| // Copyright 2018 The Gemmlowp Authors. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| // pack_msa.h: optimized MSA specializations of the templates in pack.h. |
| |
| #ifndef GEMMLOWP_INTERNAL_PACK_MSA_H_ |
| #define GEMMLOWP_INTERNAL_PACK_MSA_H_ |
| |
| #include "pack.h" |
| |
| #include <msa.h> |
| |
| namespace gemmlowp { |
| |
| typedef SideMap<const std::uint8_t, SideMapOrder::WidthMajor> |
| WidthMajorUint8SideMap; |
| |
| template <int Cells> |
| using DepthMajorSideFormatNCells4x2 = KernelSideFormat<CellFormat<4, 2>, Cells>; |
| |
| template <int Cells> |
| class PackingRegisterBlock< |
| WidthMajorUint8SideMap, |
| PackedSideBlock<DepthMajorSideFormatNCells4x2<Cells>>> |
| : public PackingRegisterBlockBase< |
| WidthMajorUint8SideMap, |
| PackedSideBlock<DepthMajorSideFormatNCells4x2<Cells>>> { |
| public: |
| typedef DepthMajorSideFormatNCells4x2<Cells> KernelSideFormat; |
| typedef typename KernelSideFormat::Cell CellFormat; |
| static constexpr int kCells = KernelSideFormat::kCells; |
| static const int kCellWidth = CellFormat::kWidth; |
| static const int kKernelWidth = CellFormat::kWidth * kCells; |
| static const int kCellDepth = CellFormat::kDepth; |
| static const int kCellSize = CellFormat::kSize; |
| |
| void Pack(PackedSideBlock<KernelSideFormat>* dst, int start_width) { |
| std::uint8_t* dst_ptr = dst->current_data(); |
| const std::uint8_t* const src_ptr = this->complete_src_.data(); |
| const int stride = this->complete_src_.stride(); |
| // Load source WidthMajor data |
| v16i8 src_lines[4 * kCells]; |
| for (int i = 0; i < 4 * kCells; i++) { |
| src_lines[i] = __builtin_msa_ld_b( |
| const_cast<std::uint8_t*>(src_ptr + i * stride), 0); |
| } |
| // Reorder the data within registers to make DepthMajor 4x2 cells |
| v16i8 src_lines_intertwined_2x[2 * kCells][2]; |
| for (int i = 0; i < kCells; i++) { |
| src_lines_intertwined_2x[2 * i][0] = |
| __builtin_msa_ilvr_b(src_lines[4 * i + 2], src_lines[4 * i]); |
| src_lines_intertwined_2x[2 * i][1] = |
| __builtin_msa_ilvl_b(src_lines[4 * i + 2], src_lines[4 * i]); |
| src_lines_intertwined_2x[2 * i + 1][0] = |
| __builtin_msa_ilvr_b(src_lines[4 * i + 3], src_lines[4 * i + 1]); |
| src_lines_intertwined_2x[2 * i + 1][1] = |
| __builtin_msa_ilvl_b(src_lines[4 * i + 3], src_lines[4 * i + 1]); |
| } |
| v16i8 src_lines_intertwined_4x[2 * kCells][2]; |
| for (int i = 0; i < kCells; i++) { |
| src_lines_intertwined_4x[2 * i][0] = |
| __builtin_msa_ilvr_b(src_lines_intertwined_2x[2 * i + 1][0], |
| src_lines_intertwined_2x[2 * i][0]); |
| src_lines_intertwined_4x[2 * i][1] = |
| __builtin_msa_ilvl_b(src_lines_intertwined_2x[2 * i + 1][0], |
| src_lines_intertwined_2x[2 * i][0]); |
| src_lines_intertwined_4x[2 * i + 1][0] = |
