Yi Kong | 2aab794 | 2022-02-25 16:32:14 +0800 | [diff] [blame] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2015-2016 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | // workaround issue between gcc >= 4.7 and cuda 5.5 |
| 11 | #if (defined __GNUC__) && (__GNUC__>4 || __GNUC_MINOR__>=7) |
| 12 | #undef _GLIBCXX_ATOMIC_BUILTINS |
| 13 | #undef _GLIBCXX_USE_INT128 |
| 14 | #endif |
| 15 | |
| 16 | #define EIGEN_TEST_NO_LONGDOUBLE |
| 17 | #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int |
| 18 | |
| 19 | #include "main.h" |
| 20 | #include "gpu_common.h" |
| 21 | |
| 22 | // Check that dense modules can be properly parsed by nvcc |
| 23 | #include <Eigen/Dense> |
| 24 | |
| 25 | // struct Foo{ |
| 26 | // EIGEN_DEVICE_FUNC |
| 27 | // void operator()(int i, const float* mats, float* vecs) const { |
| 28 | // using namespace Eigen; |
| 29 | // // Matrix3f M(data); |
| 30 | // // Vector3f x(data+9); |
| 31 | // // Map<Vector3f>(data+9) = M.inverse() * x; |
| 32 | // Matrix3f M(mats+i/16); |
| 33 | // Vector3f x(vecs+i*3); |
| 34 | // // using std::min; |
| 35 | // // using std::sqrt; |
| 36 | // Map<Vector3f>(vecs+i*3) << x.minCoeff(), 1, 2;// / x.dot(x);//(M.inverse() * x) / x.x(); |
| 37 | // //x = x*2 + x.y() * x + x * x.maxCoeff() - x / x.sum(); |
| 38 | // } |
| 39 | // }; |
| 40 | |
| 41 | template<typename T> |
| 42 | struct coeff_wise { |
| 43 | EIGEN_DEVICE_FUNC |
| 44 | void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const |
| 45 | { |
| 46 | using namespace Eigen; |
| 47 | T x1(in+i); |
| 48 | T x2(in+i+1); |
| 49 | T x3(in+i+2); |
| 50 | Map<T> res(out+i*T::MaxSizeAtCompileTime); |
| 51 | |
| 52 | res.array() += (in[0] * x1 + x2).array() * x3.array(); |
| 53 | } |
| 54 | }; |
| 55 | |
| 56 | template<typename T> |
| 57 | struct complex_sqrt { |
| 58 | EIGEN_DEVICE_FUNC |
| 59 | void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const |
| 60 | { |
| 61 | using namespace Eigen; |
| 62 | typedef typename T::Scalar ComplexType; |
| 63 | typedef typename T::Scalar::value_type ValueType; |
| 64 | const int num_special_inputs = 18; |
| 65 | |
| 66 | if (i == 0) { |
| 67 | const ValueType nan = std::numeric_limits<ValueType>::quiet_NaN(); |
| 68 | typedef Eigen::Vector<ComplexType, num_special_inputs> SpecialInputs; |
| 69 | SpecialInputs special_in; |
| 70 | special_in.setZero(); |
| 71 | int idx = 0; |
| 72 | special_in[idx++] = ComplexType(0, 0); |
| 73 | special_in[idx++] = ComplexType(-0, 0); |
| 74 | special_in[idx++] = ComplexType(0, -0); |
| 75 | special_in[idx++] = ComplexType(-0, -0); |
| 76 | // GCC's fallback sqrt implementation fails for inf inputs. |
| 77 | // It is called when _GLIBCXX_USE_C99_COMPLEX is false or if |
| 78 | // clang includes the GCC header (which temporarily disables |
| 79 | // _GLIBCXX_USE_C99_COMPLEX) |
| 80 | #if !defined(_GLIBCXX_COMPLEX) || \ |
| 81 | (_GLIBCXX_USE_C99_COMPLEX && !defined(__CLANG_CUDA_WRAPPERS_COMPLEX)) |
| 82 | const ValueType inf = std::numeric_limits<ValueType>::infinity(); |
| 83 | special_in[idx++] = ComplexType(1.0, inf); |
| 84 | special_in[idx++] = ComplexType(nan, inf); |
