| /* Function return value location for Linux/AArch64 ABI. |
| Copyright (C) 2013 Red Hat, Inc. |
| This file is part of elfutils. |
| |
| This file is free software; you can redistribute it and/or modify |
| it under the terms of either |
| |
| * the GNU Lesser General Public License as published by the Free |
| Software Foundation; either version 3 of the License, or (at |
| your option) any later version |
| |
| or |
| |
| * the GNU General Public License as published by the Free |
| Software Foundation; either version 2 of the License, or (at |
| your option) any later version |
| |
| or both in parallel, as here. |
| |
| elfutils is distributed in the hope that it will be useful, but |
| WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| General Public License for more details. |
| |
| You should have received copies of the GNU General Public License and |
| the GNU Lesser General Public License along with this program. If |
| not, see <http://www.gnu.org/licenses/>. */ |
| |
| #ifdef HAVE_CONFIG_H |
| # include <config.h> |
| #endif |
| |
| #include <stdio.h> |
| #include <inttypes.h> |
| |
| #include <assert.h> |
| #include <dwarf.h> |
| |
| #define BACKEND aarch64_ |
| #include "libebl_CPU.h" |
| |
| static int |
| skip_until (Dwarf_Die *child, int tag) |
| { |
| int i; |
| while (DWARF_TAG_OR_RETURN (child) != tag) |
| if ((i = dwarf_siblingof (child, child)) != 0) |
| /* If there are no members, then this is not a HFA. Errors |
| are propagated. */ |
| return i; |
| return 0; |
| } |
| |
| static int |
| dwarf_bytesize_aux (Dwarf_Die *die, Dwarf_Word *sizep) |
| { |
| int bits; |
| if (((bits = 8 * dwarf_bytesize (die)) < 0 |
| && (bits = dwarf_bitsize (die)) < 0) |
| || bits % 8 != 0) |
| return -1; |
| |
| *sizep = bits / 8; |
| return 0; |
| } |
| |
| /* HFA (Homogeneous Floating-point Aggregate) is an aggregate type |
| whose members are all of the same floating-point type, which is |
| then base type of this HFA. Instead of being floating-point types |
| directly, members can instead themselves be HFA. Such HFA fields |
| are handled as if their type were HFA base type. |
| |
| This function returns 0 if TYPEDIE is HFA, 1 if it is not, or -1 if |
| there were errors. In the former case, *SIZEP contains byte size |
| of the base type (e.g. 8 for IEEE double). *COUNT is set to the |
| number of leaf members of the HFA. */ |
| static int hfa_type (Dwarf_Die *ftypedie, int tag, |
| Dwarf_Word *sizep, Dwarf_Word *countp); |
| |
| /* Return 0 if MEMBDIE refers to a member with a floating-point or HFA |
| type, or 1 if it's not. Return -1 for errors. The meaning of the |
| remaining arguments is as documented at hfa_type. */ |
| static int |
| member_is_fp (Dwarf_Die *membdie, Dwarf_Word *sizep, Dwarf_Word *countp) |
| { |
| Dwarf_Die typedie; |
| int tag = dwarf_peeled_die_type (membdie, &typedie); |
| switch (tag) |
| { |
| case DW_TAG_base_type:; |
| Dwarf_Word encoding; |
| Dwarf_Attribute attr_mem; |
| if (dwarf_attr_integrate (&typedie, DW_AT_encoding, &attr_mem) == NULL |
| || dwarf_formudata (&attr_mem, &encoding) != 0) |
| return -1; |
| |
| switch (encoding) |
| { |
| case DW_ATE_complex_float: |
| *countp = 2; |
| break; |
| |
| case DW_ATE_float: |
| *countp = 1; |
| break; |
| |
| default: |
| return 1; |
