| /* |
| * jcmaster.c |
| * |
| * Copyright (C) 1991-1997, Thomas G. Lane. |
| * Modified 2003-2009 by Guido Vollbeding. |
| * This file is part of the Independent JPEG Group's software. |
| * For conditions of distribution and use, see the accompanying README file. |
| * |
| * This file contains master control logic for the JPEG compressor. |
| * These routines are concerned with parameter validation, initial setup, |
| * and inter-pass control (determining the number of passes and the work |
| * to be done in each pass). |
| */ |
| |
| #define JPEG_INTERNALS |
| #include "jinclude.h" |
| #include "jpeglib.h" |
| |
| |
| /* Private state */ |
| |
| typedef enum { |
| main_pass, /* input data, also do first output step */ |
| huff_opt_pass, /* Huffman code optimization pass */ |
| output_pass /* data output pass */ |
| } c_pass_type; |
| |
| typedef struct { |
| struct jpeg_comp_master pub; /* public fields */ |
| |
| c_pass_type pass_type; /* the type of the current pass */ |
| |
| int pass_number; /* # of passes completed */ |
| int total_passes; /* total # of passes needed */ |
| |
| int scan_number; /* current index in scan_info[] */ |
| } my_comp_master; |
| |
| typedef my_comp_master * my_master_ptr; |
| |
| |
| /* |
| * Support routines that do various essential calculations. |
| */ |
| |
| /* |
| * Compute JPEG image dimensions and related values. |
| * NOTE: this is exported for possible use by application. |
| * Hence it mustn't do anything that can't be done twice. |
| */ |
| |
| GLOBAL(void) |
| jpeg_calc_jpeg_dimensions (j_compress_ptr cinfo) |
| /* Do computations that are needed before master selection phase */ |
| { |
| #ifdef DCT_SCALING_SUPPORTED |
| |
| /* Compute actual JPEG image dimensions and DCT scaling choices. */ |
| if (cinfo->scale_num >= cinfo->scale_denom * 8) { |
| /* Provide 8/1 scaling */ |
| cinfo->jpeg_width = cinfo->image_width << 3; |
| cinfo->jpeg_height = cinfo->image_height << 3; |
| cinfo->min_DCT_h_scaled_size = 1; |
| cinfo->min_DCT_v_scaled_size = 1; |
| } else if (cinfo->scale_num >= cinfo->scale_denom * 4) { |
| /* Provide 4/1 scaling */ |
| cinfo->jpeg_width = cinfo->image_width << 2; |
| cinfo->jpeg_height = cinfo->image_height << 2; |
| cinfo->min_DCT_h_scaled_size = 2; |
| cinfo->min_DCT_v_scaled_size = 2; |
| } else if (cinfo->scale_num * 3 >= cinfo->scale_denom * 8) { |
| /* Provide 8/3 scaling */ |
| cinfo->jpeg_width = (cinfo->image_width << 1) + (JDIMENSION) |
| jdiv_round_up((long) cinfo->image_width * 2, 3L); |
| cinfo->jpeg_height = (cinfo->image_height << 1) + (JDIMENSION) |
| jdiv_round_up((long) cinfo->image_height * 2, 3L); |
| cinfo->min_DCT_h_scaled_size = 3; |
| cinfo->min_DCT_v_scaled_size = 3; |
| } else if (cinfo->scale_num >= cinfo->scale_denom * 2) { |
| /* Provide 2/1 scaling */ |
| cinfo->jpeg_width = cinfo->image_width << 1; |
| cinfo->jpeg_height = cinfo->image_height << 1; |
| cinfo->min_DCT_h_scaled_size = 4; |
| cinfo->min_DCT_v_scaled_size = 4; |
| } else if (cinfo->scale_num * 5 >= cinfo->scale_denom * 8) { |
| /* Provide 8/5 scaling */ |
| cinfo->jpeg_width = cinfo->image_width + (JDIMENSION) |
| jdiv_round_up((long) cinfo->image_width * 3, 5L); |
| cinfo->jpeg_height = cinfo->image_height + (JDIMENSION) |
| jdiv_round_up((long) cinfo->image_height * 3, 5L); |
| cinfo->min_DCT_h_scaled_size = 5; |
| cinfo->min_DCT_v_scaled_size = 5; |
| } else if (cinfo->scale_num * 3 >= cinfo->scale_denom * 4) { |
| /* Provide 4/3 scaling */ |
| cinfo->jpeg_width = cinfo->image_width + (JDIMENSION) |