| __builtin_msa_ilvr_b(src_lines_intertwined_2x[2 * i + 1][1], |
| src_lines_intertwined_2x[2 * i][1]); |
| src_lines_intertwined_4x[2 * i + 1][1] = |
| __builtin_msa_ilvl_b(src_lines_intertwined_2x[2 * i + 1][1], |
| src_lines_intertwined_2x[2 * i][1]); |
| } |
| // Store the resulting DepthMajor 4x2 cells in the destination packed block |
| for (int outer = 0; outer < 2; outer++) { |
| for (int inner = 0; inner < 2; inner++) { |
| if (kCells % 2 == 0) { |
| for (int cell = 0; cell < kCells; cell += 2) { |
| v2i64 tmp = __builtin_msa_ilvr_d( |
| reinterpret_cast<v2i64>( |
| src_lines_intertwined_4x[2 * (cell + 1) + outer][inner]), |
| reinterpret_cast<v2i64>( |
| src_lines_intertwined_4x[2 * cell + outer][inner])); |
| __builtin_msa_st_b(reinterpret_cast<v16i8>(tmp), dst_ptr, 0); |
| dst_ptr += 16; |
| } |
| for (int cell = 0; cell < kCells; cell += 2) { |
| v2i64 tmp = __builtin_msa_ilvl_d( |
| reinterpret_cast<v2i64>( |
| src_lines_intertwined_4x[2 * (cell + 1) + outer][inner]), |
| reinterpret_cast<v2i64>( |
| src_lines_intertwined_4x[2 * cell + outer][inner])); |
| __builtin_msa_st_b(reinterpret_cast<v16i8>(tmp), dst_ptr, 0); |
| dst_ptr += 16; |
| } |
| } else { |
| // Store even number of low vector halves. |
| for (int cell = 0; cell < kCells - 1; cell += 2) { |
| v2i64 tmp = __builtin_msa_ilvr_d( |
| reinterpret_cast<v2i64>( |
| src_lines_intertwined_4x[2 * (cell + 1) + outer][inner]), |
| reinterpret_cast<v2i64>( |
| src_lines_intertwined_4x[2 * cell + outer][inner])); |
| __builtin_msa_st_b(reinterpret_cast<v16i8>(tmp), dst_ptr, 0); |
| dst_ptr += 16; |
| } |
| // Store last low half and first high half. |
| v2i64 tmp = reinterpret_cast<v2i64>( |
| src_lines_intertwined_4x[2 * 0 + outer][inner]); |
| tmp = __builtin_msa_insve_d( |
| tmp, 0, |
| reinterpret_cast<v2i64>( |
| src_lines_intertwined_4x[2 * (kCells - 1) + outer][inner])); |
| __builtin_msa_st_b(reinterpret_cast<v16i8>(tmp), dst_ptr, 0); |
| dst_ptr += 16; |
| // Store even number of high vector halves. |
| for (int cell = 1; cell < kCells; cell += 2) { |
| v2i64 tmp = __builtin_msa_ilvl_d( |
| reinterpret_cast<v2i64>( |
| src_lines_intertwined_4x[2 * (cell + 1) + outer][inner]), |
| reinterpret_cast<v2i64>( |
| src_lines_intertwined_4x[2 * cell + outer][inner])); |
| __builtin_msa_st_b(reinterpret_cast<v16i8>(tmp), dst_ptr, 0); |
| dst_ptr += 16; |
| } |
| } |
| } |
| } |
| // Compute sums across the depth dimension |
| v8i16 sums_of_2_cells[kCells][4]; |
| const v16i8 zeroes = __builtin_msa_ldi_b(0); |
| for (int outer = 0; outer < 2; outer++) { |
| for (int inner = 0; inner < 2; inner++) { |
| int i = 2 * outer + inner; |
| for (int cell = 0; cell < kCells; cell++) { |
| v8i16 tmp0 = reinterpret_cast<v8i16>(__builtin_msa_ilvr_b( |
