blob: 2f14ebc622db82adf09adb71eeff8436dde2110a [file] [log] [blame]
Miao Wang2b8756b2017-03-06 13:45:08 -08001// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2014 Jianwei Cui <thucjw@gmail.com>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#include "main.h"
11#include <Eigen/CXX11/Tensor>
12
13using Eigen::Tensor;
14
15template <int DataLayout>
16static void test_fft_2D_golden() {
17 Tensor<float, 2, DataLayout> input(2, 3);
18 input(0, 0) = 1;
19 input(0, 1) = 2;
20 input(0, 2) = 3;
21 input(1, 0) = 4;
22 input(1, 1) = 5;
23 input(1, 2) = 6;
24
25 array<ptrdiff_t, 2> fft;
26 fft[0] = 0;
27 fft[1] = 1;
28
29 Tensor<std::complex<float>, 2, DataLayout> output = input.template fft<Eigen::BothParts, Eigen::FFT_FORWARD>(fft);
30
31 std::complex<float> output_golden[6]; // in ColMajor order
32 output_golden[0] = std::complex<float>(21, 0);
33 output_golden[1] = std::complex<float>(-9, 0);
34 output_golden[2] = std::complex<float>(-3, 1.73205);
35 output_golden[3] = std::complex<float>( 0, 0);
36 output_golden[4] = std::complex<float>(-3, -1.73205);
37 output_golden[5] = std::complex<float>(0 ,0);
38
39 std::complex<float> c_offset = std::complex<float>(1.0, 1.0);
40
41 if (DataLayout == ColMajor) {
42 VERIFY_IS_APPROX(output(0) + c_offset, output_golden[0] + c_offset);
43 VERIFY_IS_APPROX(output(1) + c_offset, output_golden[1] + c_offset);
44 VERIFY_IS_APPROX(output(2) + c_offset, output_golden[2] + c_offset);
45 VERIFY_IS_APPROX(output(3) + c_offset, output_golden[3] + c_offset);
46 VERIFY_IS_APPROX(output(4) + c_offset, output_golden[4] + c_offset);
47 VERIFY_IS_APPROX(output(5) + c_offset, output_golden[5] + c_offset);
48 }
49 else {
50 VERIFY_IS_APPROX(output(0)+ c_offset, output_golden[0]+ c_offset);
51 VERIFY_IS_APPROX(output(1)+ c_offset, output_golden[2]+ c_offset);
52 VERIFY_IS_APPROX(output(2)+ c_offset, output_golden[4]+ c_offset);
53 VERIFY_IS_APPROX(output(3)+ c_offset, output_golden[1]+ c_offset);
54 VERIFY_IS_APPROX(output(4)+ c_offset, output_golden[3]+ c_offset);
55 VERIFY_IS_APPROX(output(5)+ c_offset, output_golden[5]+ c_offset);
56 }
57}
58
59static void test_fft_complex_input_golden() {
60 Tensor<std::complex<float>, 1, ColMajor> input(5);
61 input(0) = std::complex<float>(1, 1);
62 input(1) = std::complex<float>(2, 2);
63 input(2) = std::complex<float>(3, 3);
64 input(3) = std::complex<float>(4, 4);
65 input(4) = std::complex<float>(5, 5);
66
67 array<ptrdiff_t, 1> fft;
68 fft[0] = 0;
69
70 Tensor<std::complex<float>, 1, ColMajor> forward_output_both_parts = input.fft<BothParts, FFT_FORWARD>(fft);
71 Tensor<std::complex<float>, 1, ColMajor> reverse_output_both_parts = input.fft<BothParts, FFT_REVERSE>(fft);
72
73 Tensor<float, 1, ColMajor> forward_output_real_part = input.fft<RealPart, FFT_FORWARD>(fft);
74 Tensor<float, 1, ColMajor> reverse_output_real_part = input.fft<RealPart, FFT_REVERSE>(fft);
75
76 Tensor<float, 1, ColMajor> forward_output_imag_part = input.fft<ImagPart, FFT_FORWARD>(fft);
77 Tensor<float, 1, ColMajor> reverse_output_imag_part = input.fft<ImagPart, FFT_REVERSE>(fft);
78
79 VERIFY_IS_EQUAL(forward_output_both_parts.dimension(0), input.dimension(0));
80 VERIFY_IS_EQUAL(reverse_output_both_parts.dimension(0), input.dimension(0));
81
