, true } },
{ 0x19, 0x0000, 0x7f1c62, { 1280, 768, 5, 3, 117500, 0, false,
80, 136, 216, false, 3, 7, 31, true } },
{ 0x1a, 0x0000, 0x000000, { 1280, 768, 5, 3, 140250, 0, false,
48, 32, 80, true, 3, 7, 35, false } },
{ 0x1b, 0x0000, 0x8f1821, { 1280, 800, 16, 10, 71000, 1, false,
48, 32, 80, true, 3, 6, 14, false } },
{ 0x1c, 0x8100, 0x8f1828, { 1280, 800, 16, 10, 83500, 0, false,
72, 128, 200, false, 3, 6, 22, true } },
{ 0x1d, 0x810f, 0x8f1844, { 1280, 800, 16, 10, 106500, 0, false,
80, 128, 208, false, 3, 6, 29, true } },
{ 0x1e, 0x8119, 0x8f1862, { 1280, 800, 16, 10, 122500, 0, false,
80, 136, 216, false, 3, 6, 34, true } },
{ 0x1f, 0x0000, 0x000000, { 1280, 800, 16, 10, 146250, 1, false,
48, 32, 80, true, 3, 6, 38, false } },
{ 0x20, 0x8140, 0x000000, { 1280, 960, 4, 3, 108000, 0, false,
96, 112, 312, true, 1, 3, 36, true } },
{ 0x21, 0x8159, 0x000000, { 1280, 960, 4, 3, 148500, 0, false,
64, 160, 224, true, 1, 3, 47, true } },
{ 0x22, 0x0000, 0x000000, { 1280, 960, 4, 3, 175500, 1, false,
48, 32, 80, true, 3, 4, 50, false } },
{ 0x23, 0x8180, 0x000000, { 1280, 1024, 5, 4, 108000, 0, false,
48, 112, 248, true, 1, 3, 38, true } },
{ 0x24, 0x818f, 0x000000, { 1280, 1024, 5, 4, 135000, 0, false,
16, 144, 248, true, 1, 3, 38, true } },
{ 0x25, 0x8199, 0x000000, { 1280, 1024, 5, 4, 157500, 0, false,
64, 160, 224, true, 1, 3, 44, true } },
{ 0x26, 0x0000, 0x000000, { 1280, 1024, 5, 4, 187250, 1, false,
48, 32, 80, true, 3, 7, 50, false } },
{ 0x27, 0x0000, 0x000000, { 1360, 768, 85, 48, 85500, 0, false,
64, 112, 256, true, 3, 6, 18, true } },
{ 0x28, 0x0000, 0x000000, { 1360, 768, 85, 48, 148250, 1, false,
48, 32, 80, true, 3, 5, 37, false } },
{ 0x51, 0x0000, 0x000000, { 1366, 768, 85, 48, 85500, 0, false,
70, 143, 213, true, 3, 3, 24, true } },
{ 0x56, 0x0000, 0x000000, { 1366, 768, 85, 48, 72000, 1, false,
14, 56, 64, true, 1, 3, 28, true } },
{ 0x29, 0x0000, 0x0c2021, { 1400, 1050, 4, 3, 101000, 1, false,
48, 32, 80, true, 3, 4, 23, false } },
{ 0x2a, 0x9040, 0x0c2028, { 1400, 1050, 4, 3, 121750, 0, false,
88, 144, 232, false, 3, 4, 32, true } },
{ 0x2b, 0x904f, 0x0c2044, { 1400, 1050, 4, 3, 156000, 0, false,
104, 144, 248, false, 3, 4, 42, true } },
{ 0x2c, 0x9059, 0x0c2062, { 1400, 1050, 4, 3, 179500, 0, false,
104, 152, 256, false, 3, 4, 48, true } },
{ 0x2d, 0x0000, 0x000000, { 1400, 1050, 4, 3, 208000, 1, false,
48, 32, 80, true, 3, 4, 55, false } },
{ 0x2e, 0x0000, 0xc11821, { 1440, 900, 16, 10, 88750, 1, false,
48, 32, 80, true, 3, 6, 17, false } },
{ 0x2f, 0x9500, 0xc11828, { 1440, 900, 16, 10, 106500, 0, false,
80, 152, 232, false, 3, 6, 25, true } },
{ 0x30, 0x950f, 0xc11844, { 1440, 900, 16, 10, 136750, 0, false,
96, 152, 248, false, 3, 6, 33, true } },
{ 0x31, 0x9519, 0xc11868, { 1440, 900, 16, 10, 157000, 0, false,
104, 152, 256, false, 3, 6, 39, true } },
{ 0x32, 0x0000, 0x000000, { 1440, 900, 16, 10, 182750, 1, false,
48, 32, 80, true, 3, 6, 44, false } },
{ 0x53, 0xa9c0, 0x000000, { 1600, 900, 16, 9, 108000, 1, false,
24, 80, 96, true, 1, 3, 96, true } },
{ 0x33, 0xa940, 0x000000, { 1600, 1200, 4, 3, 162000, 0, false,
64, 192, 304, true, 1, 3, 46, true } },
{ 0x34, 0xa945, 0x000000, { 1600, 1200, 4, 3, 175500, 0, false,
64, 192, 304, true, 1, 3, 46, true } },
{ 0x35, 0xa94a, 0x000000, { 1600, 1200, 4, 3, 189000, 0, false,
64, 192, 304, true, 1, 3, 46, true } },
{ 0x36, 0xa94f, 0x000000, { 1600, 1200, 4, 3, 202500, 0, false,
64, 192, 304, true, 1, 3, 46, true } },
{ 0x37, 0xa959, 0x000000, { 1600, 1200, 4, 3, 229500, 0, false,
64, 192, 304, true, 1, 3, 46, true } },
{ 0x38, 0x0000, 0x000000, { 1600, 1200, 4, 3, 268250, 1, false,
48, 32, 80, true, 3, 4, 64, false } },
{ 0x39, 0x0000, 0x0c2821, { 1680, 1050, 16, 10, 119000, 1, false,
48, 32, 80, true, 3, 6, 21, false } },
{ 0x3a, 0xb300, 0x0c2828, { 1680, 1050, 16, 10, 146250, 0, false,
104, 176, 280, false, 3, 6, 30, true } },
{ 0x3b, 0xb30f, 0x0c2844, { 1680, 1050, 16, 10, 187000, 0, false,
120, 176, 296, false, 3, 6, 40, true } },
{ 0x3c, 0xb319, 0x0c2868, { 1680, 1050, 16, 10, 214750, 0, false,
128, 176, 304, false, 3, 6, 46, true } },
{ 0x3d, 0x0000, 0x000000, { 1680, 1050, 16, 10, 245500, 1, false,
48, 32, 80, true, 3, 6, 53, false } },
{ 0x3e, 0xc140, 0x000000, { 1792, 1344, 4, 3, 204750, 0, false,
128, 200, 328, false, 1, 3, 46, true } },
{ 0x3f, 0xc14f, 0x000000, { 1792, 1344, 4, 3, 261000, 0, false,
96, 216, 352, false, 1, 3, 69, true } },
{ 0x40, 0x0000, 0x000000, { 1792, 1344, 4, 3, 333250, 1, false,
48, 32, 80, true, 3, 4, 72, false } },
{ 0x41, 0xc940, 0x000000, { 1856, 1392, 4, 3, 218250, 0, false,
96, 224, 352, false, 1, 3, 43, true } },
{ 0x42, 0xc94f, 0x000000, { 1856, 1392, 4, 3, 288000, 0, false,
128, 224, 352, false, 1, 3, 104, true } },
{ 0x43, 0x0000, 0x000000, { 1856, 1392, 4, 3, 356500, 1, false,
48, 32, 80, true, 3, 4, 74, false } },
{ 0x52, 0xd1c0, 0x000000, { 1920, 1080, 16, 9, 148500, 0, false,
88, 44, 148, true, 4, 5, 36, true } },
{ 0x44, 0x0000, 0x572821, { 1920, 1200, 16, 10, 154000, 1, false,
48, 32, 80, true, 3, 6, 26, false } },
{ 0x45, 0xd100, 0x572828, { 1920, 1200, 16, 10, 193250, 0, false,
136, 200, 336, false, 3, 6, 36, true } },
{ 0x46, 0xd10f, 0x572844, { 1920, 1200, 16, 10, 245250, 0, false,
136, 208, 344, false, 3, 6, 46, true } },
{ 0x47, 0xd119, 0x572862, { 1920, 1200, 16, 10, 281250, 0, false,
144, 208, 352, false, 3, 6, 53, true } },
{ 0x48, 0x0000, 0x000000, { 1920, 1200, 16, 10, 317000, 1, false,
48, 32, 80, true, 3, 6, 62, false } },
{ 0x49, 0xd140, 0x000000, { 1920, 1440, 4, 3, 234000, 0, false,
128, 208, 344, false, 1, 3, 56, true } },
{ 0x4a, 0xd14f, 0x000000, { 1920, 1440, 4, 3, 297000, 0, false,
144, 224, 352, false, 1, 3, 56, true } },
{ 0x4b, 0x0000, 0x000000, { 1920, 1440, 4, 3, 380500, 1, false,
48, 32, 80, true, 2, 3, 78, false } },
{ 0x54, 0xe1c0, 0x000000, { 2048, 1152, 16, 9, 162000, 1, false,
26, 80, 96, true, 1, 3, 44, true } },
{ 0x4c, 0x0000, 0x1f3821, { 2560, 1600, 16, 10, 268500, 1, false,
48, 32, 80, true, 3, 6, 37, false } },
{ 0x4d, 0x0000, 0x1f3828, { 2560, 1600, 16, 10, 348500, 0, false,
192, 280, 472, false, 3, 6, 49, true } },
{ 0x4e, 0x0000, 0x1f3844, { 2560, 1600, 16, 10, 443250, 0, false,
208, 280, 488, false, 3, 6, 63, true } },
{ 0x4f, 0x0000, 0x1f3862, { 2560, 1600, 16, 10, 505250, 0, false,
208, 280, 488, false, 3, 6, 73, true } },
{ 0x50, 0x0000, 0x000000, { 2560, 1600, 16, 10, 552750, 1, false,
48, 32, 80, true, 3, 6, 85, false } },
{ 0x57, 0x0000, 0x000000, { 4096, 2160, 256, 135, 556744, 1, false,
8, 32, 40, true, 48, 8, 6, false } },
{ 0x58, 0x0000, 0x000000, { 4096, 2160, 256, 135, 556188, 1, false,
8, 32, 40, true, 48, 8, 6, false } },
};
// The timings for the IBM/Apple modes are copied from the linux
// kernel timings in drivers/gpu/drm/drm_edid.c, except for the
// 1152x870 Apple format, which is copied from
// drivers/video/fbdev/macmodes.c since the drm_edid.c version
// describes a 1152x864 format.