| zeroes, src_lines_intertwined_4x[2 * cell + outer][inner])); |
| v8i16 tmp1 = reinterpret_cast<v8i16>(__builtin_msa_ilvl_b( |
| zeroes, src_lines_intertwined_4x[2 * cell + outer][inner])); |
| sums_of_2_cells[cell][i] = __builtin_msa_addv_h(tmp0, tmp1); |
| } |
| } |
| } |
| v4i32 sums_of_4_cells[kCells][4]; |
| for (int i = 0; i < 4; i++) { |
| for (int cell = 0; cell < kCells; cell++) { |
| v4i32 tmp0 = reinterpret_cast<v4i32>(__builtin_msa_ilvr_h( |
| reinterpret_cast<v8i16>(zeroes), sums_of_2_cells[cell][i])); |
| v4i32 tmp1 = reinterpret_cast<v4i32>(__builtin_msa_ilvl_h( |
| reinterpret_cast<v8i16>(zeroes), sums_of_2_cells[cell][i])); |
| sums_of_4_cells[cell][i] = __builtin_msa_addv_w(tmp0, tmp1); |
| } |
| } |
| // Update the sums_of_each_slice vector |
| for (int cell = 0; cell < kCells; cell++) { |
| v4i32 s01 = __builtin_msa_addv_w(sums_of_4_cells[cell][0], |
| sums_of_4_cells[cell][1]); |
| v4i32 s23 = __builtin_msa_addv_w(sums_of_4_cells[cell][2], |
| sums_of_4_cells[cell][3]); |
| v4i32 s = __builtin_msa_addv_w(s01, s23); |
| std::int32_t* sums_of_each_slice_ptr = |
| dst->sums_of_each_slice() + start_width + 4 * cell; |
| v4i32 tmp = __builtin_msa_ld_w(sums_of_each_slice_ptr, 0); |
| tmp = __builtin_msa_addv_w(tmp, s); |
| __builtin_msa_st_w(tmp, sums_of_each_slice_ptr, 0); |
| } |
| dst->seek_forward_n_cells(kCells * kRegisterSize / kCellDepth); |
| } |
| }; |
| |
| template <int Cells> |
| using WidthMajorSideFormatNCells4x2 = |
| KernelSideFormat<CellFormat<4, 2, CellOrder::WidthMajor>, Cells>; |
| |
| template <int Cells> |
| class PackingRegisterBlock< |
| WidthMajorUint8SideMap, |
| PackedSideBlock<WidthMajorSideFormatNCells4x2<Cells>>> |
| : public PackingRegisterBlockBase< |
| WidthMajorUint8SideMap, |
| PackedSideBlock<WidthMajorSideFormatNCells4x2<Cells>>> { |
| public: |
| typedef WidthMajorSideFormatNCells4x2<Cells> KernelSideFormat; |
| typedef typename KernelSideFormat::Cell CellFormat; |
| static constexpr int kCells = KernelSideFormat::kCells; |
| static const int kCellWidth = CellFormat::kWidth; |
| static const int kKernelWidth = CellFormat::kWidth * kCells; |
| static const int kCellDepth = CellFormat::kDepth; |
| static const int kCellSize = CellFormat::kSize; |
| |
| void Pack(PackedSideBlock<KernelSideFormat>* dst, int start_width) { |
| std::uint8_t* dst_ptr = dst->current_data(); |
| const std::uint8_t* src_ptr = this->complete_src_.data(); |
| const int stride = this->complete_src_.stride(); |
| // Load source WidthMajor data |
| v8i16 src_lines[kCells * 4]; |
| for (int i = 0; i < kCells; i++) { |
| #define GEMMLOWP_UNROLLED_LOOP_ITER(k) \ |
| src_lines[4 * i + k] = \ |
| __builtin_msa_ld_h(const_cast<std::uint8_t*>(src_ptr), 0); \ |
| src_ptr += stride; |