| 85 | special_in[idx++] = ComplexType(1.0, -inf); |
| 86 | special_in[idx++] = ComplexType(nan, -inf); |
| 87 | special_in[idx++] = ComplexType(-inf, 1.0); |
| 88 | special_in[idx++] = ComplexType(inf, 1.0); |
| 89 | special_in[idx++] = ComplexType(-inf, -1.0); |
| 90 | special_in[idx++] = ComplexType(inf, -1.0); |
| 91 | special_in[idx++] = ComplexType(-inf, nan); |
| 92 | special_in[idx++] = ComplexType(inf, nan); |
| 93 | #endif |
| 94 | special_in[idx++] = ComplexType(1.0, nan); |
| 95 | special_in[idx++] = ComplexType(nan, 1.0); |
| 96 | special_in[idx++] = ComplexType(nan, -1.0); |
| 97 | special_in[idx++] = ComplexType(nan, nan); |
| 98 | |
| 99 | Map<SpecialInputs> special_out(out); |
| 100 | special_out = special_in.cwiseSqrt(); |
| 101 | } |
| 102 | |
| 103 | T x1(in + i); |
| 104 | Map<T> res(out + num_special_inputs + i*T::MaxSizeAtCompileTime); |
| 105 | res = x1.cwiseSqrt(); |
| 106 | } |
| 107 | }; |
| 108 | |
| 109 | template<typename T> |
| 110 | struct complex_operators { |
| 111 | EIGEN_DEVICE_FUNC |
| 112 | void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const |
| 113 | { |
| 114 | using namespace Eigen; |
| 115 | typedef typename T::Scalar ComplexType; |
| 116 | typedef typename T::Scalar::value_type ValueType; |
| 117 | const int num_scalar_operators = 24; |
| 118 | const int num_vector_operators = 23; // no unary + operator. |
| 119 | int out_idx = i * (num_scalar_operators + num_vector_operators * T::MaxSizeAtCompileTime); |
| 120 | |
| 121 | // Scalar operators. |
| 122 | const ComplexType a = in[i]; |
| 123 | const ComplexType b = in[i + 1]; |
| 124 | |
| 125 | out[out_idx++] = +a; |
| 126 | out[out_idx++] = -a; |
| 127 | |
| 128 | out[out_idx++] = a + b; |
| 129 | out[out_idx++] = a + numext::real(b); |
| 130 | out[out_idx++] = numext::real(a) + b; |
| 131 | out[out_idx++] = a - b; |
| 132 | out[out_idx++] = a - numext::real(b); |
| 133 | out[out_idx++] = numext::real(a) - b; |
| 134 | out[out_idx++] = a * b; |
| 135 | out[out_idx++] = a * numext::real(b); |
| 136 | out[out_idx++] = numext::real(a) * b; |
| 137 | out[out_idx++] = a / b; |
| 138 | out[out_idx++] = a / numext::real(b); |
| 139 | out[out_idx++] = numext::real(a) / b; |
| 140 | |
| 141 | out[out_idx] = a; out[out_idx++] += b; |
| 142 | out[out_idx] = a; out[out_idx++] -= b; |
| 143 | out[out_idx] = a; out[out_idx++] *= b; |
| 144 | out[out_idx] = a; out[out_idx++] /= b; |
| 145 | |
| 146 | const ComplexType true_value = ComplexType(ValueType(1), ValueType(0)); |
| 147 | const ComplexType false_value = ComplexType(ValueType(0), ValueType(0)); |
| 148 | out[out_idx++] = (a == b ? true_value : false_value); |
| 149 | out[out_idx++] = (a == numext::real(b) ? true_value : false_value); |
| 150 | out[out_idx++] = (numext::real(a) == b ? true_value : false_value); |
| 151 | out[out_idx++] = (a != b ? true_value : false_value); |
| 152 | out[out_idx++] = (a != numext::real(b) ? true_value : false_value); |
| 153 | out[out_idx++] = (numext::real(a) != b ? true_value : false_value); |
| 154 | |
| 155 | // Vector versions. |
| 156 | T x1(in + i); |
| 157 | T x2(in + i + 1); |