static const struct {
unsigned dmt_id;
struct timings t;
const char *std_name;
} established_timings12[] = {
/* 0x23 bit 7 - 0 */
{ 0x00, { 720, 400, 9, 5, 28320, 0, false,
18, 108, 54, false, 21, 2, 26, true }, "IBM" },
{ 0x00, { 720, 400, 9, 5, 35500, 0, false,
18, 108, 54, false, 12, 2, 35, true }, "IBM" },
{ 0x04 },
{ 0x00, { 640, 480, 4, 3, 30240, 0, false,
64, 64, 96, false, 3, 3, 39, false }, "Mac" },
{ 0x05 },
{ 0x06 },
{ 0x08 },
{ 0x09 },
/* 0x24 bit 7 - 0 */
{ 0x0a },
{ 0x0b },
{ 0x00, { 832, 624, 4, 3, 57284, 0, false,
32, 64, 224, false, 1, 3, 39, false }, "Mac" },
{ 0x0f },
{ 0x10 },
{ 0x11 },
{ 0x12 },
{ 0x24 },
/* 0x25 bit 7 */
{ 0x00, { 1152, 870, 192, 145, 100000, 0, false,
48, 128, 128, true, 3, 3, 39, true }, "Mac" },
};
// The bits in the Established Timings III map to DMT timings,
// this array has the DMT IDs.
static const unsigned char established_timings3_dmt_ids[] = {
/* 0x06 bit 7 - 0 */
0x01, // 640x350@85
0x02, // 640x400@85
0x03, // 720x400@85
0x07, // 640x480@85
0x0e, // 848x480@60
0x0c, // 800x600@85
0x13, // 1024x768@85
0x15, // 1152x864@75
/* 0x07 bit 7 - 0 */
0x16, // 1280x768@60 RB
0x17, // 1280x768@60
0x18, // 1280x768@75
0x19, // 1280x768@85
0x20, // 1280x960@60
0x21, // 1280x960@85
0x23, // 1280x1024@60
0x25, // 1280x1024@85
/* 0x08 bit 7 - 0 */
0x27, // 1360x768@60
0x2e, // 1440x900@60 RB
0x2f, // 1440x900@60
0x30, // 1440x900@75
0x31, // 1440x900@85
0x29, // 1400x1050@60 RB
0x2a, // 1400x1050@60
0x2b, // 1400x1050@75
/* 0x09 bit 7 - 0 */
0x2c, // 1400x1050@85
0x39, // 1680x1050@60 RB
0x3a, // 1680x1050@60
0x3b, // 1680x1050@75
0x3c, // 1680x1050@85
0x33, // 1600x1200@60
0x34, // 1600x1200@65
0x35, // 1600x1200@70
/* 0x0a bit 7 - 0 */
0x36, // 1600x1200@75
0x37, // 1600x1200@85
0x3e, // 1792x1344@60
0x3f, // 1792x1344@75
0x41, // 1856x1392@60
0x42, // 1856x1392@75
0x44, // 1920x1200@60 RB
0x45, // 1920x1200@60
/* 0x0b bit 7 - 4 */
0x46, // 1920x1200@75
0x47, // 1920x1200@85
0x49, // 1920x1440@60
0x4a, // 1920x1440@75
};
const struct timings *find_dmt_id(unsigned char dmt_id)
{
unsigned i;
for (i = 0; i < ARRAY_SIZE(dmt_timings); i++)
if (dmt_timings[i].dmt_id == dmt_id)
return &dmt_timings[i].t;
return NULL;
}
static const struct timings *find_std_id(unsigned short std_id)
{
unsigned i;
for (i = 0; i < ARRAY_SIZE(dmt_timings); i++)
if (dmt_timings[i].std_id == std_id)
return &dmt_timings[i].t;
return NULL;
}
/*
* Copied from xserver/hw/xfree86/modes/xf86gtf.c
*/
void edid_state::edid_gtf_mode(unsigned refresh, struct timings &t)
{
#define CELL_GRAN 8.0 /* assumed character cell granularity */
#define MIN_PORCH 1 /* minimum front porch */
#define V_SYNC_RQD 3 /* width of vsync in lines */
#define H_SYNC_PERCENT 8.0 /* width of hsync as % of total line */
#define MIN_VSYNC_PLUS_BP 550.0 /* min time of vsync + back porch (microsec) */
#define M 600.0 /* blanking formula gradient */
#define C 40.0 /* blanking formula offset */
#define K 128.0 /* blanking formula scaling factor */
#define J 20.0 /* blanking formula scaling factor */
/* C' and M' are part of the Blanking Duty Cycle computation */
#define C_PRIME (((C - J) * K/256.0) + J)
#define M_PRIME (K/256.0 * M)
double h_pixels_rnd;
double v_lines_rnd;
double v_field_rate_rqd;
double h_period_est;
double vsync_plus_bp;
double total_v_lines;
double v_field_rate_est;
double h_period;
double total_active_pixels;
double ideal_duty_cycle;
double h_blank;
double total_pixels;
/* 1. In order to give correct results, the number of horizontal
* pixels requested is first processed to ensure that it is divisible
* by the character size, by rounding it to the nearest character
* cell boundary:
*
* [H PIXELS RND] = ((ROUND([H PIXELS]/[CELL GRAN RND],0))*[CELLGRAN RND])
*/
h_pixels_rnd = rint((double)t.hact / CELL_GRAN) * CELL_GRAN;
/* 2. If interlace is requested, the number of vertical lines assumed
* by the calculation must be halved, as the computation calculates
* the number of vertical lines per field. In either case, the
* number of lines is rounded to the nearest integer.
