blob: 4298da3bb6e12138cbd3e2e3ccb77e42e2df7c39 [file] [log] [blame]
Yi Kong2aab7942022-02-25 16:32:14 +08001// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2015-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10// workaround issue between gcc >= 4.7 and cuda 5.5
11#if (defined __GNUC__) && (__GNUC__>4 || __GNUC_MINOR__>=7)
12 #undef _GLIBCXX_ATOMIC_BUILTINS
13 #undef _GLIBCXX_USE_INT128
14#endif
15
16#define EIGEN_TEST_NO_LONGDOUBLE
17#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
18
19#include "main.h"
20#include "gpu_common.h"
21
22// Check that dense modules can be properly parsed by nvcc
23#include <Eigen/Dense>
24
25// struct Foo{
26// EIGEN_DEVICE_FUNC
27// void operator()(int i, const float* mats, float* vecs) const {
28// using namespace Eigen;
29// // Matrix3f M(data);
30// // Vector3f x(data+9);
31// // Map<Vector3f>(data+9) = M.inverse() * x;
32// Matrix3f M(mats+i/16);
33// Vector3f x(vecs+i*3);
34// // using std::min;
35// // using std::sqrt;
36// Map<Vector3f>(vecs+i*3) << x.minCoeff(), 1, 2;// / x.dot(x);//(M.inverse() * x) / x.x();
37// //x = x*2 + x.y() * x + x * x.maxCoeff() - x / x.sum();
38// }
39// };
40
41template<typename T>
42struct coeff_wise {
43 EIGEN_DEVICE_FUNC
44 void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
45 {
46 using namespace Eigen;
47 T x1(in+i);
48 T x2(in+i+1);
49 T x3(in+i+2);
50 Map<T> res(out+i*T::MaxSizeAtCompileTime);
51
52 res.array() += (in[0] * x1 + x2).array() * x3.array();
53 }
54};
55
56template<typename T>
57struct complex_sqrt {
58 EIGEN_DEVICE_FUNC
59 void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
60 {
61 using namespace Eigen;
62 typedef typename T::Scalar ComplexType;
63 typedef typename T::Scalar::value_type ValueType;
64 const int num_special_inputs = 18;
65
66 if (i == 0) {
67 const ValueType nan = std::numeric_limits<ValueType>::quiet_NaN();
68 typedef Eigen::Vector<ComplexType, num_special_inputs> SpecialInputs;
69 SpecialInputs special_in;
70 special_in.setZero();
71 int idx = 0;
72 special_in[idx++] = ComplexType(0, 0);
73 special_in[idx++] = ComplexType(-0, 0);
74 special_in[idx++] = ComplexType(0, -0);
75 special_in[idx++] = ComplexType(-0, -0);
76 // GCC's fallback sqrt implementation fails for inf inputs.
77 // It is called when _GLIBCXX_USE_C99_COMPLEX is false or if
78 // clang includes the GCC header (which temporarily disables
79 // _GLIBCXX_USE_C99_COMPLEX)
80 #if !defined(_GLIBCXX_COMPLEX) || \
81 (_GLIBCXX_USE_C99_COMPLEX && !defined(__CLANG_CUDA_WRAPPERS_COMPLEX))
82 const ValueType inf = std::numeric_limits<ValueType>::infinity();
83 special_in[idx++] = ComplexType(1.0, inf);
84 special_in[idx++] = ComplexType(nan, inf);
85 special_in[idx++] = ComplexType(1.0, -inf);
86 special_in[idx++] = ComplexType(nan, -inf);
87 special_in[idx++] = ComplexType(-inf, 1.0);
88 special_in[idx++] = ComplexType(inf, 1.0);
89 special_in[idx++] = ComplexType(-inf, -1.0);
90 special_in[idx++] = ComplexType(inf, -1.0);
91 special_in[idx++] = ComplexType(-inf, nan);
92 special_in[idx++] = ComplexType(inf, nan);
93 #endif
94 special_in[idx++] = ComplexType(1.0, nan);
95 special_in[idx++] = ComplexType(nan, 1.0);
96 special_in[idx++] = ComplexType(nan, -1.0);
97 special_in[idx++] = ComplexType(nan, nan);
98
99 Map<SpecialInputs> special_out(out);
100 special_out = special_in.cwiseSqrt();
101 }
102
103 T x1(in + i);
104 Map<T> res(out + num_special_inputs + i*T::MaxSizeAtCompileTime);
105 res = x1.cwiseSqrt();
106 }
107};
108
109template<typename T>
110struct complex_operators {
111 EIGEN_DEVICE_FUNC
112 void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
113 {
114 using namespace Eigen;
115 typedef typename T::Scalar ComplexType;
116 typedef typename T::Scalar::value_type ValueType;
117 const int num_scalar_operators = 24;
118 const int num_vector_operators = 23; // no unary + operator.