| jdiv_round_up((long) cinfo->image_width, 3L); |
| cinfo->jpeg_height = cinfo->image_height + (JDIMENSION) |
| jdiv_round_up((long) cinfo->image_height, 3L); |
| cinfo->min_DCT_h_scaled_size = 6; |
| cinfo->min_DCT_v_scaled_size = 6; |
| } else if (cinfo->scale_num * 7 >= cinfo->scale_denom * 8) { |
| /* Provide 8/7 scaling */ |
| cinfo->jpeg_width = cinfo->image_width + (JDIMENSION) |
| jdiv_round_up((long) cinfo->image_width, 7L); |
| cinfo->jpeg_height = cinfo->image_height + (JDIMENSION) |
| jdiv_round_up((long) cinfo->image_height, 7L); |
| cinfo->min_DCT_h_scaled_size = 7; |
| cinfo->min_DCT_v_scaled_size = 7; |
| } else if (cinfo->scale_num >= cinfo->scale_denom) { |
| /* Provide 1/1 scaling */ |
| cinfo->jpeg_width = cinfo->image_width; |
| cinfo->jpeg_height = cinfo->image_height; |
| cinfo->min_DCT_h_scaled_size = DCTSIZE; |
| cinfo->min_DCT_v_scaled_size = DCTSIZE; |
| } else if (cinfo->scale_num * 9 >= cinfo->scale_denom * 8) { |
| /* Provide 8/9 scaling */ |
| cinfo->jpeg_width = (JDIMENSION) |
| jdiv_round_up((long) cinfo->image_width * 8, 9L); |
| cinfo->jpeg_height = (JDIMENSION) |
| jdiv_round_up((long) cinfo->image_height * 8, 9L); |
| cinfo->min_DCT_h_scaled_size = 9; |
| cinfo->min_DCT_v_scaled_size = 9; |
| } else if (cinfo->scale_num * 5 >= cinfo->scale_denom * 4) { |
| /* Provide 4/5 scaling */ |
| cinfo->jpeg_width = (JDIMENSION) |
| jdiv_round_up((long) cinfo->image_width * 4, 5L); |
| cinfo->jpeg_height = (JDIMENSION) |
| jdiv_round_up((long) cinfo->image_height * 4, 5L); |
| cinfo->min_DCT_h_scaled_size = 10; |
| cinfo->min_DCT_v_scaled_size = 10; |
| } else if (cinfo->scale_num * 11 >= cinfo->scale_denom * 8) { |
| /* Provide 8/11 scaling */ |
| cinfo->jpeg_width = (JDIMENSION) |
| jdiv_round_up((long) cinfo->image_width * 8, 11L); |
| cinfo->jpeg_height = (JDIMENSION) |
| jdiv_round_up((long) cinfo->image_height * 8, 11L); |
| cinfo->min_DCT_h_scaled_size = 11; |
| cinfo->min_DCT_v_scaled_size = 11; |
| } else if (cinfo->scale_num * 3 >= cinfo->scale_denom * 2) { |
| /* Provide 2/3 scaling */ |
| cinfo->jpeg_width = (JDIMENSION) |
| jdiv_round_up((long) cinfo->image_width * 2, 3L); |
| cinfo->jpeg_height = (JDIMENSION) |
| jdiv_round_up((long) cinfo->image_height * 2, 3L); |
| cinfo->min_DCT_h_scaled_size = 12; |
| cinfo->min_DCT_v_scaled_size = 12; |
| } else if (cinfo->scale_num * 13 >= cinfo->scale_denom * 8) { |
| /* Provide 8/13 scaling */ |
| cinfo->jpeg_width = (JDIMENSION) |
| jdiv_round_up((long) cinfo->image_width * 8, 13L); |
| cinfo->jpeg_height = (JDIMENSION) |
| jdiv_round_up((long) cinfo->image_height * 8, 13L); |
| cinfo->min_DCT_h_scaled_size = 13; |
| cinfo->min_DCT_v_scaled_size = 13; |
| } else if (cinfo->scale_num * 7 >= cinfo->scale_denom * 4) { |
| /* Provide 4/7 scaling */ |
| cinfo->jpeg_width = (JDIMENSION) |
| jdiv_round_up((long) cinfo->image_width * 4, 7L); |
| cinfo->jpeg_height = (JDIMENSION) |
| jdiv_round_up((long) cinfo->image_height * 4, 7L); |
| cinfo->min_DCT_h_scaled_size = 14; |
| cinfo->min_DCT_v_scaled_size = 14; |
| } else if (cinfo->scale_num * 15 >= cinfo->scale_denom * 8) { |
| /* Provide 8/15 scaling */ |
| cinfo->jpeg_width = (JDIMENSION) |
| jdiv_round_up((long) cinfo->image_width * 8, 15L); |
| cinfo->jpeg_height = (JDIMENSION) |
| jdiv_round_up((long) cinfo->image_height * 8, 15L); |
| cinfo->min_DCT_h_scaled_size = 15; |
| cinfo->min_DCT_v_scaled_size = 15; |
| } else { |
| /* Provide 1/2 scaling */ |
| cinfo->jpeg_width = (JDIMENSION) |
| jdiv_round_up((long) cinfo->image_width, 2L); |