| } |
| |
| if (dwarf_bytesize_aux (&typedie, sizep) < 0) |
| return -1; |
| |
| *sizep /= *countp; |
| return 0; |
| |
| case DW_TAG_structure_type: |
| case DW_TAG_union_type: |
| case DW_TAG_array_type: |
| return hfa_type (&typedie, tag, sizep, countp); |
| } |
| |
| return 1; |
| } |
| |
| static int |
| hfa_type (Dwarf_Die *ftypedie, int tag, Dwarf_Word *sizep, Dwarf_Word *countp) |
| { |
| assert (tag == DW_TAG_structure_type || tag == DW_TAG_class_type |
| || tag == DW_TAG_union_type || tag == DW_TAG_array_type); |
| |
| int i; |
| if (tag == DW_TAG_array_type) |
| { |
| Dwarf_Word tot_size; |
| if (dwarf_aggregate_size (ftypedie, &tot_size) < 0) |
| return -1; |
| |
| /* For vector types, we don't care about the underlying |
| type, but only about the vector type itself. */ |
| bool vec; |
| Dwarf_Attribute attr_mem; |
| if (dwarf_formflag (dwarf_attr_integrate (ftypedie, DW_AT_GNU_vector, |
| &attr_mem), &vec) == 0 |
| && vec) |
| { |
| *sizep = tot_size; |
| *countp = 1; |
| |
| return 0; |
| } |
| |
| if ((i = member_is_fp (ftypedie, sizep, countp)) == 0) |
| { |
| *countp = tot_size / *sizep; |
| return 0; |
| } |
| |
| return i; |
| } |
| |
| /* Find first DW_TAG_member and determine its type. */ |
| Dwarf_Die member; |
| if ((i = dwarf_child (ftypedie, &member) != 0)) |
| return i; |
| |
| if ((i = skip_until (&member, DW_TAG_member)) != 0) |
| return i; |
| |
| *countp = 0; |
| if ((i = member_is_fp (&member, sizep, countp)) != 0) |
| return i; |
| |
| while ((i = dwarf_siblingof (&member, &member)) == 0 |
| && (i = skip_until (&member, DW_TAG_member)) == 0) |
| { |
| Dwarf_Word size, count; |
| if ((i = member_is_fp (&member, &size, &count)) != 0) |
| return i; |
| |
| if (*sizep != size) |
| return 1; |
| |
| *countp += count; |
| } |
| |
| /* At this point we already have at least one FP member, which means |
| FTYPEDIE is an HFA. So either return 0, or propagate error. */ |
| return i < 0 ? i : 0; |
| } |
| |
| static int |
| pass_in_gpr (const Dwarf_Op **locp, Dwarf_Word size) |
| { |
| static const Dwarf_Op loc[] = |
| { |
| { .atom = DW_OP_reg0 }, { .atom = DW_OP_piece, .number = 8 }, |
| { .atom = DW_OP_reg1 }, { .atom = DW_OP_piece, .number = 8 } |
| }; |
| |
| *locp = loc; |
| return size <= 8 ? 1 : 4; |
| } |
| |
| static int |
| pass_by_ref (const Dwarf_Op **locp) |
| { |
| static const Dwarf_Op loc[] = { { .atom = DW_OP_breg0 } }; |
| |
| *locp = loc; |
| return 1; |
| } |
| |
| static int |
| pass_hfa (const Dwarf_Op **locp, Dwarf_Word size, Dwarf_Word count) |
| { |
| assert (count >= 1 && count <= 4); |
| assert (size == 2 || size == 4 || size == 8 || size == 16); |
| |
| #define DEFINE_FPREG(NAME, SIZE) \ |
| static const Dwarf_Op NAME[] = { \ |
| { .atom = DW_OP_regx, .number = 64 }, \ |
| { .atom = DW_OP_piece, .number = SIZE }, \ |
| { .atom = DW_OP_regx, .number = 65 }, \ |
| { .atom = DW_OP_piece, .number = SIZE }, \ |
| { .atom = DW_OP_regx, .number = 66 }, \ |
| { .atom = DW_OP_piece, .number = SIZE }, \ |
| { .atom = DW_OP_regx, .number = 67 }, \ |
| { .atom = DW_OP_piece, .number = SIZE } \ |
| } |
| |
| switch (size) |
| { |
| case 2:; |
| DEFINE_FPREG (loc_hfa_2, 2); |
| *locp = loc_hfa_2; |
| break; |
| |
| case 4:; |
| DEFINE_FPREG (loc_hfa_4, 4); |
| *locp = loc_hfa_4; |
| break; |