119 int out_idx = i * (num_scalar_operators + num_vector_operators * T::MaxSizeAtCompileTime);
120
121 // Scalar operators.
122 const ComplexType a = in[i];
123 const ComplexType b = in[i + 1];
124
125 out[out_idx++] = +a;
126 out[out_idx++] = -a;
127
128 out[out_idx++] = a + b;
129 out[out_idx++] = a + numext::real(b);
130 out[out_idx++] = numext::real(a) + b;
131 out[out_idx++] = a - b;
132 out[out_idx++] = a - numext::real(b);
133 out[out_idx++] = numext::real(a) - b;
134 out[out_idx++] = a * b;
135 out[out_idx++] = a * numext::real(b);
136 out[out_idx++] = numext::real(a) * b;
137 out[out_idx++] = a / b;
138 out[out_idx++] = a / numext::real(b);
139 out[out_idx++] = numext::real(a) / b;
140
141 out[out_idx] = a; out[out_idx++] += b;
142 out[out_idx] = a; out[out_idx++] -= b;
143 out[out_idx] = a; out[out_idx++] *= b;
144 out[out_idx] = a; out[out_idx++] /= b;
145
146 const ComplexType true_value = ComplexType(ValueType(1), ValueType(0));
147 const ComplexType false_value = ComplexType(ValueType(0), ValueType(0));
148 out[out_idx++] = (a == b ? true_value : false_value);
149 out[out_idx++] = (a == numext::real(b) ? true_value : false_value);
150 out[out_idx++] = (numext::real(a) == b ? true_value : false_value);
151 out[out_idx++] = (a != b ? true_value : false_value);
152 out[out_idx++] = (a != numext::real(b) ? true_value : false_value);
153 out[out_idx++] = (numext::real(a) != b ? true_value : false_value);
154
155 // Vector versions.
156 T x1(in + i);
157 T x2(in + i + 1);
158 const int res_size = T::MaxSizeAtCompileTime * num_scalar_operators;
159 const int size = T::MaxSizeAtCompileTime;
160 int block_idx = 0;
161
162 Map<VectorX<ComplexType>> res(out + out_idx, res_size);
163 res.segment(block_idx, size) = -x1;
164 block_idx += size;
165
166 res.segment(block_idx, size) = x1 + x2;
167 block_idx += size;
168 res.segment(block_idx, size) = x1 + x2.real();
169 block_idx += size;
170 res.segment(block_idx, size) = x1.real() + x2;
171 block_idx += size;
172 res.segment(block_idx, size) = x1 - x2;
173 block_idx += size;
174 res.segment(block_idx, size) = x1 - x2.real();
175 block_idx += size;
176 res.segment(block_idx, size) = x1.real() - x2;
177 block_idx += size;
178 res.segment(block_idx, size) = x1.array() * x2.array();
179 block_idx += size;
180 res.segment(block_idx, size) = x1.array() * x2.real().array();
181 block_idx += size;
182 res.segment(block_idx, size) = x1.real().array() * x2.array();
183 block_idx += size;
184 res.segment(block_idx, size) = x1.array() / x2.array();
185 block_idx += size;
186 res.segment(block_idx, size) = x1.array() / x2.real().array();
187 block_idx += size;
188 res.segment(block_idx, size) = x1.real().array() / x2.array();
189 block_idx += size;
190
191 res.segment(block_idx, size) = x1; res.segment(block_idx, size) += x2;
192 block_idx += size;
193 res.segment(block_idx, size) = x1; res.segment(block_idx, size) -= x2;
194 block_idx += size;
195 res.segment(block_idx, size) = x1; res.segment(block_idx, size).array() *= x2.array();
196 block_idx += size;
197 res.segment(block_idx, size) = x1; res.segment(block_idx, size).array() /= x2.array();
198 block_idx += size;
199
200 const T true_vector = T::Constant(true_value);
201 const T false_vector = T::Constant(false_value);
202 res.segment(block_idx, size) = (x1 == x2 ? true_vector : false_vector);
203 block_idx += size;
204 // Mixing types in equality comparison does not work.