| cinfo->jpeg_height = (JDIMENSION) |
| jdiv_round_up((long) cinfo->image_height, 2L); |
| cinfo->min_DCT_h_scaled_size = 16; |
| cinfo->min_DCT_v_scaled_size = 16; |
| } |
| |
| #else /* !DCT_SCALING_SUPPORTED */ |
| |
| /* Hardwire it to "no scaling" */ |
| cinfo->jpeg_width = cinfo->image_width; |
| cinfo->jpeg_height = cinfo->image_height; |
| cinfo->min_DCT_h_scaled_size = DCTSIZE; |
| cinfo->min_DCT_v_scaled_size = DCTSIZE; |
| |
| #endif /* DCT_SCALING_SUPPORTED */ |
| } |
| |
| |
| LOCAL(void) |
| initial_setup (j_compress_ptr cinfo) |
| /* Do computations that are needed before master selection phase */ |
| { |
| int ci, ssize; |
| jpeg_component_info *compptr; |
| long samplesperrow; |
| JDIMENSION jd_samplesperrow; |
| |
| jpeg_calc_jpeg_dimensions(cinfo); |
| |
| /* Sanity check on image dimensions */ |
| if (cinfo->jpeg_height <= 0 || cinfo->jpeg_width <= 0 |
| || cinfo->num_components <= 0 || cinfo->input_components <= 0) |
| ERREXIT(cinfo, JERR_EMPTY_IMAGE); |
| |
| /* Make sure image isn't bigger than I can handle */ |
| if ((long) cinfo->jpeg_height > (long) JPEG_MAX_DIMENSION || |
| (long) cinfo->jpeg_width > (long) JPEG_MAX_DIMENSION) |
| ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION); |
| |
| /* Width of an input scanline must be representable as JDIMENSION. */ |
| samplesperrow = (long) cinfo->image_width * (long) cinfo->input_components; |
| jd_samplesperrow = (JDIMENSION) samplesperrow; |
| if ((long) jd_samplesperrow != samplesperrow) |
| ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); |
| |
| /* For now, precision must match compiled-in value... */ |
| if (cinfo->data_precision != BITS_IN_JSAMPLE) |
| ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision); |
| |
| /* Check that number of components won't exceed internal array sizes */ |
| if (cinfo->num_components > MAX_COMPONENTS) |
| ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, |
| MAX_COMPONENTS); |
| |
| /* Compute maximum sampling factors; check factor validity */ |
| cinfo->max_h_samp_factor = 1; |
| cinfo->max_v_samp_factor = 1; |
| for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
| ci++, compptr++) { |
| if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR || |
| compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR) |
| ERREXIT(cinfo, JERR_BAD_SAMPLING); |
| cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor, |
| compptr->h_samp_factor); |
| cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor, |
| compptr->v_samp_factor); |
| } |
| |
| /* Compute dimensions of components */ |
| for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; |
| ci++, compptr++) { |
| /* Fill in the correct component_index value; don't rely on application */ |
| compptr->component_index = ci; |
| /* In selecting the actual DCT scaling for each component, we try to |
| * scale down the chroma components via DCT scaling rather than downsampling. |
| * This saves time if the downsampler gets to use 1:1 scaling. |
| * Note this code adapts subsampling ratios which are powers of 2. |
| */ |
| ssize = 1; |
| #ifdef DCT_SCALING_SUPPORTED |
| while (cinfo->min_DCT_h_scaled_size * ssize <= |
| (cinfo->do_fancy_downsampling ? DCTSIZE : DCTSIZE / 2) && |
| (cinfo->max_h_samp_factor % (compptr->h_samp_factor * ssize * 2)) == 0) { |
| ssize = ssize * 2; |
| } |
| #endif |
| compptr->DCT_h_scaled_size = cinfo->min_DCT_h_scaled_size * ssize; |
| ssize = 1; |
| #ifdef DCT_SCALING_SUPPORTED |
| while (cinfo->min_DCT_v_scaled_size * ssize <= |
| (cinfo->do_fancy_downsampling ? DCTSIZE : DCTSIZE / 2) && |