| 158 | const int res_size = T::MaxSizeAtCompileTime * num_scalar_operators; |
| 159 | const int size = T::MaxSizeAtCompileTime; |
| 160 | int block_idx = 0; |
| 161 | |
| 162 | Map<VectorX<ComplexType>> res(out + out_idx, res_size); |
| 163 | res.segment(block_idx, size) = -x1; |
| 164 | block_idx += size; |
| 165 | |
| 166 | res.segment(block_idx, size) = x1 + x2; |
| 167 | block_idx += size; |
| 168 | res.segment(block_idx, size) = x1 + x2.real(); |
| 169 | block_idx += size; |
| 170 | res.segment(block_idx, size) = x1.real() + x2; |
| 171 | block_idx += size; |
| 172 | res.segment(block_idx, size) = x1 - x2; |
| 173 | block_idx += size; |
| 174 | res.segment(block_idx, size) = x1 - x2.real(); |
| 175 | block_idx += size; |
| 176 | res.segment(block_idx, size) = x1.real() - x2; |
| 177 | block_idx += size; |
| 178 | res.segment(block_idx, size) = x1.array() * x2.array(); |
| 179 | block_idx += size; |
| 180 | res.segment(block_idx, size) = x1.array() * x2.real().array(); |
| 181 | block_idx += size; |
| 182 | res.segment(block_idx, size) = x1.real().array() * x2.array(); |
| 183 | block_idx += size; |
| 184 | res.segment(block_idx, size) = x1.array() / x2.array(); |
| 185 | block_idx += size; |
| 186 | res.segment(block_idx, size) = x1.array() / x2.real().array(); |
| 187 | block_idx += size; |
| 188 | res.segment(block_idx, size) = x1.real().array() / x2.array(); |
| 189 | block_idx += size; |
| 190 | |
| 191 | res.segment(block_idx, size) = x1; res.segment(block_idx, size) += x2; |
| 192 | block_idx += size; |
| 193 | res.segment(block_idx, size) = x1; res.segment(block_idx, size) -= x2; |
| 194 | block_idx += size; |
| 195 | res.segment(block_idx, size) = x1; res.segment(block_idx, size).array() *= x2.array(); |
| 196 | block_idx += size; |
| 197 | res.segment(block_idx, size) = x1; res.segment(block_idx, size).array() /= x2.array(); |
| 198 | block_idx += size; |
| 199 | |
| 200 | const T true_vector = T::Constant(true_value); |
| 201 | const T false_vector = T::Constant(false_value); |
| 202 | res.segment(block_idx, size) = (x1 == x2 ? true_vector : false_vector); |
| 203 | block_idx += size; |
| 204 | // Mixing types in equality comparison does not work. |
| 205 | // res.segment(block_idx, size) = (x1 == x2.real() ? true_vector : false_vector); |
| 206 | // block_idx += size; |
| 207 | // res.segment(block_idx, size) = (x1.real() == x2 ? true_vector : false_vector); |
| 208 | // block_idx += size; |
| 209 | res.segment(block_idx, size) = (x1 != x2 ? true_vector : false_vector); |
| 210 | block_idx += size; |
| 211 | // res.segment(block_idx, size) = (x1 != x2.real() ? true_vector : false_vector); |
| 212 | // block_idx += size; |
| 213 | // res.segment(block_idx, size) = (x1.real() != x2 ? true_vector : false_vector); |
| 214 | // block_idx += size; |
| 215 | } |
| 216 | }; |
| 217 | |
| 218 | template<typename T> |
| 219 | struct replicate { |
| 220 | EIGEN_DEVICE_FUNC |
| 221 | void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const |
| 222 | { |
| 223 | using namespace Eigen; |
| 224 | T x1(in+i); |
| 225 | int step = x1.size() * 4; |