205 // res.segment(block_idx, size) = (x1 == x2.real() ? true_vector : false_vector);
206 // block_idx += size;
207 // res.segment(block_idx, size) = (x1.real() == x2 ? true_vector : false_vector);
208 // block_idx += size;
209 res.segment(block_idx, size) = (x1 != x2 ? true_vector : false_vector);
210 block_idx += size;
211 // res.segment(block_idx, size) = (x1 != x2.real() ? true_vector : false_vector);
212 // block_idx += size;
213 // res.segment(block_idx, size) = (x1.real() != x2 ? true_vector : false_vector);
214 // block_idx += size;
215 }
216};
217
218template<typename T>
219struct replicate {
220 EIGEN_DEVICE_FUNC
221 void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
222 {
223 using namespace Eigen;
224 T x1(in+i);
225 int step = x1.size() * 4;
226 int stride = 3 * step;
227
228 typedef Map<Array<typename T::Scalar,Dynamic,Dynamic> > MapType;
229 MapType(out+i*stride+0*step, x1.rows()*2, x1.cols()*2) = x1.replicate(2,2);
230 MapType(out+i*stride+1*step, x1.rows()*3, x1.cols()) = in[i] * x1.colwise().replicate(3);
231 MapType(out+i*stride+2*step, x1.rows(), x1.cols()*3) = in[i] * x1.rowwise().replicate(3);
232 }
233};
234
235template<typename T>
236struct alloc_new_delete {
237 EIGEN_DEVICE_FUNC
238 void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
239 {
240 int offset = 2*i*T::MaxSizeAtCompileTime;
241 T* x = new T(in + offset);
242 Eigen::Map<T> u(out + offset);
243 u = *x;
244 delete x;
245
246 offset += T::MaxSizeAtCompileTime;
247 T* y = new T[1];
248 y[0] = T(in + offset);
249 Eigen::Map<T> v(out + offset);
250 v = y[0];
251 delete[] y;
252 }
253};
254
255template<typename T>
256struct redux {
257 EIGEN_DEVICE_FUNC
258 void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
259 {
260 using namespace Eigen;
261 int N = 10;
262 T x1(in+i);
263 out[i*N+0] = x1.minCoeff();
264 out[i*N+1] = x1.maxCoeff();
265 out[i*N+2] = x1.sum();
266 out[i*N+3] = x1.prod();
267 out[i*N+4] = x1.matrix().squaredNorm();
268 out[i*N+5] = x1.matrix().norm();
269 out[i*N+6] = x1.colwise().sum().maxCoeff();
270 out[i*N+7] = x1.rowwise().maxCoeff().sum();
271 out[i*N+8] = x1.matrix().colwise().squaredNorm().sum();
272 }
273};
274
275template<typename T1, typename T2>
276struct prod_test {
277 EIGEN_DEVICE_FUNC
278 void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const
279 {
280 using namespace Eigen;
281 typedef Matrix<typename T1::Scalar, T1::RowsAtCompileTime, T2::ColsAtCompileTime> T3;
282 T1 x1(in+i);
283 T2 x2(in+i+1);
284 Map<T3> res(out+i*T3::MaxSizeAtCompileTime);
285 res += in[i] * x1 * x2;
286 }
287};
288
289template<typename T1, typename T2>
290struct diagonal {
291 EIGEN_DEVICE_FUNC
292 void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const
293 {
294 using namespace Eigen;
295 T1 x1(in+i);
296 Map<T2> res(out+i*T2::MaxSizeAtCompileTime);
297 res += x1.diagonal();
298 }
299};
300
301template<typename T>