| (cinfo->max_v_samp_factor % (compptr->v_samp_factor * ssize * 2)) == 0) { |
| ssize = ssize * 2; |
| } |
| #endif |
| compptr->DCT_v_scaled_size = cinfo->min_DCT_v_scaled_size * ssize; |
| |
| /* We don't support DCT ratios larger than 2. */ |
| if (compptr->DCT_h_scaled_size > compptr->DCT_v_scaled_size * 2) |
| compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size * 2; |
| else if (compptr->DCT_v_scaled_size > compptr->DCT_h_scaled_size * 2) |
| compptr->DCT_v_scaled_size = compptr->DCT_h_scaled_size * 2; |
| |
| /* Size in DCT blocks */ |
| compptr->width_in_blocks = (JDIMENSION) |
| jdiv_round_up((long) cinfo->jpeg_width * (long) compptr->h_samp_factor, |
| (long) (cinfo->max_h_samp_factor * DCTSIZE)); |
| compptr->height_in_blocks = (JDIMENSION) |
| jdiv_round_up((long) cinfo->jpeg_height * (long) compptr->v_samp_factor, |
| (long) (cinfo->max_v_samp_factor * DCTSIZE)); |
| /* Size in samples */ |
| compptr->downsampled_width = (JDIMENSION) |
| jdiv_round_up((long) cinfo->jpeg_width * |
| (long) (compptr->h_samp_factor * compptr->DCT_h_scaled_size), |
| (long) (cinfo->max_h_samp_factor * DCTSIZE)); |
| compptr->downsampled_height = (JDIMENSION) |
| jdiv_round_up((long) cinfo->jpeg_height * |
| (long) (compptr->v_samp_factor * compptr->DCT_v_scaled_size), |
| (long) (cinfo->max_v_samp_factor * DCTSIZE)); |
| /* Mark component needed (this flag isn't actually used for compression) */ |
| compptr->component_needed = TRUE; |
| } |
| |
| /* Compute number of fully interleaved MCU rows (number of times that |
| * main controller will call coefficient controller). |
| */ |
| cinfo->total_iMCU_rows = (JDIMENSION) |
| jdiv_round_up((long) cinfo->jpeg_height, |
| (long) (cinfo->max_v_samp_factor*DCTSIZE)); |
| } |
| |
| |
| #ifdef C_MULTISCAN_FILES_SUPPORTED |
| |
| LOCAL(void) |
| validate_script (j_compress_ptr cinfo) |
| /* Verify that the scan script in cinfo->scan_info[] is valid; also |
| * determine whether it uses progressive JPEG, and set cinfo->progressive_mode. |
| */ |
| { |
| const jpeg_scan_info * scanptr; |
| int scanno, ncomps, ci, coefi, thisi; |
| int Ss, Se, Ah, Al; |
| boolean component_sent[MAX_COMPONENTS]; |
| #ifdef C_PROGRESSIVE_SUPPORTED |
| int * last_bitpos_ptr; |
| int last_bitpos[MAX_COMPONENTS][DCTSIZE2]; |
| /* -1 until that coefficient has been seen; then last Al for it */ |
| #endif |
| |
| if (cinfo->num_scans <= 0) |
| ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, 0); |
| |
| /* For sequential JPEG, all scans must have Ss=0, Se=DCTSIZE2-1; |
| * for progressive JPEG, no scan can have this. |
| */ |
| scanptr = cinfo->scan_info; |
| if (scanptr->Ss != 0 || scanptr->Se != DCTSIZE2-1) { |
| #ifdef C_PROGRESSIVE_SUPPORTED |
| cinfo->progressive_mode = TRUE; |
| last_bitpos_ptr = & last_bitpos[0][0]; |
| for (ci = 0; ci < cinfo->num_components; ci++) |
| for (coefi = 0; coefi < DCTSIZE2; coefi++) |
| *last_bitpos_ptr++ = -1; |
| #else |
| ERREXIT(cinfo, JERR_NOT_COMPILED); |
| #endif |
| } else { |
| cinfo->progressive_mode = FALSE; |
| for (ci = 0; ci < cinfo->num_components; ci++) |
| component_sent[ci] = FALSE; |
| } |
| |
| for (scanno = 1; scanno <= cinfo->num_scans; scanptr++, scanno++) { |
| /* Validate component indexes */ |
| ncomps = scanptr->comps_in_scan; |
| if (ncomps <= 0 || ncomps > MAX_COMPS_IN_SCAN) |
| ERREXIT2(cinfo, JERR_COMPONENT_COUNT, ncomps, MAX_COMPS_IN_SCAN); |
| for (ci = 0; ci < ncomps; ci++) { |
| thisi = scanptr->component_index[ci]; |
| if (thisi < 0 || thisi >= cinfo->num_components) |
| ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno); |
| /* Components must appear in SOF order within each scan */ |
| if (ci > 0 && thisi <= scanptr->component_index[ci-1]) |
| ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno); |
| } |
| /* Validate progression parameters */ |
| Ss = scanptr->Ss; |
| Se = scanptr->Se; |
| Ah = scanptr->Ah; |
| Al = scanptr->Al; |
| if (cinfo->progressive_mode) { |
| #ifdef C_PROGRESSIVE_SUPPORTED |
| /* The JPEG spec simply gives the ranges 0..13 for Ah and Al, but that |
| * seems wrong: the upper bound ought to depend on data precision. |
| * Perhaps they really meant 0..N+1 for N-bit precision. |
| * Here we allow 0..10 for 8-bit data; Al larger than 10 results in |
| * out-of-range reconstructed DC values during the first DC scan, |
| * which might cause problems for some decoders. |
| */ |
| #if BITS_IN_JSAMPLE == 8 |
| #define MAX_AH_AL 10 |
| #else |
| #define MAX_AH_AL 13 |
| #endif |
| if (Ss < 0 || Ss >= DCTSIZE2 || Se < Ss || Se >= DCTSIZE2 || |
| Ah < 0 || Ah > MAX_AH_AL || Al < 0 || Al > MAX_AH_AL) |
| ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); |
| if (Ss == 0) { |
| if (Se != 0) /* DC and AC together not OK */ |
| ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); |
| } else { |
| if (ncomps != 1) /* AC scans must be for only one component */ |
| ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); |
| } |
| for (ci = 0; ci < ncomps; ci++) { |
| last_bitpos_ptr = & last_bitpos[scanptr->component_index[ci]][0]; |
| if (Ss != 0 && last_bitpos_ptr[0] < 0) /* AC without prior DC scan */ |
| ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); |
| for (coefi = Ss; coefi <= Se; coefi++) { |
| if (last_bitpos_ptr[coefi] < 0) { |
| /* first scan of this coefficient */ |
| if (Ah != 0) |
| ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); |
| } else { |
| /* not first scan */ |
| if (Ah != last_bitpos_ptr[coefi] || Al != Ah-1) |
| ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); |
| } |
| last_bitpos_ptr[coefi] = Al; |
| } |
| } |
| #endif |
| } else { |
| /* For sequential JPEG, all progression parameters must be these: */ |
| if (Ss != 0 || Se != DCTSIZE2-1 || Ah != 0 || Al != 0) |
| ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); |
| /* Make sure components are not sent twice */ |
| for (ci = 0; ci < ncomps; ci++) { |
| thisi = scanptr->component_index[ci]; |
| if (component_sent[thisi]) |
| ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno); |
| component_sent[thisi] = TRUE; |
| } |
| } |
| } |
| |
| /* Now verify that everything got sent. */ |
| if (cinfo->progressive_mode) { |
| #ifdef C_PROGRESSIVE_SUPPORTED |
| /* For progressive mode, we only check that at least some DC data |
| * got sent for each component; the spec does not require that all bits |
| * of all coefficients be transmitted. Would it be wiser to enforce |
| * transmission of all coefficient bits?? |
| */ |
| for (ci = 0; ci < cinfo->num_components; ci++) { |
| if (last_bitpos[ci][0] < 0) |
| ERREXIT(cinfo, JERR_MISSING_DATA); |
| } |
| #endif |
| } else { |
| for (ci = 0; ci < cinfo->num_components; ci++) { |
| if (! component_sent[ci]) |
| ERREXIT(cinfo, JERR_MISSING_DATA); |
| } |
| } |
| } |
| |
| #endif /* C_MULTISCAN_FILES_SUPPORTED */ |
| |
| |
| LOCAL(void) |
| select_scan_parameters (j_compress_ptr cinfo) |
| /* Set up the scan parameters for the current scan */ |
| { |
| int ci; |
| |
| #ifdef C_MULTISCAN_FILES_SUPPORTED |
| if (cinfo->scan_info != NULL) { |