*
* [V LINES RND] = IF([INT RQD?]="y", ROUND([V LINES]/2,0),
* ROUND([V LINES],0))
*/
v_lines_rnd = t.vact;
/* 3. Find the frame rate required:
*
* [V FIELD RATE RQD] = IF([INT RQD?]="y", [I/P FREQ RQD]*2,
* [I/P FREQ RQD])
*/
v_field_rate_rqd = refresh;
/* 7. Estimate the Horizontal period
*
* [H PERIOD EST] = ((1/[V FIELD RATE RQD]) - [MIN VSYNC+BP]/1000000) /
* ([V LINES RND] +
* [MIN PORCH RND]+[INTERLACE]) * 1000000
*/
h_period_est = (((1.0/v_field_rate_rqd) - (MIN_VSYNC_PLUS_BP/1000000.0))
/ (v_lines_rnd + MIN_PORCH)
* 1000000.0);
/* 8. Find the number of lines in V sync + back porch:
*
* [V SYNC+BP] = ROUND(([MIN VSYNC+BP]/[H PERIOD EST]),0)
*/
vsync_plus_bp = rint(MIN_VSYNC_PLUS_BP/h_period_est);
/* 10. Find the total number of lines in Vertical field period:
*
* [TOTAL V LINES] = [V LINES RND] +
* [V SYNC+BP] + [INTERLACE] +
* [MIN PORCH RND]
*/
total_v_lines = v_lines_rnd + vsync_plus_bp + MIN_PORCH;
t.vbp = vsync_plus_bp - V_SYNC_RQD;
t.vsync = V_SYNC_RQD;
t.vfp = MIN_PORCH;
/* 11. Estimate the Vertical field frequency:
*
* [V FIELD RATE EST] = 1 / [H PERIOD EST] / [TOTAL V LINES] * 1000000
*/
v_field_rate_est = 1.0 / h_period_est / total_v_lines * 1000000.0;
/* 12. Find the actual horizontal period:
*
* [H PERIOD] = [H PERIOD EST] / ([V FIELD RATE RQD] / [V FIELD RATE EST])
*/
h_period = h_period_est / (v_field_rate_rqd / v_field_rate_est);
/* 17. Find total number of active pixels in image
*
* [TOTAL ACTIVE PIXELS] = [H PIXELS RND]
*/
total_active_pixels = h_pixels_rnd;
/* 18. Find the ideal blanking duty cycle from the blanking duty cycle
* equation:
*
* [IDEAL DUTY CYCLE] = [C'] - ([M']*[H PERIOD]/1000)
*/
ideal_duty_cycle = C_PRIME - (M_PRIME * h_period / 1000.0);
/* 19. Find the number of pixels in the blanking time to the nearest
* double character cell:
*
* [H BLANK (PIXELS)] = (ROUND(([TOTAL ACTIVE PIXELS] *
* [IDEAL DUTY CYCLE] /
* (100-[IDEAL DUTY CYCLE]) /
* (2*[CELL GRAN RND])), 0))
* * (2*[CELL GRAN RND])
*/
h_blank = rint(total_active_pixels *
ideal_duty_cycle /
(100.0 - ideal_duty_cycle) /
(2.0 * CELL_GRAN)) * (2.0 * CELL_GRAN);
/* 20. Find total number of pixels:
*
* [TOTAL PIXELS] = [TOTAL ACTIVE PIXELS] + [H BLANK (PIXELS)]
*/
total_pixels = total_active_pixels + h_blank;
/* 21. Find pixel clock frequency:
*
* [PIXEL FREQ] = [TOTAL PIXELS] / [H PERIOD]
*/
t.pixclk_khz = (int)(1000.0 * total_pixels / h_period + 0.5);
/* Stage 1 computations are now complete; I should really pass
the results to another function and do the Stage 2
computations, but I only need a few more values so I'll just
append the computations here for now */
/* 17. Find the number of pixels in the horizontal sync period:
*
* [H SYNC (PIXELS)] =(ROUND(([H SYNC%] / 100 * [TOTAL PIXELS] /
* [CELL GRAN RND]),0))*[CELL GRAN RND]
*/
t.hsync = rint(H_SYNC_PERCENT / 100.0 * total_pixels / CELL_GRAN) * CELL_GRAN;
/* 18. Find the number of pixels in the horizontal front porch period:
*
* [H FRONT PORCH (PIXELS)] = ([H BLANK (PIXELS)]/2)-[H SYNC (PIXELS)]
*/
t.hfp = (h_blank / 2.0) - t.hsync;
/* 19. Find the number of pixels in the horizontal back porch period:
*
* [H BACK PORCH (PIXELS)] = [H FRONT PORCH (PIXELS)]+[H SYNC (PIXELS)]
*/
t.hbp = t.hfp + t.hsync;
t.pos_pol_hsync = false;
t.pos_pol_vsync = true;
t.interlaced = false;
t.rb = false;
}
/*
* Copied from xserver/hw/xfree86/modes/xf86cvt.c
*
* TODO: add support for reduced blanking v2 and interlacing
*/
void edid_state::edid_cvt_mode(unsigned refresh, struct timings &t)
{
int HDisplay = t.hact;
int VDisplay = t.vact;
/* 2) character cell horizontal granularity (pixels) - default 8 */
#define CVT_H_GRANULARITY 8
/* 4) Minimum vertical porch (lines) - default 3 */
#define CVT_MIN_V_PORCH 3
/* 4) Minimum number of vertical back porch lines - default 6 */
#define CVT_MIN_V_BPORCH 6
/* Pixel Clock step (kHz) */
#define CVT_CLOCK_STEP 250
double HPeriod;
int VDisplayRnd, VSync;
double VFieldRate = refresh;
int HTotal, VTotal, Clock, HSyncStart, HSyncEnd, VSyncStart, VSyncEnd;
/* 2. Horizontal pixels */
HDisplay = HDisplay - (HDisplay % CVT_H_GRANULARITY);
/* 5. Find number of lines per field */
VDisplayRnd = VDisplay;
/* Determine VSync Width from aspect ratio */
if ((VDisplay * 4 / 3) == HDisplay)
VSync = 4;
else if ((VDisplay * 16 / 9) == HDisplay)
VSync = 5;
else if ((VDisplay * 16 / 10) == HDisplay)
VSync = 6;
else if (!(VDisplay % 4) && ((VDisplay * 5 / 4) == HDisplay))
VSync = 7;
else if ((VDisplay * 15 / 9) == HDisplay)
VSync = 7;
else /* Custom */
VSync = 10;
t.vsync = VSync;
if (!t.rb) { /* simplified GTF calculation */
/* 4) Minimum time of vertical sync + back porch interval (µs)
* default 550.0 */
#define CVT_MIN_VSYNC_BP 550.0
/* 3) Nominal HSync width (% of line period) - default 8 */
#define CVT_HSYNC_PERCENTAGE 8
double HBlankPercentage;
int VSyncAndBackPorch;
int HBlank;
/* 8. Estimated Horizontal period */
HPeriod = ((double) (1000000.0 / VFieldRate - CVT_MIN_VSYNC_BP)) /
(VDisplayRnd + CVT_MIN_V_PORCH);
/* 9. Find number of lines in sync + backporch */
if (((int) (CVT_MIN_VSYNC_BP / HPeriod) + 1) <
(VSync + CVT_MIN_V_BPORCH))
VSyncAndBackPorch = VSync + CVT_MIN_V_BPORCH;
else
VSyncAndBackPorch = (int) (CVT_MIN_VSYNC_BP / HPeriod) + 1;
VTotal = VDisplayRnd + VSyncAndBackPorch + CVT_MIN_V_PORCH;
/* 5) Definition of Horizontal blanking time limitation */
/* Gradient (%/kHz) - default 600 */
#define CVT_M_FACTOR 600.0
/* Offset (%) - default 40 */
#define CVT_C_FACTOR 40.0
/* Blanking time scaling factor - default 128 */
#define CVT_K_FACTOR 128.0
/* Scaling factor weighting - default 20 */
#define CVT_J_FACTOR 20.0
#define CVT_M_PRIME (CVT_M_FACTOR * CVT_K_FACTOR / 256.0)
#define CVT_C_PRIME ((CVT_C_FACTOR - CVT_J_FACTOR) * CVT_K_FACTOR / 256.0 + \
CVT_J_FACTOR)
/* 12. Find ideal blanking duty cycle from formula */
HBlankPercentage = CVT_C_PRIME - CVT_M_PRIME * HPeriod / 1000.0;
/* 13. Blanking time */
if (HBlankPercentage < 20)
HBlankPercentage = 20;
HBlank = (double)HDisplay * HBlankPercentage / (100.0 - HBlankPercentage) / (2.0 * CVT_H_GRANULARITY);