| 226 | int stride = 3 * step; |
| 227 | |
| 228 | typedef Map<Array<typename T::Scalar,Dynamic,Dynamic> > MapType; |
| 229 | MapType(out+i*stride+0*step, x1.rows()*2, x1.cols()*2) = x1.replicate(2,2); |
| 230 | MapType(out+i*stride+1*step, x1.rows()*3, x1.cols()) = in[i] * x1.colwise().replicate(3); |
| 231 | MapType(out+i*stride+2*step, x1.rows(), x1.cols()*3) = in[i] * x1.rowwise().replicate(3); |
| 232 | } |
| 233 | }; |
| 234 | |
| 235 | template<typename T> |
| 236 | struct alloc_new_delete { |
| 237 | EIGEN_DEVICE_FUNC |
| 238 | void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const |
| 239 | { |
| 240 | int offset = 2*i*T::MaxSizeAtCompileTime; |
| 241 | T* x = new T(in + offset); |
| 242 | Eigen::Map<T> u(out + offset); |
| 243 | u = *x; |
| 244 | delete x; |
| 245 | |
| 246 | offset += T::MaxSizeAtCompileTime; |
| 247 | T* y = new T[1]; |
| 248 | y[0] = T(in + offset); |
| 249 | Eigen::Map<T> v(out + offset); |
| 250 | v = y[0]; |
| 251 | delete[] y; |
| 252 | } |
| 253 | }; |
| 254 | |
| 255 | template<typename T> |
| 256 | struct redux { |
| 257 | EIGEN_DEVICE_FUNC |
| 258 | void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const |
| 259 | { |
| 260 | using namespace Eigen; |
| 261 | int N = 10; |
| 262 | T x1(in+i); |
| 263 | out[i*N+0] = x1.minCoeff(); |
| 264 | out[i*N+1] = x1.maxCoeff(); |
| 265 | out[i*N+2] = x1.sum(); |
| 266 | out[i*N+3] = x1.prod(); |
| 267 | out[i*N+4] = x1.matrix().squaredNorm(); |
| 268 | out[i*N+5] = x1.matrix().norm(); |
| 269 | out[i*N+6] = x1.colwise().sum().maxCoeff(); |
| 270 | out[i*N+7] = x1.rowwise().maxCoeff().sum(); |
| 271 | out[i*N+8] = x1.matrix().colwise().squaredNorm().sum(); |
| 272 | } |
| 273 | }; |
| 274 | |
| 275 | template<typename T1, typename T2> |
| 276 | struct prod_test { |
| 277 | EIGEN_DEVICE_FUNC |
| 278 | void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const |
| 279 | { |
| 280 | using namespace Eigen; |
| 281 | typedef Matrix<typename T1::Scalar, T1::RowsAtCompileTime, T2::ColsAtCompileTime> T3; |
| 282 | T1 x1(in+i); |
| 283 | T2 x2(in+i+1); |
| 284 | Map<T3> res(out+i*T3::MaxSizeAtCompileTime); |
| 285 | res += in[i] * x1 * x2; |
| 286 | } |
| 287 | }; |
| 288 | |
| 289 | template<typename T1, typename T2> |
| 290 | struct diagonal { |
| 291 | EIGEN_DEVICE_FUNC |
| 292 | void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const |
| 293 | { |
| 294 | using namespace Eigen; |
| 295 | T1 x1(in+i); |
| 296 | Map<T2> res(out+i*T2::MaxSizeAtCompileTime); |
| 297 | res += x1.diagonal(); |
| 298 | } |
| 299 | }; |
| 300 | |
| 301 | template<typename T> |
| 302 | struct eigenvalues_direct { |
| 303 | EIGEN_DEVICE_FUNC |
| 304 | void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const |
| 305 | { |
| 306 | using namespace Eigen; |
| 307 | typedef Matrix<typename T::Scalar, T::RowsAtCompileTime, 1> Vec; |
| 308 | T M(in+i); |
| 309 | Map<Vec> res(out+i*Vec::MaxSizeAtCompileTime); |
| 310 | T A = M*M.adjoint(); |
| 311 | SelfAdjointEigenSolver<T> eig; |
| 312 | eig.computeDirect(A); |
| 313 | res = eig.eigenvalues(); |
| 314 | } |
| 315 | }; |
| 316 | |
| 317 | template<typename T> |