| /* Prepare for current scan --- the script is already validated */ |
| my_master_ptr master = (my_master_ptr) cinfo->master; |
| const jpeg_scan_info * scanptr = cinfo->scan_info + master->scan_number; |
| |
| cinfo->comps_in_scan = scanptr->comps_in_scan; |
| for (ci = 0; ci < scanptr->comps_in_scan; ci++) { |
| cinfo->cur_comp_info[ci] = |
| &cinfo->comp_info[scanptr->component_index[ci]]; |
| } |
| cinfo->Ss = scanptr->Ss; |
| cinfo->Se = scanptr->Se; |
| cinfo->Ah = scanptr->Ah; |
| cinfo->Al = scanptr->Al; |
| } |
| else |
| #endif |
| { |
| /* Prepare for single sequential-JPEG scan containing all components */ |
| if (cinfo->num_components > MAX_COMPS_IN_SCAN) |
| ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, |
| MAX_COMPS_IN_SCAN); |
| cinfo->comps_in_scan = cinfo->num_components; |
| for (ci = 0; ci < cinfo->num_components; ci++) { |
| cinfo->cur_comp_info[ci] = &cinfo->comp_info[ci]; |
| } |
| cinfo->Ss = 0; |
| cinfo->Se = DCTSIZE2-1; |
| cinfo->Ah = 0; |
| cinfo->Al = 0; |
| } |
| } |
| |
| |
| LOCAL(void) |
| per_scan_setup (j_compress_ptr cinfo) |
| /* Do computations that are needed before processing a JPEG scan */ |
| /* cinfo->comps_in_scan and cinfo->cur_comp_info[] are already set */ |
| { |
| int ci, mcublks, tmp; |
| jpeg_component_info *compptr; |
| |
| if (cinfo->comps_in_scan == 1) { |
| |
| /* Noninterleaved (single-component) scan */ |
| compptr = cinfo->cur_comp_info[0]; |
| |
| /* Overall image size in MCUs */ |
| cinfo->MCUs_per_row = compptr->width_in_blocks; |
| cinfo->MCU_rows_in_scan = compptr->height_in_blocks; |
| |
| /* For noninterleaved scan, always one block per MCU */ |
| compptr->MCU_width = 1; |
| compptr->MCU_height = 1; |
| compptr->MCU_blocks = 1; |
| compptr->MCU_sample_width = compptr->DCT_h_scaled_size; |
| compptr->last_col_width = 1; |
| /* For noninterleaved scans, it is convenient to define last_row_height |
| * as the number of block rows present in the last iMCU row. |
| */ |
| tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor); |
| if (tmp == 0) tmp = compptr->v_samp_factor; |
| compptr->last_row_height = tmp; |
| |
| /* Prepare array describing MCU composition */ |
| cinfo->blocks_in_MCU = 1; |
| cinfo->MCU_membership[0] = 0; |
| |
| } else { |
| |
| /* Interleaved (multi-component) scan */ |
| if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN) |
| ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan, |
| MAX_COMPS_IN_SCAN); |
| |
| /* Overall image size in MCUs */ |
| cinfo->MCUs_per_row = (JDIMENSION) |
| jdiv_round_up((long) cinfo->jpeg_width, |
| (long) (cinfo->max_h_samp_factor*DCTSIZE)); |
| cinfo->MCU_rows_in_scan = (JDIMENSION) |
| jdiv_round_up((long) cinfo->jpeg_height, |
| (long) (cinfo->max_v_samp_factor*DCTSIZE)); |
| |
| cinfo->blocks_in_MCU = 0; |
| |
| for (ci = 0; ci < cinfo->comps_in_scan; ci++) { |
| compptr = cinfo->cur_comp_info[ci]; |
| /* Sampling factors give # of blocks of component in each MCU */ |
| compptr->MCU_width = compptr->h_samp_factor; |
| compptr->MCU_height = compptr->v_samp_factor; |
| compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height; |
| compptr->MCU_sample_width = compptr->MCU_width * compptr->DCT_h_scaled_size; |
| /* Figure number of non-dummy blocks in last MCU column & row */ |
| tmp = (int) (compptr->width_in_blocks % compptr->MCU_width); |
| if (tmp == 0) tmp = compptr->MCU_width; |
| compptr->last_col_width = tmp; |
| tmp = (int) (compptr->height_in_blocks % compptr->MCU_height); |
| if (tmp == 0) tmp = compptr->MCU_height; |
