| /* Function return value location for IA64 ABI. |
| Copyright (C) 2006-2010, 2014 Red Hat, Inc. |
| This file is part of elfutils. |
| |
| This file is free software; you can redistribute it and/or modify |
| it under the terms of either |
| |
| * the GNU Lesser General Public License as published by the Free |
| Software Foundation; either version 3 of the License, or (at |
| your option) any later version |
| |
| or |
| |
| * the GNU General Public License as published by the Free |
| Software Foundation; either version 2 of the License, or (at |
| your option) any later version |
| |
| or both in parallel, as here. |
| |
| elfutils is distributed in the hope that it will be useful, but |
| WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| General Public License for more details. |
| |
| You should have received copies of the GNU General Public License and |
| the GNU Lesser General Public License along with this program. If |
| not, see <http://www.gnu.org/licenses/>. */ |
| |
| #ifdef HAVE_CONFIG_H |
| # include <config.h> |
| #endif |
| |
| #include <assert.h> |
| #include <dwarf.h> |
| |
| #define BACKEND ia64_ |
| #include "libebl_CPU.h" |
| |
| |
| /* r8, or pair r8, r9, or aggregate up to r8-r11. */ |
| static const Dwarf_Op loc_intreg[] = |
| { |
| { .atom = DW_OP_reg8 }, { .atom = DW_OP_piece, .number = 8 }, |
| { .atom = DW_OP_reg9 }, { .atom = DW_OP_piece, .number = 8 }, |
| { .atom = DW_OP_reg10 }, { .atom = DW_OP_piece, .number = 8 }, |
| { .atom = DW_OP_reg11 }, { .atom = DW_OP_piece, .number = 8 }, |
| }; |
| #define nloc_intreg 1 |
| #define nloc_intregs(n) (2 * (n)) |
| |
| /* f8, or aggregate up to f8-f15. */ |
| #define DEFINE_FPREG(size) \ |
| static const Dwarf_Op loc_fpreg_##size[] = \ |
| { \ |
| { .atom = DW_OP_regx, .number = 128 + 8 }, \ |
| { .atom = DW_OP_piece, .number = size }, \ |
| { .atom = DW_OP_regx, .number = 128 + 9 }, \ |
| { .atom = DW_OP_piece, .number = size }, \ |
| { .atom = DW_OP_regx, .number = 128 + 10 }, \ |
| { .atom = DW_OP_piece, .number = size }, \ |
| { .atom = DW_OP_regx, .number = 128 + 11 }, \ |
| { .atom = DW_OP_piece, .number = size }, \ |
| { .atom = DW_OP_regx, .number = 128 + 12 }, \ |
| { .atom = DW_OP_piece, .number = size }, \ |
| { .atom = DW_OP_regx, .number = 128 + 13 }, \ |
| { .atom = DW_OP_piece, .number = size }, \ |
| { .atom = DW_OP_regx, .number = 128 + 14 }, \ |
| { .atom = DW_OP_piece, .number = size }, \ |
| { .atom = DW_OP_regx, .number = 128 + 15 }, \ |
| { .atom = DW_OP_piece, .number = size }, \ |
| } |
| #define nloc_fpreg 1 |
| #define nloc_fpregs(n) (2 * (n)) |
| |
| DEFINE_FPREG (4); |
| DEFINE_FPREG (8); |
| DEFINE_FPREG (10); |
| |
| #undef DEFINE_FPREG |
| |
| |
| /* The return value is a structure and is actually stored in stack space |
| passed in a hidden argument by the caller. But, the compiler |
| helpfully returns the address of that space in r8. */ |
| static const Dwarf_Op loc_aggregate[] = |
| { |
| { .atom = DW_OP_breg8, .number = 0 } |
| }; |
| #define nloc_aggregate 1 |
| |
| |
| static inline int |
| compute_hfa (const Dwarf_Op *loc, int nregs, |
| const Dwarf_Op **locp, int fpregs_used) |
| { |
| if (fpregs_used == 0) |
| *locp = loc; |
| else if (*locp != loc) |
| return 9; |
| return fpregs_used + nregs; |
| } |
| |
| /* If this type is an HFA small enough to be returned in FP registers, |