| 318 | struct eigenvalues { |
| 319 | EIGEN_DEVICE_FUNC |
| 320 | void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const |
| 321 | { |
| 322 | using namespace Eigen; |
| 323 | typedef Matrix<typename T::Scalar, T::RowsAtCompileTime, 1> Vec; |
| 324 | T M(in+i); |
| 325 | Map<Vec> res(out+i*Vec::MaxSizeAtCompileTime); |
| 326 | T A = M*M.adjoint(); |
| 327 | SelfAdjointEigenSolver<T> eig; |
| 328 | eig.compute(A); |
| 329 | res = eig.eigenvalues(); |
| 330 | } |
| 331 | }; |
| 332 | |
| 333 | template<typename T> |
| 334 | struct matrix_inverse { |
| 335 | EIGEN_DEVICE_FUNC |
| 336 | void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const |
| 337 | { |
| 338 | using namespace Eigen; |
| 339 | T M(in+i); |
| 340 | Map<T> res(out+i*T::MaxSizeAtCompileTime); |
| 341 | res = M.inverse(); |
| 342 | } |
| 343 | }; |
| 344 | |
| 345 | template<typename T> |
| 346 | struct numeric_limits_test { |
| 347 | EIGEN_DEVICE_FUNC |
| 348 | void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const |
| 349 | { |
| 350 | EIGEN_UNUSED_VARIABLE(in) |
| 351 | int out_idx = i * 5; |
| 352 | out[out_idx++] = numext::numeric_limits<float>::epsilon(); |
| 353 | out[out_idx++] = (numext::numeric_limits<float>::max)(); |
| 354 | out[out_idx++] = (numext::numeric_limits<float>::min)(); |
| 355 | out[out_idx++] = numext::numeric_limits<float>::infinity(); |
| 356 | out[out_idx++] = numext::numeric_limits<float>::quiet_NaN(); |
| 357 | } |
| 358 | }; |
| 359 | |
| 360 | template<typename Type1, typename Type2> |
| 361 | bool verifyIsApproxWithInfsNans(const Type1& a, const Type2& b, typename Type1::Scalar* = 0) // Enabled for Eigen's type only |
| 362 | { |
| 363 | if (a.rows() != b.rows()) { |
| 364 | return false; |
| 365 | } |
| 366 | if (a.cols() != b.cols()) { |
| 367 | return false; |
| 368 | } |
| 369 | for (Index r = 0; r < a.rows(); ++r) { |
| 370 | for (Index c = 0; c < a.cols(); ++c) { |
| 371 | if (a(r, c) != b(r, c) |
| 372 | && !((numext::isnan)(a(r, c)) && (numext::isnan)(b(r, c))) |
| 373 | && !test_isApprox(a(r, c), b(r, c))) { |
| 374 | return false; |
| 375 | } |
| 376 | } |
| 377 | } |
| 378 | return true; |
| 379 | } |
| 380 | |
| 381 | template<typename Kernel, typename Input, typename Output> |
| 382 | void test_with_infs_nans(const Kernel& ker, int n, const Input& in, Output& out) |
| 383 | { |
| 384 | Output out_ref, out_gpu; |
| 385 | #if !defined(EIGEN_GPU_COMPILE_PHASE) |
| 386 | out_ref = out_gpu = out; |
| 387 | #else |
| 388 | EIGEN_UNUSED_VARIABLE(in); |
| 389 | EIGEN_UNUSED_VARIABLE(out); |
| 390 | #endif |
| 391 | run_on_cpu (ker, n, in, out_ref); |
| 392 | run_on_gpu(ker, n, in, out_gpu); |
| 393 | #if !defined(EIGEN_GPU_COMPILE_PHASE) |
| 394 | verifyIsApproxWithInfsNans(out_ref, out_gpu); |
| 395 | #endif |
| 396 | } |
| 397 | |
| 398 | EIGEN_DECLARE_TEST(gpu_basic) |
| 399 | { |
| 400 | ei_test_init_gpu(); |
| 401 | |
| 402 | int nthreads = 100; |
| 403 | Eigen::VectorXf in, out; |
| 404 | Eigen::VectorXcf cfin, cfout; |
| 405 | |
| 406 | #if !defined(EIGEN_GPU_COMPILE_PHASE) |
| 407 | int data_size = nthreads * 512; |