| compptr->last_row_height = tmp; |
| /* Prepare array describing MCU composition */ |
| mcublks = compptr->MCU_blocks; |
| if (cinfo->blocks_in_MCU + mcublks > C_MAX_BLOCKS_IN_MCU) |
| ERREXIT(cinfo, JERR_BAD_MCU_SIZE); |
| while (mcublks-- > 0) { |
| cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci; |
| } |
| } |
| |
| } |
| |
| /* Convert restart specified in rows to actual MCU count. */ |
| /* Note that count must fit in 16 bits, so we provide limiting. */ |
| if (cinfo->restart_in_rows > 0) { |
| long nominal = (long) cinfo->restart_in_rows * (long) cinfo->MCUs_per_row; |
| cinfo->restart_interval = (unsigned int) MIN(nominal, 65535L); |
| } |
| } |
| |
| |
| /* |
| * Per-pass setup. |
| * This is called at the beginning of each pass. We determine which modules |
| * will be active during this pass and give them appropriate start_pass calls. |
| * We also set is_last_pass to indicate whether any more passes will be |
| * required. |
| */ |
| |
| METHODDEF(void) |
| prepare_for_pass (j_compress_ptr cinfo) |
| { |
| my_master_ptr master = (my_master_ptr) cinfo->master; |
| |
| switch (master->pass_type) { |
| case main_pass: |
| /* Initial pass: will collect input data, and do either Huffman |
| * optimization or data output for the first scan. |
| */ |
| select_scan_parameters(cinfo); |
| per_scan_setup(cinfo); |
| if (! cinfo->raw_data_in) { |
| (*cinfo->cconvert->start_pass) (cinfo); |
| (*cinfo->downsample->start_pass) (cinfo); |
| (*cinfo->prep->start_pass) (cinfo, JBUF_PASS_THRU); |
| } |
| (*cinfo->fdct->start_pass) (cinfo); |
| (*cinfo->entropy->start_pass) (cinfo, cinfo->optimize_coding); |
| (*cinfo->coef->start_pass) (cinfo, |
| (master->total_passes > 1 ? |
| JBUF_SAVE_AND_PASS : JBUF_PASS_THRU)); |
| (*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU); |
| if (cinfo->optimize_coding) { |
| /* No immediate data output; postpone writing frame/scan headers */ |
| master->pub.call_pass_startup = FALSE; |
| } else { |
| /* Will write frame/scan headers at first jpeg_write_scanlines call */ |
| master->pub.call_pass_startup = TRUE; |
| } |
| break; |
| #ifdef ENTROPY_OPT_SUPPORTED |
| case huff_opt_pass: |
| /* Do Huffman optimization for a scan after the first one. */ |
| select_scan_parameters(cinfo); |
| per_scan_setup(cinfo); |
| if (cinfo->Ss != 0 || cinfo->Ah == 0) { |
| (*cinfo->entropy->start_pass) (cinfo, TRUE); |
| (*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST); |
| master->pub.call_pass_startup = FALSE; |
| break; |
| } |
| /* Special case: Huffman DC refinement scans need no Huffman table |
| * and therefore we can skip the optimization pass for them. |
| */ |
| master->pass_type = output_pass; |
| master->pass_number++; |
| /*FALLTHROUGH*/ |
| #endif |
| case output_pass: |
| /* Do a data-output pass. */ |
| /* We need not repeat per-scan setup if prior optimization pass did it. */ |
| if (! cinfo->optimize_coding) { |
| select_scan_parameters(cinfo); |
| per_scan_setup(cinfo); |
| } |
| (*cinfo->entropy->start_pass) (cinfo, FALSE); |
| (*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST); |
| /* We emit frame/scan headers now */ |
| if (master->scan_number == 0) |
| (*cinfo->marker->write_frame_header) (cinfo); |
| (*cinfo->marker->write_scan_header) (cinfo); |
| master->pub.call_pass_startup = FALSE; |
| break; |
| default: |
| ERREXIT(cinfo, JERR_NOT_COMPILED); |
| } |
| |
| master->pub.is_last_pass = (master->pass_number == master->total_passes-1); |
| |
| /* Set up progress monitor's pass info if present */ |