302struct eigenvalues_direct {
303 EIGEN_DEVICE_FUNC
304 void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
305 {
306 using namespace Eigen;
307 typedef Matrix<typename T::Scalar, T::RowsAtCompileTime, 1> Vec;
308 T M(in+i);
309 Map<Vec> res(out+i*Vec::MaxSizeAtCompileTime);
310 T A = M*M.adjoint();
311 SelfAdjointEigenSolver<T> eig;
312 eig.computeDirect(A);
313 res = eig.eigenvalues();
314 }
315};
316
317template<typename T>
318struct eigenvalues {
319 EIGEN_DEVICE_FUNC
320 void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
321 {
322 using namespace Eigen;
323 typedef Matrix<typename T::Scalar, T::RowsAtCompileTime, 1> Vec;
324 T M(in+i);
325 Map<Vec> res(out+i*Vec::MaxSizeAtCompileTime);
326 T A = M*M.adjoint();
327 SelfAdjointEigenSolver<T> eig;
328 eig.compute(A);
329 res = eig.eigenvalues();
330 }
331};
332
333template<typename T>
334struct matrix_inverse {
335 EIGEN_DEVICE_FUNC
336 void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
337 {
338 using namespace Eigen;
339 T M(in+i);
340 Map<T> res(out+i*T::MaxSizeAtCompileTime);
341 res = M.inverse();
342 }
343};
344
345template<typename T>
346struct numeric_limits_test {
347 EIGEN_DEVICE_FUNC
348 void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
349 {
350 EIGEN_UNUSED_VARIABLE(in)
351 int out_idx = i * 5;
352 out[out_idx++] = numext::numeric_limits<float>::epsilon();
353 out[out_idx++] = (numext::numeric_limits<float>::max)();
354 out[out_idx++] = (numext::numeric_limits<float>::min)();
355 out[out_idx++] = numext::numeric_limits<float>::infinity();
356 out[out_idx++] = numext::numeric_limits<float>::quiet_NaN();
357 }
358};
359
360template<typename Type1, typename Type2>
361bool verifyIsApproxWithInfsNans(const Type1& a, const Type2& b, typename Type1::Scalar* = 0) // Enabled for Eigen's type only
362{
363 if (a.rows() != b.rows()) {
364 return false;
365 }
366 if (a.cols() != b.cols()) {
367 return false;
368 }
369 for (Index r = 0; r < a.rows(); ++r) {
370 for (Index c = 0; c < a.cols(); ++c) {
371 if (a(r, c) != b(r, c)
372 && !((numext::isnan)(a(r, c)) && (numext::isnan)(b(r, c)))
373 && !test_isApprox(a(r, c), b(r, c))) {
374 return false;
375 }
376 }
377 }
378 return true;
379}
380
381template<typename Kernel, typename Input, typename Output>
382void test_with_infs_nans(const Kernel& ker, int n, const Input& in, Output& out)
383{
384 Output out_ref, out_gpu;
385 #if !defined(EIGEN_GPU_COMPILE_PHASE)
386 out_ref = out_gpu = out;
387 #else
388 EIGEN_UNUSED_VARIABLE(in);
389 EIGEN_UNUSED_VARIABLE(out);
390 #endif
391 run_on_cpu (ker, n, in, out_ref);
392 run_on_gpu(ker, n, in, out_gpu);
393 #if !defined(EIGEN_GPU_COMPILE_PHASE)
394 verifyIsApproxWithInfsNans(out_ref, out_gpu);
395 #endif
396}
397
398EIGEN_DECLARE_TEST(gpu_basic)
399{
400 ei_test_init_gpu();
401
402 int nthreads = 100;
403 Eigen::VectorXf in, out;
404 Eigen::VectorXcf cfin, cfout;