HBlank *= 2 * CVT_H_GRANULARITY;
/* 14. Find total number of pixels in a line. */
HTotal = HDisplay + HBlank;
int HSync = (HTotal * CVT_HSYNC_PERCENTAGE) / 100.0 + 0.0;
//printf("%d %d %d\n", HTotal, HBlank, HSync);
HSync -= HSync % CVT_H_GRANULARITY;
/* Fill in HSync values */
HSyncEnd = HTotal - HBlank / 2;
HSyncStart = HSyncEnd - HSync;
VSyncStart = VDisplayRnd + CVT_MIN_V_PORCH;
VSyncEnd = VSyncStart + VSync;
/* 15/13. Find pixel clock frequency (kHz for xf86) */
Clock = ((double)HTotal / HPeriod) * 1000.0;
Clock -= Clock % CVT_CLOCK_STEP;
}
else { /* Reduced blanking */
/* Minimum vertical blanking interval time (µs) - default 460 */
#define CVT_RB_MIN_VBLANK 460.0
/* Fixed number of clocks for horizontal sync */
#define CVT_RB_H_SYNC 32.0
/* Fixed number of clocks for horizontal blanking */
#define CVT_RB_H_BLANK 160.0
/* Fixed number of lines for vertical front porch - default 3 */
#define CVT_RB_VFPORCH 3
int VBILines;
/* 8. Estimate Horizontal period. */
HPeriod = ((double) (1000000.0 / VFieldRate - CVT_RB_MIN_VBLANK)) / VDisplayRnd;
/* 9. Find number of lines in vertical blanking */
VBILines = ((double) CVT_RB_MIN_VBLANK) / HPeriod;
VBILines++;
/* 10. Check if vertical blanking is sufficient */
if (VBILines < (CVT_RB_VFPORCH + VSync + CVT_MIN_V_BPORCH))
VBILines = CVT_RB_VFPORCH + VSync + CVT_MIN_V_BPORCH;
/* 11. Find total number of lines in vertical field */
VTotal = VDisplayRnd + VBILines;
/* 12. Find total number of pixels in a line */
HTotal = HDisplay + CVT_RB_H_BLANK;
/* Fill in HSync values */
HSyncEnd = HDisplay + CVT_RB_H_BLANK / 2;
HSyncStart = HSyncEnd - CVT_RB_H_SYNC;
/* Fill in VSync values */
VSyncStart = VDisplay + CVT_RB_VFPORCH;
VSyncEnd = VSyncStart + VSync;
/* 15/13. Find pixel clock frequency (kHz for xf86) */
Clock = ((double)VFieldRate * VTotal * HTotal) / 1000.0;
Clock -= Clock % CVT_CLOCK_STEP;
}
t.pixclk_khz = Clock;
t.pos_pol_hsync = t.rb;
t.pos_pol_vsync = !t.rb;
t.vfp = VSyncStart - VDisplay;
t.vsync = VSyncEnd - VSyncStart;
t.vbp = VTotal - VSyncEnd;
t.hfp = HSyncStart - HDisplay;
t.hsync = HSyncEnd - HSyncStart;
t.hbp = HTotal - HSyncEnd;
t.interlaced = false;
}
void edid_state::detailed_cvt_descriptor(const char *prefix, const unsigned char *x, bool first)
{
static const unsigned char empty[3] = { 0, 0, 0 };
struct timings cvt_t = {};
unsigned char preferred;
if (!first && !memcmp(x, empty, 3))
return;
uses_cvt = true;
cvt_t.vact = x[0];
if (!cvt_t.vact)
fail("CVT byte 0 is 0, which is a reserved value.\n");
cvt_t.vact |= (x[1] & 0xf0) << 4;
cvt_t.vact++;
cvt_t.vact *= 2;
switch (x[1] & 0x0c) {
case 0x00:
default: /* avoids 'width/ratio may be used uninitialized' warnings */
cvt_t.hratio = 4;
cvt_t.vratio = 3;
break;
case 0x04:
cvt_t.hratio = 16;
cvt_t.vratio = 9;
break;
case 0x08:
cvt_t.hratio = 16;
cvt_t.vratio = 10;
break;
case 0x0c:
cvt_t.hratio = 15;
cvt_t.vratio = 9;
break;
}
cvt_t.hact = 8 * (((cvt_t.vact * cvt_t.hratio) / cvt_t.vratio) / 8);
if (x[1] & 0x03)
fail("Reserved bits of CVT byte 1 are non-zero.\n");
if (x[2] & 0x80)
fail("Reserved bit of CVT byte 2 is non-zero.\n");
if (!(x[2] & 0x1f))
fail("CVT byte 2 does not support any vertical rates.\n");
preferred = (x[2] & 0x60) >> 5;
if (preferred == 1 && (x[2] & 0x01))
preferred = 4;
if (!(x[2] & (1 << (4 - preferred))))
fail("The preferred CVT Vertical Rate is not supported.\n");
static const char *s_pref = "preferred vertical rate";
if (x[2] & 0x10) {
edid_cvt_mode(50, cvt_t);
print_timings(prefix, &cvt_t, "CVT", preferred == 0 ? s_pref : "");
}
if (x[2] & 0x08) {
edid_cvt_mode(60, cvt_t);
print_timings(prefix, &cvt_t, "CVT", preferred == 1 ? s_pref : "");
}
if (x[2] & 0x04) {
edid_cvt_mode(75, cvt_t);
print_timings(prefix, &cvt_t, "CVT", preferred == 2 ? s_pref : "");
}
if (x[2] & 0x02) {
edid_cvt_mode(85, cvt_t);
print_timings(prefix, &cvt_t, "CVT", preferred == 3 ? s_pref : "");
}
if (x[2] & 0x01) {
cvt_t.rb = true;
edid_cvt_mode(60, cvt_t);
print_timings(prefix, &cvt_t, "CVT", preferred == 4 ? s_pref : "");
}
}
/* extract a string from a detailed subblock, checking for termination */
char *extract_string(const unsigned char *x, unsigned len)
{
static char s[EDID_PAGE_SIZE];
int seen_newline = 0;
unsigned i;
memset(s, 0, sizeof(s));
for (i = 0; i < len; i++) {
if (isgraph(x[i])) {
s[i] = x[i];
} else if (!seen_newline) {
if (x[i] == 0x0a) {
seen_newline = 1;
if (!i)
fail("Empty string.\n");
else if (s[i - 1] == 0x20)
fail("One or more trailing spaces.\n");
} else if (x[i] == 0x20) {
s[i] = x[i];
} else {
fail("Non-printable character.\n");
return s;
}
} else if (x[i] != 0x20) {
fail("Non-space after newline.\n");
return s;
}
}
/* Does the string end with a space? */
if (!seen_newline && s[len - 1] == 0x20)
fail("One or more trailing spaces.\n");
return s;
}
void edid_state::print_standard_timing(const char *prefix, unsigned char b1, unsigned char b2,
bool gtf_only, unsigned vrefresh_offset)
{
const struct timings *t;
struct timings formula = {};
unsigned hratio, vratio;
unsigned hact, vact, refresh;
if (b1 <= 0x01) {
if (b1 != 0x01 || b2 != 0x01)
fail("Use 0x0101 as the invalid Standard Timings code, not 0x%02x%02x.\n", b1, b2);
return;
}
if (b1 == 0) {
fail("Non-conformant standard timing (0 horiz).\n");
return;
}
t = find_std_id((b1 << 8) | b2);
if (t) {
print_timings(prefix, t, "DMT");
return;
}
hact = (b1 + 31) * 8;
switch ((b2 >> 6) & 0x3) {
case 0x00:
if (gtf_only || edid_minor >= 3) {
hratio = 16;
vratio = 10;
} else {
hratio = 1;
vratio = 1;
}
break;
case 0x01:
hratio = 4;
vratio = 3;
break;
case 0x02:
hratio = 5;
vratio = 4;
break;
case 0x03:
hratio = 16;
vratio = 9;
break;
}
vact = (double)hact * vratio / hratio;
vact = 8 * ((vact + 7) / 8);
refresh = vrefresh_offset + (b2 & 0x3f);
formula.hact = hact;
formula.vact = vact;
formula.hratio = hratio;
formula.vratio = vratio;
if (!gtf_only && edid_minor >= 4) {
uses_cvt = true;
edid_cvt_mode(refresh, formula);
print_timings(prefix, &formula, "CVT", "EDID 1.4 source");
/*
* A EDID 1.3 source will assume GTF, so both GTF and CVT
* have to be supported.