| 408 | in.setRandom(data_size); |
| 409 | out.setConstant(data_size, -1); |
| 410 | cfin.setRandom(data_size); |
| 411 | cfout.setConstant(data_size, -1); |
| 412 | #endif |
| 413 | |
| 414 | CALL_SUBTEST( run_and_compare_to_gpu(coeff_wise<Vector3f>(), nthreads, in, out) ); |
| 415 | CALL_SUBTEST( run_and_compare_to_gpu(coeff_wise<Array44f>(), nthreads, in, out) ); |
| 416 | |
| 417 | #if !defined(EIGEN_USE_HIP) |
| 418 | // FIXME |
| 419 | // These subtests result in a compile failure on the HIP platform |
| 420 | // |
| 421 | // eigen-upstream/Eigen/src/Core/Replicate.h:61:65: error: |
| 422 | // base class 'internal::dense_xpr_base<Replicate<Array<float, 4, 1, 0, 4, 1>, -1, -1> >::type' |
| 423 | // (aka 'ArrayBase<Eigen::Replicate<Eigen::Array<float, 4, 1, 0, 4, 1>, -1, -1> >') has protected default constructor |
| 424 | CALL_SUBTEST( run_and_compare_to_gpu(replicate<Array4f>(), nthreads, in, out) ); |
| 425 | CALL_SUBTEST( run_and_compare_to_gpu(replicate<Array33f>(), nthreads, in, out) ); |
| 426 | |
| 427 | // HIP does not support new/delete on device. |
| 428 | CALL_SUBTEST( run_and_compare_to_gpu(alloc_new_delete<Vector3f>(), nthreads, in, out) ); |
| 429 | #endif |
| 430 | |
| 431 | CALL_SUBTEST( run_and_compare_to_gpu(redux<Array4f>(), nthreads, in, out) ); |
| 432 | CALL_SUBTEST( run_and_compare_to_gpu(redux<Matrix3f>(), nthreads, in, out) ); |
| 433 | |
| 434 | CALL_SUBTEST( run_and_compare_to_gpu(prod_test<Matrix3f,Matrix3f>(), nthreads, in, out) ); |
| 435 | CALL_SUBTEST( run_and_compare_to_gpu(prod_test<Matrix4f,Vector4f>(), nthreads, in, out) ); |
| 436 | |
| 437 | CALL_SUBTEST( run_and_compare_to_gpu(diagonal<Matrix3f,Vector3f>(), nthreads, in, out) ); |
| 438 | CALL_SUBTEST( run_and_compare_to_gpu(diagonal<Matrix4f,Vector4f>(), nthreads, in, out) ); |
| 439 | |
| 440 | CALL_SUBTEST( run_and_compare_to_gpu(matrix_inverse<Matrix2f>(), nthreads, in, out) ); |
| 441 | CALL_SUBTEST( run_and_compare_to_gpu(matrix_inverse<Matrix3f>(), nthreads, in, out) ); |
| 442 | CALL_SUBTEST( run_and_compare_to_gpu(matrix_inverse<Matrix4f>(), nthreads, in, out) ); |
| 443 | |
| 444 | CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues_direct<Matrix3f>(), nthreads, in, out) ); |
| 445 | CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues_direct<Matrix2f>(), nthreads, in, out) ); |
| 446 | |
| 447 | // Test std::complex. |
| 448 | CALL_SUBTEST( run_and_compare_to_gpu(complex_operators<Vector3cf>(), nthreads, cfin, cfout) ); |
| 449 | CALL_SUBTEST( test_with_infs_nans(complex_sqrt<Vector3cf>(), nthreads, cfin, cfout) ); |
| 450 | |
| 451 | // numeric_limits |
| 452 | CALL_SUBTEST( test_with_infs_nans(numeric_limits_test<Vector3f>(), 1, in, out) ); |
| 453 | |
| 454 | #if defined(__NVCC__) |
| 455 | // FIXME |
| 456 | // These subtests compiles only with nvcc and fail with HIPCC and clang-cuda |
| 457 | CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues<Matrix4f>(), nthreads, in, out) ); |
| 458 | typedef Matrix<float,6,6> Matrix6f; |
| 459 | CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues<Matrix6f>(), nthreads, in, out) ); |
| 460 | #endif |
| 461 | } |