| return the number of registers to use. Otherwise 9, or -1 for errors. */ |
| static int |
| hfa_type (Dwarf_Die *typedie, Dwarf_Word size, |
| const Dwarf_Op **locp, int fpregs_used) |
| { |
| /* Descend the type structure, counting elements and finding their types. |
| If we find a datum that's not an FP type (and not quad FP), punt. |
| If we find a datum that's not the same FP type as the first datum, punt. |
| If we count more than eight total homogeneous FP data, punt. */ |
| |
| int tag = DWARF_TAG_OR_RETURN (typedie); |
| switch (tag) |
| { |
| Dwarf_Attribute attr_mem; |
| |
| case -1: |
| return -1; |
| |
| case DW_TAG_base_type:; |
| Dwarf_Word encoding; |
| if (dwarf_formudata (dwarf_attr_integrate (typedie, DW_AT_encoding, |
| &attr_mem), &encoding) != 0) |
| return -1; |
| |
| #define hfa(loc, nregs) compute_hfa(loc, nregs, locp, fpregs_used) |
| switch (encoding) |
| { |
| case DW_ATE_float: |
| switch (size) |
| { |
| case 4: /* float */ |
| return hfa (loc_fpreg_4, 1); |
| case 8: /* double */ |
| return hfa (loc_fpreg_8, 1); |
| case 10: /* x86-style long double, not really used */ |
| return hfa (loc_fpreg_10, 1); |
| } |
| break; |
| |
| case DW_ATE_complex_float: |
| switch (size) |
| { |
| case 4 * 2: /* complex float */ |
| return hfa (loc_fpreg_4, 2); |
| case 8 * 2: /* complex double */ |
| return hfa (loc_fpreg_8, 2); |
| case 10 * 2: /* complex long double (x86-style) */ |
| return hfa (loc_fpreg_10, 2); |
| } |
| break; |
| } |
| break; |
| |
| case DW_TAG_structure_type: |
| case DW_TAG_class_type: |
| case DW_TAG_union_type:; |
| Dwarf_Die child_mem; |
| switch (dwarf_child (typedie, &child_mem)) |
| { |
| default: |
| return -1; |
| |
| case 1: /* No children: empty struct. */ |
| break; |
| |
| case 0:; /* Look at each element. */ |
| int max_used = fpregs_used; |
| do |
| switch (dwarf_tag (&child_mem)) |
| { |
| case -1: |
| return -1; |
| |
| case DW_TAG_member:; |
| Dwarf_Die child_type_mem; |
| Dwarf_Die *child_typedie |
| = dwarf_formref_die (dwarf_attr_integrate (&child_mem, |
| DW_AT_type, |
| &attr_mem), |
| &child_type_mem); |
| Dwarf_Word child_size; |
| if (dwarf_aggregate_size (child_typedie, &child_size) != 0) |
| return -1; |
| if (tag == DW_TAG_union_type) |
| { |
| int used = hfa_type (child_typedie, child_size, |
| locp, fpregs_used); |
| if (used < 0 || used > 8) |
| return used; |
| if (used > max_used) |
| max_used = used; |
| } |
| else |
| { |
| fpregs_used = hfa_type (child_typedie, child_size, |
| locp, fpregs_used); |
| if (fpregs_used < 0 || fpregs_used > 8) |
| return fpregs_used; |
| } |
| } |
| while (dwarf_siblingof (&child_mem, &child_mem) == 0); |
| if (tag == DW_TAG_union_type) |
| fpregs_used = max_used; |
| break; |
| } |
| break; |
| |
| case DW_TAG_array_type: |
| if (size == 0) |
| break; |
| |
| Dwarf_Die base_type_mem; |
| Dwarf_Die *base_typedie |
| = dwarf_formref_die (dwarf_attr_integrate (typedie, DW_AT_type, |
| &attr_mem), |
| &base_type_mem); |
| Dwarf_Word base_size; |
| if (dwarf_aggregate_size (base_typedie, &base_size) != 0) |
| return -1; |
| |
| int used = hfa_type (base_typedie, base_size, locp, 0); |
| if (used < 0 || used > 8) |
| return used; |
| if (size % (*locp)[1].number != 0) |
| return 0; |
| fpregs_used += used * (size / (*locp)[1].number); |
| break; |
| |
| default: |
| return 9; |