*/
uses_gtf = true;
edid_gtf_mode(refresh, formula);
print_timings(prefix, &formula, "GTF", "EDID 1.3 source");
} else if (gtf_only || edid_minor >= 2) {
uses_gtf = true;
edid_gtf_mode(refresh, formula);
print_timings(prefix, &formula, "GTF");
} else {
printf("%s%5ux%-5u %3u.000 Hz %3u:%u\n",
prefix, hact, vact, refresh, hratio, vratio);
min_vert_freq_hz = min(min_vert_freq_hz, refresh);
max_vert_freq_hz = max(max_vert_freq_hz, refresh);
}
}
void edid_state::detailed_display_range_limits(const unsigned char *x)
{
int h_max_offset = 0, h_min_offset = 0;
int v_max_offset = 0, v_min_offset = 0;
int is_cvt = 0;
bool has_sec_gtf = false;
std::string range_class;
data_block = "Display Range Limits";
printf("%s\n", data_block.c_str());
has_display_range_descriptor = 1;
/*
* XXX todo: implement feature flags, vtd blocks
* XXX check: ranges are well-formed; block termination if no vtd
*/
if (edid_minor >= 4) {
if (x[4] & 0x02) {
v_max_offset = 255;
if (x[4] & 0x01) {
v_min_offset = 255;
}
}
if (x[4] & 0x08) {
h_max_offset = 255;
if (x[4] & 0x04) {
h_min_offset = 255;
}
}
}
/*
* despite the values, this is not a bitfield.
*/
switch (x[10]) {
case 0x00: /* default gtf */
range_class = "GTF";
if (edid_minor >= 4 && !supports_continuous_freq)
fail("GTF can't be combined with non-continuous frequencies.\n");
supports_gtf = true;
break;
case 0x01: /* range limits only */
range_class = "Bare Limits";
if (edid_minor < 4)
fail("'%s' is not allowed for EDID < 1.4.\n", range_class.c_str());
break;
case 0x02: /* secondary gtf curve */
range_class = "Secondary GTF";
if (edid_minor >= 4 && !supports_continuous_freq)
fail("GTF can't be combined with non-continuous frequencies.\n");
supports_gtf = true;
has_sec_gtf = true;
break;
case 0x04: /* cvt */
range_class = "CVT";
is_cvt = 1;
if (edid_minor < 4)
fail("'%s' is not allowed for EDID < 1.4.\n", range_class.c_str());
else if (!supports_continuous_freq)
fail("CVT can't be combined with non-continuous frequencies.\n");
if (edid_minor >= 4) {
/* GTF is implied if CVT is signaled */
supports_gtf = true;
supports_cvt = true;
}
break;
default: /* invalid */
fail("Unknown range class (0x%02x).\n", x[10]);
range_class = std::string("Unknown (") + utohex(x[10]) + ")";
break;
}
if (x[5] + v_min_offset > x[6] + v_max_offset)
fail("Min vertical rate > max vertical rate.\n");
min_display_vert_freq_hz = x[5] + v_min_offset;
max_display_vert_freq_hz = x[6] + v_max_offset;
if (x[7] + h_min_offset > x[8] + h_max_offset)
fail("Min horizontal freq > max horizontal freq.\n");
min_display_hor_freq_hz = (x[7] + h_min_offset) * 1000;
max_display_hor_freq_hz = (x[8] + h_max_offset) * 1000;
printf(" Monitor ranges (%s): %d-%d Hz V, %d-%d kHz H",
range_class.c_str(),
x[5] + v_min_offset, x[6] + v_max_offset,
x[7] + h_min_offset, x[8] + h_max_offset);
if (x[9]) {
max_display_pixclk_khz = x[9] * 10000;
printf(", max dotclock %d MHz\n", x[9] * 10);
} else {
if (edid_minor >= 4)
fail("EDID 1.4 block does not set max dotclock.\n");
printf("\n");
}
if (has_sec_gtf) {
if (x[11])
fail("Byte 11 is 0x%02x instead of 0x00.\n", x[11]);
printf(" GTF Secondary Curve Block\n");
printf(" Start frequency: %u kHz\n", x[12] * 2);
printf(" C: %f\n", x[13] / 2.0);
if (x[13] > 127)
fail("Byte 13 is > 127.\n");
printf(" M: %u\n", (x[15] << 8) | x[14]);
printf(" K: %u\n", x[16]);
printf(" J: %f\n", x[17] / 2.0);
if (x[17] > 127)
fail("Byte 17 is > 127.\n");
} else if (is_cvt) {
int max_h_pixels = 0;
printf(" CVT version %d.%d\n", (x[11] & 0xf0) >> 4, x[11] & 0x0f);
if (x[12] & 0xfc) {
unsigned raw_offset = (x[12] & 0xfc) >> 2;
printf(" Real max dotclock: %.2f MHz\n",
(x[9] * 10) - (raw_offset * 0.25));
if (raw_offset >= 40)
warn("CVT block corrects dotclock by more than 9.75 MHz.\n");
}
max_h_pixels = x[12] & 0x03;
max_h_pixels <<= 8;
max_h_pixels |= x[13];
max_h_pixels *= 8;
if (max_h_pixels)
printf(" Max active pixels per line: %d\n", max_h_pixels);
printf(" Supported aspect ratios:%s%s%s%s%s\n",
x[14] & 0x80 ? " 4:3" : "",
x[14] & 0x40 ? " 16:9" : "",
x[14] & 0x20 ? " 16:10" : "",
x[14] & 0x10 ? " 5:4" : "",
x[14] & 0x08 ? " 15:9" : "");
if (x[14] & 0x07)
fail("Reserved bits of byte 14 are non-zero.\n");
printf(" Preferred aspect ratio: ");
switch ((x[15] & 0xe0) >> 5) {
case 0x00:
printf("4:3");
break;
case 0x01:
printf("16:9");
break;
case 0x02:
printf("16:10");
break;
case 0x03:
printf("5:4");
break;
case 0x04:
printf("15:9");
break;
default:
printf("Unknown (0x%02x)", (x[15] & 0xe0) >> 5);
fail("Invalid preferred aspect ratio 0x%02x.\n",
(x[15] & 0xe0) >> 5);
break;
}
printf("\n");
if (x[15] & 0x08)
printf(" Supports CVT standard blanking\n");
if (x[15] & 0x10)
printf(" Supports CVT reduced blanking\n");
if (x[15] & 0x07)
fail("Reserved bits of byte 15 are non-zero.\n");
if (x[16] & 0xf0) {
printf(" Supported display scaling:\n");
if (x[16] & 0x80)
printf(" Horizontal shrink\n");
if (x[16] & 0x40)
printf(" Horizontal stretch\n");
if (x[16] & 0x20)
printf(" Vertical shrink\n");
if (x[16] & 0x10)
printf(" Vertical stretch\n");
}
if (x[16] & 0x0f)
fail("Reserved bits of byte 16 are non-zero.\n");
if (x[17])
printf(" Preferred vertical refresh: %d Hz\n", x[17]);
else
warn("CVT block does not set preferred refresh rate.\n");
} else {
if (x[11] != 0x0a)
fail("Byte 11 is 0x%02x instead of 0x0a.\n", x[11]);
for (unsigned i = 12; i <= 17; i++) {
if (x[i] != 0x20) {
fail("Byte %u is 0x%02x instead of 0x20.\n", i, x[i]);
break;
}
}
}
}
void edid_state::detailed_epi(const unsigned char *x)
{
data_block = "EPI Descriptor";
printf("%s\n", data_block.c_str());
unsigned v = x[5] & 0x07;
printf(" Bits per pixel: %u\n", 18 + v * 6);
if (v > 2)
fail("Invalid bits per pixel.\n");
v = (x[5] & 0x18) >> 3;
printf(" Pixels per clock: %u\n", 1 << v);
if (v > 2)
fail("Invalid pixels per clock.\n");
v = (x[5] & 0x60) >> 5;
printf(" Data color mapping: %sconventional\n", v ? "non-" : "");
if (v > 1)
fail("Unknown data color mapping (0x%02x).\n", v);
if (x[5] & 0x80)
fail("Non-zero reserved field in byte 5.\n");
v = x[6] & 0x0f;
printf(" Interface type: ");
switch (v) {
case 0x00: printf("LVDS TFT\n"); break;
case 0x01: printf("monoSTN 4/8 Bit\n"); break;
case 0x02: printf("colorSTN 8/16 Bit\n"); break;
case 0x03: printf("18 Bit TFT\n"); break;
case 0x04: printf("24 Bit TFT\n"); break;
case 0x05: printf("TMDS\n"); break;
default:
printf("Unknown (0x%02x)\n", v);
fail("Invalid interface type 0x%02x.\n", v);
break;
}
printf(" DE polarity: DE %s active\n",
(x[6] & 0x10) ? "low" : "high");
printf(" FPSCLK polarity: FPSCLK %sinverted\n",
(x[6] & 0x20) ? "" : "not ");
if (x[6] & 0xc0)
fail("Non-zero reserved field in byte 6.\n");
printf(" Vertical display mode: %s\n",