| |
| case 8:; |
| DEFINE_FPREG (loc_hfa_8, 8); |
| *locp = loc_hfa_8; |
| break; |
| |
| case 16:; |
| DEFINE_FPREG (loc_hfa_16, 16); |
| *locp = loc_hfa_16; |
| break; |
| } |
| #undef DEFINE_FPREG |
| |
| return count == 1 ? 1 : 2 * count; |
| } |
| |
| static int |
| pass_in_simd (const Dwarf_Op **locp) |
| { |
| /* This is like passing single-element HFA. Size doesn't matter, so |
| pretend it's for example double. */ |
| return pass_hfa (locp, 8, 1); |
| } |
| |
| int |
| aarch64_return_value_location (Dwarf_Die *functypedie, const Dwarf_Op **locp) |
| { |
| /* Start with the function's type, and get the DW_AT_type attribute, |
| which is the type of the return value. */ |
| Dwarf_Die typedie; |
| int tag = dwarf_peeled_die_type (functypedie, &typedie); |
| if (tag <= 0) |
| return tag; |
| |
| Dwarf_Word size = (Dwarf_Word)-1; |
| |
| /* If the argument type is a Composite Type that is larger than 16 |
| bytes, then the argument is copied to memory allocated by the |
| caller and the argument is replaced by a pointer to the copy. */ |
| if (tag == DW_TAG_structure_type || tag == DW_TAG_union_type |
| || tag == DW_TAG_class_type || tag == DW_TAG_array_type) |
| { |
| Dwarf_Word base_size, count; |
| switch (hfa_type (&typedie, tag, &base_size, &count)) |
| { |
| default: |
| return -1; |
| |
| case 0: |
| assert (count > 0); |
| if (count <= 4) |
| return pass_hfa (locp, base_size, count); |
| FALLTHROUGH; |
| |
| case 1: |
| /* Not a HFA. */ |
| if (dwarf_aggregate_size (&typedie, &size) < 0) |
| return -1; |
| if (size > 16) |
| return pass_by_ref (locp); |
| } |
| } |
| |
| if (tag == DW_TAG_base_type |
| || tag == DW_TAG_pointer_type || tag == DW_TAG_ptr_to_member_type) |
| { |
| if (dwarf_bytesize_aux (&typedie, &size) < 0) |
| { |
| if (tag == DW_TAG_pointer_type || tag == DW_TAG_ptr_to_member_type) |
| size = 8; |
| else |
| return -1; |
| } |
| |
| Dwarf_Attribute attr_mem; |
| if (tag == DW_TAG_base_type) |
| { |
| Dwarf_Word encoding; |
| if (dwarf_formudata (dwarf_attr_integrate (&typedie, DW_AT_encoding, |
| &attr_mem), |
| &encoding) != 0) |
| return -1; |
| |
| switch (encoding) |
| { |
| /* If the argument is a Half-, Single-, Double- or Quad- |
| precision Floating-point [...] the argument is allocated |
| to the least significant bits of register v[NSRN]. */ |
| case DW_ATE_float: |
| switch (size) |
| { |
| case 2: /* half */ |
| case 4: /* single */ |
| case 8: /* double */ |
| case 16: /* quad */ |
| return pass_in_simd (locp); |
| |
| default: |
| return -2; |
| } |
| |
| case DW_ATE_complex_float: |
| switch (size) |
| { |
| case 8: /* float _Complex */ |
| case 16: /* double _Complex */ |
| case 32: /* long double _Complex */ |
| return pass_hfa (locp, size / 2, 2); |
| |
| default: |
| return -2; |
| } |
| |
| /* If the argument is an Integral or Pointer Type, the |
| size of the argument is less than or equal to 8 bytes |
| [...] the argument is copied to the least significant |
| bits in x[NGRN]. */ |
| case DW_ATE_boolean: |
| case DW_ATE_signed: |
| case DW_ATE_unsigned: |
| case DW_ATE_unsigned_char: |
| case DW_ATE_signed_char: |
| return pass_in_gpr (locp, size); |
| } |
| |
| return -2; |
| } |
| else |
| return pass_in_gpr (locp, size); |
| } |
| |
| *locp = NULL; |
| return 0; |
| } |