| } |
| |
| return fpregs_used; |
| } |
| |
| int |
| ia64_return_value_location (Dwarf_Die *functypedie, const Dwarf_Op **locp) |
| { |
| /* Start with the function's type, and get the DW_AT_type attribute, |
| which is the type of the return value. */ |
| Dwarf_Die die_mem, *typedie = &die_mem; |
| int tag = dwarf_peeled_die_type (functypedie, typedie); |
| if (tag <= 0) |
| return tag; |
| |
| Dwarf_Word size; |
| switch (tag) |
| { |
| case -1: |
| return -1; |
| |
| case DW_TAG_subrange_type: |
| if (! dwarf_hasattr_integrate (typedie, DW_AT_byte_size)) |
| { |
| Dwarf_Attribute attr_mem, *attr; |
| attr = dwarf_attr_integrate (typedie, DW_AT_type, &attr_mem); |
| typedie = dwarf_formref_die (attr, &die_mem); |
| tag = DWARF_TAG_OR_RETURN (typedie); |
| } |
| FALLTHROUGH; |
| |
| case DW_TAG_base_type: |
| case DW_TAG_enumeration_type: |
| case DW_TAG_pointer_type: |
| case DW_TAG_ptr_to_member_type: |
| { |
| Dwarf_Attribute attr_mem; |
| if (dwarf_formudata (dwarf_attr_integrate (typedie, DW_AT_byte_size, |
| &attr_mem), &size) != 0) |
| { |
| if (tag == DW_TAG_pointer_type || tag == DW_TAG_ptr_to_member_type) |
| size = 8; |
| else |
| return -1; |
| } |
| } |
| |
| if (tag == DW_TAG_base_type) |
| { |
| Dwarf_Attribute attr_mem; |
| Dwarf_Word encoding; |
| if (dwarf_formudata (dwarf_attr_integrate (typedie, DW_AT_encoding, |
| &attr_mem), |
| &encoding) != 0) |
| return -1; |
| |
| switch (encoding) |
| { |
| case DW_ATE_float: |
| switch (size) |
| { |
| case 4: /* float */ |
| *locp = loc_fpreg_4; |
| return nloc_fpreg; |
| case 8: /* double */ |
| *locp = loc_fpreg_8; |
| return nloc_fpreg; |
| case 10: /* x86-style long double, not really used */ |
| *locp = loc_fpreg_10; |
| return nloc_fpreg; |
| case 16: /* long double, IEEE quad format */ |
| *locp = loc_intreg; |
| return nloc_intregs (2); |
| } |
| return -2; |
| |
| case DW_ATE_complex_float: |
| switch (size) |
| { |
| case 4 * 2: /* complex float */ |
| *locp = loc_fpreg_4; |
| return nloc_fpregs (2); |
| case 8 * 2: /* complex double */ |
| *locp = loc_fpreg_8; |
| return nloc_fpregs (2); |
| case 10 * 2: /* complex long double (x86-style) */ |
| *locp = loc_fpreg_10; |
| return nloc_fpregs (2); |
| case 16 * 2: /* complex long double (IEEE quad) */ |
| *locp = loc_intreg; |
| return nloc_intregs (4); |
| } |
| return -2; |
| } |
| } |
| |
| intreg: |
| *locp = loc_intreg; |
| if (size <= 8) |
| return nloc_intreg; |
| if (size <= 32) |
| return nloc_intregs ((size + 7) / 8); |
| |
| large: |
| *locp = loc_aggregate; |
| return nloc_aggregate; |
| |
| case DW_TAG_structure_type: |
| case DW_TAG_class_type: |
| case DW_TAG_union_type: |
| case DW_TAG_array_type: |
| if (dwarf_aggregate_size (typedie, &size) != 0) |
| return -1; |
| |
| /* If this qualifies as an homogeneous floating-point aggregate |
| (HFA), then it should be returned in FP regs. */ |
| int nfpreg = hfa_type (typedie, size, locp, 0); |
| if (nfpreg < 0) |
| return nfpreg; |
| else if (nfpreg > 0 && nfpreg <= 8) |
| return nfpreg == 1 ? nloc_fpreg : nloc_fpregs (nfpreg); |
| |
| if (size > 32) |
| goto large; |
| |
| goto intreg; |
| } |
| |
| /* XXX We don't have a good way to return specific errors from ebl calls. |
| This value means we do not understand the type, but it is well-formed |
| DWARF and might be valid. */ |
| return -2; |
| } |