405
406 #if !defined(EIGEN_GPU_COMPILE_PHASE)
407 int data_size = nthreads * 512;
408 in.setRandom(data_size);
409 out.setConstant(data_size, -1);
410 cfin.setRandom(data_size);
411 cfout.setConstant(data_size, -1);
412 #endif
413
414 CALL_SUBTEST( run_and_compare_to_gpu(coeff_wise<Vector3f>(), nthreads, in, out) );
415 CALL_SUBTEST( run_and_compare_to_gpu(coeff_wise<Array44f>(), nthreads, in, out) );
416
417#if !defined(EIGEN_USE_HIP)
418 // FIXME
419 // These subtests result in a compile failure on the HIP platform
420 //
421 // eigen-upstream/Eigen/src/Core/Replicate.h:61:65: error:
422 // base class 'internal::dense_xpr_base<Replicate<Array<float, 4, 1, 0, 4, 1>, -1, -1> >::type'
423 // (aka 'ArrayBase<Eigen::Replicate<Eigen::Array<float, 4, 1, 0, 4, 1>, -1, -1> >') has protected default constructor
424 CALL_SUBTEST( run_and_compare_to_gpu(replicate<Array4f>(), nthreads, in, out) );
425 CALL_SUBTEST( run_and_compare_to_gpu(replicate<Array33f>(), nthreads, in, out) );
426
427 // HIP does not support new/delete on device.
428 CALL_SUBTEST( run_and_compare_to_gpu(alloc_new_delete<Vector3f>(), nthreads, in, out) );
429#endif
430
431 CALL_SUBTEST( run_and_compare_to_gpu(redux<Array4f>(), nthreads, in, out) );
432 CALL_SUBTEST( run_and_compare_to_gpu(redux<Matrix3f>(), nthreads, in, out) );
433
434 CALL_SUBTEST( run_and_compare_to_gpu(prod_test<Matrix3f,Matrix3f>(), nthreads, in, out) );
435 CALL_SUBTEST( run_and_compare_to_gpu(prod_test<Matrix4f,Vector4f>(), nthreads, in, out) );
436
437 CALL_SUBTEST( run_and_compare_to_gpu(diagonal<Matrix3f,Vector3f>(), nthreads, in, out) );
438 CALL_SUBTEST( run_and_compare_to_gpu(diagonal<Matrix4f,Vector4f>(), nthreads, in, out) );
439
440 CALL_SUBTEST( run_and_compare_to_gpu(matrix_inverse<Matrix2f>(), nthreads, in, out) );
441 CALL_SUBTEST( run_and_compare_to_gpu(matrix_inverse<Matrix3f>(), nthreads, in, out) );
442 CALL_SUBTEST( run_and_compare_to_gpu(matrix_inverse<Matrix4f>(), nthreads, in, out) );
443
444 CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues_direct<Matrix3f>(), nthreads, in, out) );
445 CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues_direct<Matrix2f>(), nthreads, in, out) );
446
447 // Test std::complex.
448 CALL_SUBTEST( run_and_compare_to_gpu(complex_operators<Vector3cf>(), nthreads, cfin, cfout) );
449 CALL_SUBTEST( test_with_infs_nans(complex_sqrt<Vector3cf>(), nthreads, cfin, cfout) );
450
451 // numeric_limits
452 CALL_SUBTEST( test_with_infs_nans(numeric_limits_test<Vector3f>(), 1, in, out) );
453
454#if defined(__NVCC__)
455 // FIXME
456 // These subtests compiles only with nvcc and fail with HIPCC and clang-cuda
457 CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues<Matrix4f>(), nthreads, in, out) );
458 typedef Matrix<float,6,6> Matrix6f;
459 CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues<Matrix6f>(), nthreads, in, out) );
460#endif
461}