(x[7] & 0x01) ? "Up/Down reverse mode" : "normal");
printf(" Horizontal display mode: %s\n",
(x[7] & 0x02) ? "Left/Right reverse mode" : "normal");
if (x[7] & 0xfc)
fail("Non-zero reserved field in byte 7.\n");
v = x[8] & 0x0f;
printf(" Total power on sequencing delay: ");
if (v)
printf("%u ms\n", v * 10);
else
printf("VGA controller default\n");
v = (x[8] & 0xf0) >> 4;
printf(" Total power off sequencing delay: ");
if (v)
printf("%u ms\n", v * 10);
else
printf("VGA controller default\n");
v = x[9] & 0x0f;
printf(" Contrast power on sequencing delay: ");
if (v)
printf("%u ms\n", v * 10);
else
printf("VGA controller default\n");
v = (x[9] & 0xf0) >> 4;
printf(" Contrast power off sequencing delay: ");
if (v)
printf("%u ms\n", v * 10);
else
printf("VGA controller default\n");
v = x[10] & 0x2f;
const char *s = (x[10] & 0x80) ? "" : " (ignored)";
printf(" Backlight brightness control: %u steps%s\n", v, s);
printf(" Backlight enable at boot: %s%s\n",
(x[10] & 0x40) ? "off" : "on", s);
printf(" Backlight control enable: %s\n",
(x[10] & 0x80) ? "enabled" : "disabled");
v = x[11] & 0x2f;
s = (x[11] & 0x80) ? "" : " (ignored)";
printf(" Contrast voltable control: %u steps%s\n", v, s);
if (x[11] & 0x40)
fail("Non-zero reserved field in byte 11.\n");
printf(" Contrast control enable: %s\n",
(x[11] & 0x80) ? "enabled" : "disabled");
if (x[12] || x[13] || x[14] || x[15] || x[16])
fail("Non-zero values in reserved bytes 12-16.\n");
printf(" EPI Version: %u.%u\n", (x[17] & 0xf0) >> 4, x[17] & 0x0f);
}
static void add_str(std::string &s, const std::string &add)
{
if (s.empty())
s = add;
else
s = s + ", " + add;
}
void edid_state::detailed_timings(const char *prefix, const unsigned char *x)
{
struct timings t = {};
unsigned hbl, vbl;
std::string s_sync, s_flags;
dtd_cnt++;
data_block = "Detailed Timing Descriptor #" + std::to_string(dtd_cnt);
t.pixclk_khz = (x[0] + (x[1] << 8)) * 10;
if (t.pixclk_khz < 10000) {
printf("%sDetailed mode: ", prefix);
hex_block("", x, 18, true, 18);
if (!t.pixclk_khz)
fail("First two bytes are 0, invalid data.\n");
else
fail("Pixelclock < 10 MHz, assuming invalid data 0x%02x 0x%02x.\n",
x[0], x[1]);
return;
}
t.hact = (x[2] + ((x[4] & 0xf0) << 4));
hbl = (x[3] + ((x[4] & 0x0f) << 8));
t.hfp = (x[8] + ((x[11] & 0xc0) << 2));
t.hsync = (x[9] + ((x[11] & 0x30) << 4));
t.hbp = hbl - t.hsync - t.hfp;
t.hborder = x[15];
t.vact = (x[5] + ((x[7] & 0xf0) << 4));
vbl = (x[6] + ((x[7] & 0x0f) << 8));
t.vfp = ((x[10] >> 4) + ((x[11] & 0x0c) << 2));
t.vsync = ((x[10] & 0x0f) + ((x[11] & 0x03) << 4));
t.vbp = vbl - t.vsync - t.vfp;
t.vborder = x[16];
unsigned char flags = x[17];
if (has_spwg && detailed_block_cnt == 2)
flags = *(x - 1);
switch ((flags & 0x18) >> 3) {
case 0x00:
s_flags = "analog composite";
/* fall-through */
case 0x01:
if (s_flags.empty())
s_flags = "bipolar analog composite";
switch ((flags & 0x06) >> 1) {
case 0x00:
add_str(s_flags, "sync-on-green");
break;
case 0x01:
break;
case 0x02:
add_str(s_flags, "serrate, sync-on-green");
break;
case 0x03:
add_str(s_flags, "serrate");
break;
}
break;
case 0x02:
if (flags & (1 << 1))
t.pos_pol_hsync = true;
t.no_pol_vsync = true;
s_flags = "digital composite";
if (flags & (1 << 2))
add_str(s_flags, "serrate");
break;
case 0x03:
if (flags & (1 << 1))
t.pos_pol_hsync = true;
if (flags & (1 << 2))
t.pos_pol_vsync = true;
s_sync = t.pos_pol_hsync ? "+hsync " : "-hsync ";
s_sync += t.pos_pol_vsync ? "+vsync " : "-vsync ";
if (has_spwg && (flags & 0x01))
s_flags = "DE timing only";
break;
}
if (flags & 0x80) {
t.interlaced = true;
t.vact *= 2;
/*
* Check if this DTD matches VIC code 39 with special
* interlaced timings.
*/
if (t.hact == 1920 && t.vact == 1080 && t.pixclk_khz == 72000 &&
t.hfp == 32 && t.hsync == 168 && t.hbp == 184 && !t.hborder &&
t.vfp == 23 && t.vsync == 5 && t.vbp == 57 && !t.vborder &&
!has_spwg && preparsed_has_vic[0][39] && (flags & 0x1e) == 0x1a)
t.even_vtotal = true;
}
switch (flags & 0x61) {
case 0x20:
add_str(s_flags, "field sequential L/R");
break;
case 0x40:
add_str(s_flags, "field sequential R/L");
break;
case 0x21:
add_str(s_flags, "interleaved right even");
break;
case 0x41:
add_str(s_flags, "interleaved left even");
break;
case 0x60:
add_str(s_flags, "four way interleaved");
break;
case 0x61:
add_str(s_flags, "side by side interleaved");
break;
default:
break;
}
t.hsize_mm = x[12] + ((x[14] & 0xf0) << 4);
t.vsize_mm = x[13] + ((x[14] & 0x0f) << 8);
calc_ratio(&t);
bool ok = print_timings(prefix, &t, dtd_name().c_str(), s_flags.c_str(), true);
if (block_nr == 0 && dtd_cnt == 1) {
preferred_timings = t;
preferred_type = dtd_name();
preferred_flags = s_flags;
}
if ((max_display_width_mm && !t.hsize_mm) ||
(max_display_height_mm && !t.vsize_mm)) {
fail("Mismatch of image size vs display size: image size is not set, but display size is.\n");
}
if (has_spwg && detailed_block_cnt == 2)
printf("SPWG Module Revision: %hhu\n", x[17]);
if (!ok) {
std::string s = prefix;
s += " ";
hex_block(s.c_str(), x, 18, true, 18);
}
}
void edid_state::detailed_block(const unsigned char *x)
{
static const unsigned char zero_descr[18] = { 0 };
unsigned cnt;
unsigned i;
detailed_block_cnt++;
if (x[0] || x[1]) {
detailed_timings("", x);
if (seen_non_detailed_descriptor)
fail("Invalid detailed timing descriptor ordering.\n");
return;
}
data_block = "Display Descriptor #" + std::to_string(detailed_block_cnt);
/* Monitor descriptor block, not detailed timing descriptor. */
if (x[2] != 0) {
/* 1.3, 3.10.3 */
fail("Monitor descriptor block has byte 2 nonzero (0x%02x).\n", x[2]);
}
if ((edid_minor < 4 || x[3] != 0xfd) && x[4] != 0x00) {
/* 1.3, 3.10.3 */
fail("Monitor descriptor block has byte 4 nonzero (0x%02x).\n", x[4]);
}
seen_non_detailed_descriptor = true;
if (edid_minor == 0)
fail("Has descriptor blocks other than detailed timings.\n");
if (!memcmp(x, zero_descr, sizeof(zero_descr))) {
data_block = "Empty Descriptor";
printf("%s\n", data_block.c_str());
fail("Use Dummy Descriptor instead of all zeroes.\n");
return;
}
switch (x[3]) {
case 0x0e:
detailed_epi(x);
return;
case 0x10:
data_block = "Dummy Descriptor";
printf("%s\n", data_block.c_str());
for (i = 5; i < 18; i++) {
if (x[i]) {
fail("Dummy block filled with garbage.\n");
break;
}
}
return;
case 0xf7:
data_block = "Established timings III";
printf("%s\n", data_block.c_str());
for (i = 0; i < 44; i++)
if (x[6 + i / 8] & (1 << (7 - i % 8)))
print_timings(" ", find_dmt_id(established_timings3_dmt_ids[i]), "DMT");
return;
case 0xf8:
data_block = "CVT 3 Byte Timing Codes";
printf("%s\n", data_block.c_str());
if (x[5] != 0x01) {
fail("Invalid version number %u.\n", x[5]);
return;