82 VERIFY_IS_EQUAL(forward_output_real_part.dimension(0), input.dimension(0));
83 VERIFY_IS_EQUAL(reverse_output_real_part.dimension(0), input.dimension(0));
84
85 VERIFY_IS_EQUAL(forward_output_imag_part.dimension(0), input.dimension(0));
86 VERIFY_IS_EQUAL(reverse_output_imag_part.dimension(0), input.dimension(0));
87
88 std::complex<float> forward_golden_result[5];
89 std::complex<float> reverse_golden_result[5];
90
91 forward_golden_result[0] = std::complex<float>(15.000000000000000,+15.000000000000000);
92 forward_golden_result[1] = std::complex<float>(-5.940954801177935, +0.940954801177934);
93 forward_golden_result[2] = std::complex<float>(-3.312299240582266, -1.687700759417735);
94 forward_golden_result[3] = std::complex<float>(-1.687700759417735, -3.312299240582266);
95 forward_golden_result[4] = std::complex<float>( 0.940954801177934, -5.940954801177935);
96
97 reverse_golden_result[0] = std::complex<float>( 3.000000000000000, + 3.000000000000000);
98 reverse_golden_result[1] = std::complex<float>( 0.188190960235587, - 1.188190960235587);
99 reverse_golden_result[2] = std::complex<float>(-0.337540151883547, - 0.662459848116453);
100 reverse_golden_result[3] = std::complex<float>(-0.662459848116453, - 0.337540151883547);
101 reverse_golden_result[4] = std::complex<float>(-1.188190960235587, + 0.188190960235587);
102
103 for(int i = 0; i < 5; ++i) {
104 VERIFY_IS_APPROX(forward_output_both_parts(i), forward_golden_result[i]);
105 VERIFY_IS_APPROX(forward_output_real_part(i), forward_golden_result[i].real());
106 VERIFY_IS_APPROX(forward_output_imag_part(i), forward_golden_result[i].imag());
107 }
108
109 for(int i = 0; i < 5; ++i) {
110 VERIFY_IS_APPROX(reverse_output_both_parts(i), reverse_golden_result[i]);
111 VERIFY_IS_APPROX(reverse_output_real_part(i), reverse_golden_result[i].real());
112 VERIFY_IS_APPROX(reverse_output_imag_part(i), reverse_golden_result[i].imag());
113 }
114}
115
116static void test_fft_real_input_golden() {
117 Tensor<float, 1, ColMajor> input(5);
118 input(0) = 1.0;
119 input(1) = 2.0;
120 input(2) = 3.0;
121 input(3) = 4.0;
122 input(4) = 5.0;
123
124 array<ptrdiff_t, 1> fft;
125 fft[0] = 0;
126
127 Tensor<std::complex<float>, 1, ColMajor> forward_output_both_parts = input.fft<BothParts, FFT_FORWARD>(fft);
128 Tensor<std::complex<float>, 1, ColMajor> reverse_output_both_parts = input.fft<BothParts, FFT_REVERSE>(fft);
129
130 Tensor<float, 1, ColMajor> forward_output_real_part = input.fft<RealPart, FFT_FORWARD>(fft);
131 Tensor<float, 1, ColMajor> reverse_output_real_part = input.fft<RealPart, FFT_REVERSE>(fft);
132
133 Tensor<float, 1, ColMajor> forward_output_imag_part = input.fft<ImagPart, FFT_FORWARD>(fft);
134 Tensor<float, 1, ColMajor> reverse_output_imag_part = input.fft<ImagPart, FFT_REVERSE>(fft);
135
136 VERIFY_IS_EQUAL(forward_output_both_parts.dimension(0), input.dimension(0));
137 VERIFY_IS_EQUAL(reverse_output_both_parts.dimension(0), input.dimension(0));
138
139 VERIFY_IS_EQUAL(forward_output_real_part.dimension(0), input.dimension(0));
140 VERIFY_IS_EQUAL(reverse_output_real_part.dimension(0), input.dimension(0));
141
142 VERIFY_IS_EQUAL(forward_output_imag_part.dimension(0), input.dimension(0));
143 VERIFY_IS_EQUAL(reverse_output_imag_part.dimension(0), input.dimension(0));