| if (cinfo->progress != NULL) { |
| cinfo->progress->completed_passes = master->pass_number; |
| cinfo->progress->total_passes = master->total_passes; |
| } |
| } |
| |
| |
| /* |
| * Special start-of-pass hook. |
| * This is called by jpeg_write_scanlines if call_pass_startup is TRUE. |
| * In single-pass processing, we need this hook because we don't want to |
| * write frame/scan headers during jpeg_start_compress; we want to let the |
| * application write COM markers etc. between jpeg_start_compress and the |
| * jpeg_write_scanlines loop. |
| * In multi-pass processing, this routine is not used. |
| */ |
| |
| METHODDEF(void) |
| pass_startup (j_compress_ptr cinfo) |
| { |
| cinfo->master->call_pass_startup = FALSE; /* reset flag so call only once */ |
| |
| (*cinfo->marker->write_frame_header) (cinfo); |
| (*cinfo->marker->write_scan_header) (cinfo); |
| } |
| |
| |
| /* |
| * Finish up at end of pass. |
| */ |
| |
| METHODDEF(void) |
| finish_pass_master (j_compress_ptr cinfo) |
| { |
| my_master_ptr master = (my_master_ptr) cinfo->master; |
| |
| /* The entropy coder always needs an end-of-pass call, |
| * either to analyze statistics or to flush its output buffer. |
| */ |
| (*cinfo->entropy->finish_pass) (cinfo); |
| |
| /* Update state for next pass */ |
| switch (master->pass_type) { |
| case main_pass: |
| /* next pass is either output of scan 0 (after optimization) |
| * or output of scan 1 (if no optimization). |
| */ |
| master->pass_type = output_pass; |
| if (! cinfo->optimize_coding) |
| master->scan_number++; |
| break; |
| case huff_opt_pass: |
| /* next pass is always output of current scan */ |
| master->pass_type = output_pass; |
| break; |
| case output_pass: |
| /* next pass is either optimization or output of next scan */ |
| if (cinfo->optimize_coding) |
| master->pass_type = huff_opt_pass; |
| master->scan_number++; |
| break; |
| } |
| |
| master->pass_number++; |
| } |
| |
| |
| /* |
| * Initialize master compression control. |
| */ |
| |
| GLOBAL(void) |
| jinit_c_master_control (j_compress_ptr cinfo, boolean transcode_only) |
| { |
| my_master_ptr master; |
| |
| master = (my_master_ptr) |
| (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
| SIZEOF(my_comp_master)); |
| cinfo->master = (struct jpeg_comp_master *) master; |
| master->pub.prepare_for_pass = prepare_for_pass; |
| master->pub.pass_startup = pass_startup; |
| master->pub.finish_pass = finish_pass_master; |
| master->pub.is_last_pass = FALSE; |
| |
| /* Validate parameters, determine derived values */ |
| initial_setup(cinfo); |
| |
| if (cinfo->scan_info != NULL) { |
| #ifdef C_MULTISCAN_FILES_SUPPORTED |
| validate_script(cinfo); |
| #else |
| ERREXIT(cinfo, JERR_NOT_COMPILED); |
| #endif |
| } else { |
| cinfo->progressive_mode = FALSE; |
| cinfo->num_scans = 1; |
| } |
| |
| if (cinfo->progressive_mode && cinfo->arith_code == 0) /* TEMPORARY HACK ??? */ |
| cinfo->optimize_coding = TRUE; /* assume default tables no good for progressive mode */ |
| |
| /* Initialize my private state */ |
| if (transcode_only) { |
| /* no main pass in transcoding */ |
| if (cinfo->optimize_coding) |
| master->pass_type = huff_opt_pass; |
| else |
| master->pass_type = output_pass; |
| } else { |
| /* for normal compression, first pass is always this type: */ |
| master->pass_type = main_pass; |
| } |
| master->scan_number = 0; |
| master->pass_number = 0; |
| if (cinfo->optimize_coding) |
| master->total_passes = cinfo->num_scans * 2; |
| else |
| master->total_passes = cinfo->num_scans; |
| } |