}
for (i = 0; i < 4; i++)
detailed_cvt_descriptor(" ", x + 6 + (i * 3), !i);
return;
case 0xf9:
data_block = "Display Color Management Data";
printf("%s\n", data_block.c_str());
printf(" Version: %d\n", x[5]);
printf(" Red a3: %.2f\n", (short)(x[6] | (x[7] << 8)) / 100.0);
printf(" Red a2: %.2f\n", (short)(x[8] | (x[9] << 8)) / 100.0);
printf(" Green a3: %.2f\n", (short)(x[10] | (x[11] << 8)) / 100.0);
printf(" Green a2: %.2f\n", (short)(x[12] | (x[13] << 8)) / 100.0);
printf(" Blue a3: %.2f\n", (short)(x[14] | (x[15] << 8)) / 100.0);
printf(" Blue a2: %.2f\n", (short)(x[16] | (x[17] << 8)) / 100.0);
return;
case 0xfa:
data_block = "Standard Timing Identifications";
printf("%s\n", data_block.c_str());
for (cnt = i = 0; i < 6; i++) {
if (x[5 + i * 2] != 0x01 || x[5 + i * 2 + 1] != 0x01)
cnt++;
print_standard_timing(" ", x[5 + i * 2], x[5 + i * 2 + 1]);
}
if (!cnt)
warn("%s block without any timings.\n", data_block.c_str());
return;
case 0xfb: {
unsigned w_x, w_y;
unsigned gamma;
data_block = "Color Point Data";
printf("%s\n", data_block.c_str());
w_x = (x[7] << 2) | ((x[6] >> 2) & 3);
w_y = (x[8] << 2) | (x[6] & 3);
gamma = x[9];
printf(" Index: %u White: 0.%04u, 0.%04u", x[5],
(w_x * 10000) / 1024, (w_y * 10000) / 1024);
if (gamma == 0xff)
printf(" Gamma: is defined in an extension block");
else
printf(" Gamma: %.2f", ((gamma + 100.0) / 100.0));
printf("\n");
if (x[10] == 0)
return;
w_x = (x[12] << 2) | ((x[11] >> 2) & 3);
w_y = (x[13] << 2) | (x[11] & 3);
gamma = x[14];
printf(" Index: %u White: 0.%04u, 0.%04u", x[10],
(w_x * 10000) / 1024, (w_y * 10000) / 1024);
if (gamma == 0xff)
printf(" Gamma: is defined in an extension block");
else
printf(" Gamma: %.2f", ((gamma + 100.0) / 100.0));
printf("\n");
return;
}
case 0xfc:
data_block = "Display Product Name";
has_name_descriptor = 1;
printf("%s: '%s'\n", data_block.c_str(), extract_string(x + 5, 13));
return;
case 0xfd:
detailed_display_range_limits(x);
return;
case 0xfe:
if (!has_spwg || detailed_block_cnt < 3) {
data_block = "Alphanumeric Data String";
printf("%s: '%s'\n", data_block.c_str(),
extract_string(x + 5, 13));
return;
}
if (detailed_block_cnt == 3) {
char buf[6] = { 0 };
data_block = "SPWG Descriptor #3";
memcpy(buf, x + 5, 5);
if (strlen(buf) != 5)
fail("Invalid PC Maker P/N length.\n");
printf("SPWG PC Maker P/N: '%s'\n", buf);
printf("SPWG LCD Supplier EEDID Revision: %hhu\n", x[10]);
printf("SPWG Manufacturer P/N: '%s'\n", extract_string(x + 11, 7));
} else {
data_block = "SPWG Descriptor #4";
printf("SMBUS Values: 0x%02hhx 0x%02hhx 0x%02hhx 0x%02hhx"
" 0x%02hhx 0x%02hhx 0x%02hhx 0x%02hhx\n",
x[5], x[6], x[7], x[8], x[9], x[10], x[11], x[12]);
printf("LVDS Channels: %hhu\n", x[13]);
printf("Panel Self Test %sPresent\n", x[14] ? "" : "Not ");
if (x[15] != 0x0a || x[16] != 0x20 || x[17] != 0x20)
fail("Invalid trailing data.\n");
}
return;
case 0xff:
data_block = "Display Product Serial Number";
printf("%s: '%s'\n", data_block.c_str(),
extract_string(x + 5, 13));
has_serial_string = 1;
return;
default:
printf("%s Display Descriptor (0x%02hhx):",
x[3] <= 0x0f ? "Manufacturer-Specified" : "Unknown", x[3]);
hex_block(" ", x + 2, 16);
if (x[3] > 0x0f)
fail("Unknown Type 0x%02hhx.\n", x[3]);
return;
}
}
void edid_state::parse_base_block(const unsigned char *x)
{
time_t the_time;
struct tm *ptm;
int analog, i;
unsigned col_x, col_y;
int has_preferred_timing = 0;
data_block = "EDID Structure Version & Revision";
printf("EDID version: %hhu.%hhu\n", x[0x12], x[0x13]);
if (x[0x12] == 1) {
edid_minor = x[0x13];
if (edid_minor > 4)
warn("Unknown EDID minor version %u, assuming 1.4 conformance.\n", edid_minor);
if (edid_minor < 3)
warn("EDID 1.%u is deprecated, do not use.\n", edid_minor);
} else {
fail("Unknown EDID major version.\n");
}
data_block = "Vendor & Product Identification";
printf("Manufacturer: %s Model %u Serial Number %u\n",
manufacturer_name(x + 0x08),
(unsigned short)(x[0x0a] + (x[0x0b] << 8)),
(unsigned)(x[0x0c] + (x[0x0d] << 8) +
(x[0x0e] << 16) + (x[0x0f] << 24)));
has_serial_number = x[0x0c] || x[0x0d] || x[0x0e] || x[0x0f];
/* XXX need manufacturer ID table */
time(&the_time);
ptm = localtime(&the_time);
unsigned char week = x[0x10];
int year = 1990 + x[0x11];
if (week) {
if (edid_minor <= 3 && week == 0xff)
fail("EDID 1.3 does not support week 0xff.\n");
// The max week is 53 in EDID 1.3 and 54 in EDID 1.4.
// No idea why there is a difference.
if (edid_minor <= 3 && week == 54)
fail("EDID 1.3 does not support week 54.\n");
if (week != 0xff && week > 54)
fail("Invalid week %u of manufacture.\n", week);
if (week != 0xff)
printf("Made in week %hhu of %d\n", week, year);
}
if (week == 0xff)
printf("Model year %d\n", year);
else if (!week)
printf("Made in year %d\n", year);
if (year - 1 > ptm->tm_year + 1900)
fail("The year %d is more than one year in the future.\n", year);
/* display section */
data_block = "Basic Display Parameters & Features";
if (x[0x14] & 0x80) {
analog = 0;
printf("Digital display\n");
if (edid_minor >= 4) {
if ((x[0x14] & 0x70) == 0x00)
printf("Color depth is undefined\n");
else if ((x[0x14] & 0x70) == 0x70)
fail("Color Bit Depth set to reserved value.\n");
else
printf("%u bits per primary color channel\n",
((x[0x14] & 0x70) >> 3) + 4);
switch (x[0x14] & 0x0f) {
case 0x00: printf("Digital interface is not defined\n"); break;
case 0x01: printf("DVI interface\n"); break;
case 0x02: printf("HDMI-a interface\n"); break;
case 0x03: printf("HDMI-b interface\n"); break;
case 0x04: printf("MDDI interface\n"); break;
case 0x05: printf("DisplayPort interface\n"); break;
default:
printf("Unknown (0x%02x) interface\n", x[0x14] & 0x0f);
fail("Digital Video Interface Standard set to reserved value 0x%02x.\n", x[0x14] & 0x0f);
break;
}
} else if (edid_minor >= 2) {
if (x[0x14] & 0x01) {
printf("DFP 1.x compatible TMDS\n");
}
if (x[0x14] & 0x7e)
fail("Digital Video Interface Standard set to reserved value 0x%02x.\n", x[0x14] & 0x7e);
} else if (x[0x14] & 0x7f) {
fail("Digital Video Interface Standard set to reserved value 0x%02x.\n", x[0x14] & 0x7f);
}
} else {
unsigned voltage = (x[0x14] & 0x60) >> 5;
unsigned sync = (x[0x14] & 0x0f);
analog = 1;
printf("Analog display, Input voltage level: %s V\n",
voltage == 3 ? "0.7/0.7" :
voltage == 2 ? "1.0/0.4" :
voltage == 1 ? "0.714/0.286" :
"0.7/0.3");
if (edid_minor >= 4) {
if (x[0x14] & 0x10)
printf("Blank-to-black setup/pedestal\n");
else
printf("Blank level equals black level\n");
} else if (x[0x14] & 0x10) {
/*
* XXX this is just the X text. 1.3 says "if set, display expects
* a blank-to-black setup or pedestal per appropriate Signal
* Level Standard". Whatever _that_ means.