144
145 std::complex<float> forward_golden_result[5];
146 std::complex<float> reverse_golden_result[5];
147
148
149 forward_golden_result[0] = std::complex<float>( 15, 0);
150 forward_golden_result[1] = std::complex<float>(-2.5, +3.44095480117793);
151 forward_golden_result[2] = std::complex<float>(-2.5, +0.81229924058227);
152 forward_golden_result[3] = std::complex<float>(-2.5, -0.81229924058227);
153 forward_golden_result[4] = std::complex<float>(-2.5, -3.44095480117793);
154
155 reverse_golden_result[0] = std::complex<float>( 3.0, 0);
156 reverse_golden_result[1] = std::complex<float>(-0.5, -0.688190960235587);
157 reverse_golden_result[2] = std::complex<float>(-0.5, -0.162459848116453);
158 reverse_golden_result[3] = std::complex<float>(-0.5, +0.162459848116453);
159 reverse_golden_result[4] = std::complex<float>(-0.5, +0.688190960235587);
160
161 std::complex<float> c_offset(1.0, 1.0);
162 float r_offset = 1.0;
163
164 for(int i = 0; i < 5; ++i) {
165 VERIFY_IS_APPROX(forward_output_both_parts(i) + c_offset, forward_golden_result[i] + c_offset);
166 VERIFY_IS_APPROX(forward_output_real_part(i) + r_offset, forward_golden_result[i].real() + r_offset);
167 VERIFY_IS_APPROX(forward_output_imag_part(i) + r_offset, forward_golden_result[i].imag() + r_offset);
168 }
169
170 for(int i = 0; i < 5; ++i) {
171 VERIFY_IS_APPROX(reverse_output_both_parts(i) + c_offset, reverse_golden_result[i] + c_offset);
172 VERIFY_IS_APPROX(reverse_output_real_part(i) + r_offset, reverse_golden_result[i].real() + r_offset);
173 VERIFY_IS_APPROX(reverse_output_imag_part(i) + r_offset, reverse_golden_result[i].imag() + r_offset);
174 }
175}
176
177
178template <int DataLayout, typename RealScalar, bool isComplexInput, int FFTResultType, int FFTDirection, int TensorRank>
179static void test_fft_real_input_energy() {
180
181 Eigen::DSizes<ptrdiff_t, TensorRank> dimensions;
182 ptrdiff_t total_size = 1;
183 for (int i = 0; i < TensorRank; ++i) {
184 dimensions[i] = rand() % 20 + 1;
185 total_size *= dimensions[i];
186 }
187 const DSizes<ptrdiff_t, TensorRank> arr = dimensions;
188
189 typedef typename internal::conditional<isComplexInput == true, std::complex<RealScalar>, RealScalar>::type InputScalar;
190
191 Tensor<InputScalar, TensorRank, DataLayout> input;
192 input.resize(arr);
193 input.setRandom();
194
195 array<ptrdiff_t, TensorRank> fft;
196 for (int i = 0; i < TensorRank; ++i) {
197 fft[i] = i;
198 }
199
200 typedef typename internal::conditional<FFTResultType == Eigen::BothParts, std::complex<RealScalar>, RealScalar>::type OutputScalar;
201 Tensor<OutputScalar, TensorRank, DataLayout> output;
202 output = input.template fft<FFTResultType, FFTDirection>(fft);
203
204 for (int i = 0; i < TensorRank; ++i) {
205 VERIFY_IS_EQUAL(output.dimension(i), input.dimension(i));
206 }
207
208 RealScalar energy_original = 0.0;
209 RealScalar energy_after_fft = 0.0;
210
211 for (int i = 0; i < total_size; ++i) {
212 energy_original += numext::abs2(input(i));
213 }
214
215 for (int i = 0; i < total_size; ++i) {
216 energy_after_fft += numext::abs2(output(i));
217 }
218
219 if(FFTDirection == FFT_FORWARD) {
220 VERIFY_IS_APPROX(energy_original, energy_after_fft / total_size);
221 }
222 else {