*/
printf("Configurable signal levels\n");
}
printf("Sync:%s%s%s%s\n",
sync & 0x08 ? " Separate" : "",
sync & 0x04 ? " Composite" : "",
sync & 0x02 ? " SyncOnGreen" : "",
sync & 0x01 ? " Serration" : "");
}
if (x[0x15] && x[0x16]) {
printf("Maximum image size: %u cm x %u cm\n", x[0x15], x[0x16]);
max_display_width_mm = x[0x15] * 10;
max_display_height_mm = x[0x16] * 10;
if ((max_display_height_mm && !max_display_width_mm) ||
(max_display_width_mm && !max_display_height_mm))
fail("Invalid maximum image size (%u cm x %u cm).\n",
max_display_width_mm, max_display_height_mm);
else if (max_display_width_mm < 100 || max_display_height_mm < 100)
warn("Dubious maximum image size (%ux%u is smaller than 10x10 cm).\n",
max_display_width_mm, max_display_height_mm);
}
else if (edid_minor >= 4 && (x[0x15] || x[0x16])) {
if (x[0x15])
printf("Aspect ratio is %f (landscape)\n", 100.0/(x[0x16] + 99));
else
printf("Aspect ratio is %f (portrait)\n", 100.0/(x[0x15] + 99));
} else {
/* Either or both can be zero for 1.3 and before */
printf("Image size is variable\n");
}
if (x[0x17] == 0xff) {
if (edid_minor >= 4)
printf("Gamma is defined in an extension block\n");
else
/* XXX Technically 1.3 doesn't say this... */
printf("Gamma: 1.0\n");
} else printf("Gamma: %.2f\n", ((x[0x17] + 100.0) / 100.0));
if (x[0x18] & 0xe0) {
printf("DPMS levels:");
if (x[0x18] & 0x80) printf(" Standby");
if (x[0x18] & 0x40) printf(" Suspend");
if (x[0x18] & 0x20) printf(" Off");
printf("\n");
}
if (analog || edid_minor < 4) {
switch (x[0x18] & 0x18) {
case 0x00: printf("Monochrome or grayscale display\n"); break;
case 0x08: printf("RGB color display\n"); break;
case 0x10: printf("Non-RGB color display\n"); break;
case 0x18: printf("Undefined display color type\n");
}
} else {
printf("Supported color formats: RGB 4:4:4");
if (x[0x18] & 0x08)
printf(", YCrCb 4:4:4");
if (x[0x18] & 0x10)
printf(", YCrCb 4:2:2");
printf("\n");
}
if (x[0x18] & 0x04) {
/*
* The sRGB chromaticities are (x, y):
* red: 0.640, 0.330
* green: 0.300, 0.600
* blue: 0.150, 0.060
* white: 0.3127, 0.3290
*/
static const unsigned char srgb_chromaticity[10] = {
0xee, 0x91, 0xa3, 0x54, 0x4c, 0x99, 0x26, 0x0f, 0x50, 0x54
};
printf("Default (sRGB) color space is primary color space\n");
if (memcmp(x + 0x19, srgb_chromaticity, sizeof(srgb_chromaticity)))
fail("sRGB is signaled, but the chromaticities do not match.\n");
}
if (x[0x18] & 0x02) {
if (edid_minor >= 4)
printf("First detailed timing includes the native pixel format and preferred refresh rate\n");
else
printf("First detailed timing is preferred timing\n");
has_preferred_timing = 1;
} else if (edid_minor >= 4) {
/* 1.4 always has a preferred timing and this bit means something else. */
has_preferred_timing = 1;
}
if (x[0x18] & 0x01) {
if (edid_minor >= 4) {
supports_continuous_freq = true;
printf("Display is continuous frequency\n");
} else {
printf("Supports GTF timings within operating range\n");
supports_gtf = true;
}
}
data_block = "Color Characteristics";
printf("%s\n", data_block.c_str());
col_x = (x[0x1b] << 2) | (x[0x19] >> 6);
col_y = (x[0x1c] << 2) | ((x[0x19] >> 4) & 3);
printf(" Red: 0.%04u, 0.%04u\n",
(col_x * 10000) / 1024, (col_y * 10000) / 1024);
col_x = (x[0x1d] << 2) | ((x[0x19] >> 2) & 3);
col_y = (x[0x1e] << 2) | (x[0x19] & 3);
printf(" Green: 0.%04u, 0.%04u\n",
(col_x * 10000) / 1024, (col_y * 10000) / 1024);
col_x = (x[0x1f] << 2) | (x[0x1a] >> 6);
col_y = (x[0x20] << 2) | ((x[0x1a] >> 4) & 3);
printf(" Blue: 0.%04u, 0.%04u\n",
(col_x * 10000) / 1024, (col_y * 10000) / 1024);
col_x = (x[0x21] << 2) | ((x[0x1a] >> 2) & 3);
col_y = (x[0x22] << 2) | (x[0x1a] & 3);
printf(" White: 0.%04u, 0.%04u\n",
(col_x * 10000) / 1024, (col_y * 10000) / 1024);
data_block = "Established Timings I & II";
if (x[0x23] || x[0x24] || x[0x25]) {
printf("%s\n", data_block.c_str());
for (i = 0; i < 17; i++) {
if (x[0x23 + i / 8] & (1 << (7 - i % 8))) {
const struct timings *t;
const char *suffix = "DMT";
if (established_timings12[i].dmt_id) {
t = find_dmt_id(established_timings12[i].dmt_id);
} else {
t = &established_timings12[i].t;
suffix = established_timings12[i].std_name;
}
print_timings(" ", t, suffix);
}
}
} else {
printf("%s: none\n", data_block.c_str());
}
has_640x480p60_est_timing = x[0x23] & 0x20;
data_block = "Standard Timings";
bool found = false;
for (i = 0; i < 8; i++) {
if (x[0x26 + i * 2] != 0x01 || x[0x26 + i * 2 + 1] != 0x01) {
found = true;
}
}
if (found) {
printf("%s\n", data_block.c_str());
for (i = 0; i < 8; i++)
print_standard_timing(" ", x[0x26 + i * 2], x[0x26 + i * 2 + 1]);
} else {
printf("%s: none\n", data_block.c_str());
}
/* 18 byte descriptors */
if (has_preferred_timing && !x[0x36] && !x[0x37])
fail("Missing preferred timing.\n");
/* Look for SPWG Noteboook Panel EDID data blocks */
if ((x[0x36] || x[0x37]) &&
(x[0x48] || x[0x49]) &&
!x[0x5a] && !x[0x5b] && x[0x5d] == 0xfe &&
!x[0x6c] && !x[0x6d] && x[0x6f] == 0xfe &&
(x[0x79] == 1 || x[0x79] == 2) && x[0x7a] <= 1)
has_spwg = true;
for (unsigned i = 0; i < (has_spwg ? 2 : 4); i++)
if (x[0x36 + i * 18] || x[0x37 + i * 18])
preparse_total_dtds++;
detailed_block(x + 0x36);
detailed_block(x + 0x48);
detailed_block(x + 0x5a);
detailed_block(x + 0x6c);
has_spwg = false;
if (x[0x7e])
printf("Has %u extension block%s\n", x[0x7e], x[0x7e] > 1 ? "s" : "");
block = block_name(0x00);
data_block.clear();
do_checksum("", x, EDID_PAGE_SIZE);
if (edid_minor >= 3) {
if (!has_name_descriptor)
fail("Missing Display Product Name.\n");
if ((edid_minor == 3 || supports_continuous_freq) &&
!has_display_range_descriptor)
fail("Missing Display Range Limits Descriptor.\n");
}
}