223 VERIFY_IS_APPROX(energy_original, energy_after_fft * total_size);
224 }
225}
226
227void test_cxx11_tensor_fft() {
228 test_fft_complex_input_golden();
229 test_fft_real_input_golden();
230
231 test_fft_2D_golden<ColMajor>();
232 test_fft_2D_golden<RowMajor>();
233
234 test_fft_real_input_energy<ColMajor, float, true, Eigen::BothParts, FFT_FORWARD, 1>();
235 test_fft_real_input_energy<ColMajor, double, true, Eigen::BothParts, FFT_FORWARD, 1>();
236 test_fft_real_input_energy<ColMajor, float, false, Eigen::BothParts, FFT_FORWARD, 1>();
237 test_fft_real_input_energy<ColMajor, double, false, Eigen::BothParts, FFT_FORWARD, 1>();
238
239 test_fft_real_input_energy<ColMajor, float, true, Eigen::BothParts, FFT_FORWARD, 2>();
240 test_fft_real_input_energy<ColMajor, double, true, Eigen::BothParts, FFT_FORWARD, 2>();
241 test_fft_real_input_energy<ColMajor, float, false, Eigen::BothParts, FFT_FORWARD, 2>();
242 test_fft_real_input_energy<ColMajor, double, false, Eigen::BothParts, FFT_FORWARD, 2>();
243
244 test_fft_real_input_energy<ColMajor, float, true, Eigen::BothParts, FFT_FORWARD, 3>();
245 test_fft_real_input_energy<ColMajor, double, true, Eigen::BothParts, FFT_FORWARD, 3>();
246 test_fft_real_input_energy<ColMajor, float, false, Eigen::BothParts, FFT_FORWARD, 3>();
247 test_fft_real_input_energy<ColMajor, double, false, Eigen::BothParts, FFT_FORWARD, 3>();
248
249 test_fft_real_input_energy<ColMajor, float, true, Eigen::BothParts, FFT_FORWARD, 4>();
250 test_fft_real_input_energy<ColMajor, double, true, Eigen::BothParts, FFT_FORWARD, 4>();
251 test_fft_real_input_energy<ColMajor, float, false, Eigen::BothParts, FFT_FORWARD, 4>();
252 test_fft_real_input_energy<ColMajor, double, false, Eigen::BothParts, FFT_FORWARD, 4>();
253
254 test_fft_real_input_energy<RowMajor, float, true, Eigen::BothParts, FFT_FORWARD, 1>();
255 test_fft_real_input_energy<RowMajor, double, true, Eigen::BothParts, FFT_FORWARD, 1>();
256 test_fft_real_input_energy<RowMajor, float, false, Eigen::BothParts, FFT_FORWARD, 1>();
257 test_fft_real_input_energy<RowMajor, double, false, Eigen::BothParts, FFT_FORWARD, 1>();
258
259 test_fft_real_input_energy<RowMajor, float, true, Eigen::BothParts, FFT_FORWARD, 2>();
260 test_fft_real_input_energy<RowMajor, double, true, Eigen::BothParts, FFT_FORWARD, 2>();
261 test_fft_real_input_energy<RowMajor, float, false, Eigen::BothParts, FFT_FORWARD, 2>();
262 test_fft_real_input_energy<RowMajor, double, false, Eigen::BothParts, FFT_FORWARD, 2>();
263
264 test_fft_real_input_energy<RowMajor, float, true, Eigen::BothParts, FFT_FORWARD, 3>();
265 test_fft_real_input_energy<RowMajor, double, true, Eigen::BothParts, FFT_FORWARD, 3>();
266 test_fft_real_input_energy<RowMajor, float, false, Eigen::BothParts, FFT_FORWARD, 3>();
267 test_fft_real_input_energy<RowMajor, double, false, Eigen::BothParts, FFT_FORWARD, 3>();
268
269 test_fft_real_input_energy<RowMajor, float, true, Eigen::BothParts, FFT_FORWARD, 4>();
270 test_fft_real_input_energy<RowMajor, double, true, Eigen::BothParts, FFT_FORWARD, 4>();
271 test_fft_real_input_energy<RowMajor, float, false, Eigen::BothParts, FFT_FORWARD, 4>();
272 test_fft_real_input_energy<RowMajor, double, false, Eigen::BothParts, FFT_FORWARD, 4>();
273}