| |
| GEMMLOWP_UNROLLED_LOOP_ITER(0) |
| GEMMLOWP_UNROLLED_LOOP_ITER(1) |
| GEMMLOWP_UNROLLED_LOOP_ITER(2) |
| GEMMLOWP_UNROLLED_LOOP_ITER(3) |
| |
| #undef GEMMLOWP_UNROLLED_LOOP_ITER |
| } |
| // Reorder the data within registers to make WidthMajor 4x2 cells |
| v8i16 src_lines_intertwined_2x[2 * kCells][2]; |
| for (int i = 0; i < kCells; i++) { |
| src_lines_intertwined_2x[2 * i][0] = |
| __builtin_msa_ilvr_h(src_lines[4 * i + 2], src_lines[4 * i]); |
| src_lines_intertwined_2x[2 * i][1] = |
| __builtin_msa_ilvl_h(src_lines[4 * i + 2], src_lines[4 * i]); |
| src_lines_intertwined_2x[2 * i + 1][0] = |
| __builtin_msa_ilvr_h(src_lines[4 * i + 3], src_lines[4 * i + 1]); |
| src_lines_intertwined_2x[2 * i + 1][1] = |
| __builtin_msa_ilvl_h(src_lines[4 * i + 3], src_lines[4 * i + 1]); |
| } |
| v8i16 src_lines_intertwined_4x[2 * kCells][2]; |
| for (int i = 0; i < kCells; i++) { |
| src_lines_intertwined_4x[2 * i][0] = |
| __builtin_msa_ilvr_h(src_lines_intertwined_2x[2 * i + 1][0], |
| src_lines_intertwined_2x[2 * i][0]); |
| src_lines_intertwined_4x[2 * i][1] = |
| __builtin_msa_ilvl_h(src_lines_intertwined_2x[2 * i + 1][0], |
| src_lines_intertwined_2x[2 * i][0]); |
| src_lines_intertwined_4x[2 * i + 1][0] = |
| __builtin_msa_ilvr_h(src_lines_intertwined_2x[2 * i + 1][1], |
| src_lines_intertwined_2x[2 * i][1]); |
| src_lines_intertwined_4x[2 * i + 1][1] = |
| __builtin_msa_ilvl_h(src_lines_intertwined_2x[2 * i + 1][1], |
| src_lines_intertwined_2x[2 * i][1]); |
| } |
| // Store the resulting WidthMajor 4x2 cells in the destination packed block |
| for (int outer = 0; outer < 2; outer++) { |
| for (int inner = 0; inner < 2; inner++) { |
| if (kCells % 2 == 0) { |
| for (int cell = 0; cell < kCells; cell += 2) { |
| v2i64 tmp = __builtin_msa_ilvr_d( |
| reinterpret_cast<v2i64>( |
| src_lines_intertwined_4x[2 * (cell + 1) + outer][inner]), |
| reinterpret_cast<v2i64>( |
| src_lines_intertwined_4x[2 * cell + outer][inner])); |
| __builtin_msa_st_b(reinterpret_cast<v16i8>(tmp), dst_ptr, 0); |
| dst_ptr += 16; |
| } |
| for (int cell = 0; cell < kCells; cell += 2) { |
| v2i64 tmp = __builtin_msa_ilvl_d( |
| reinterpret_cast<v2i64>( |
| src_lines_intertwined_4x[2 * (cell + 1) + outer][inner]), |
| reinterpret_cast<v2i64>( |
| src_lines_intertwined_4x[2 * cell + outer][inner])); |
| __builtin_msa_st_b(reinterpret_cast<v16i8>(tmp), dst_ptr, 0); |
| dst_ptr += 16; |
| } |
| } else { |
| // Store even number of low vector halves. |
| for (int cell = 0; cell < kCells - 1; cell += 2) { |
| v2i64 tmp = __builtin_msa_ilvr_d( |
| reinterpret_cast<v2i64>( |
| src_lines_intertwined_4x[2 * (cell + 1) + outer][inner]), |
| reinterpret_cast<v2i64>( |
| src_lines_intertwined_4x[2 * cell + outer][inner])); |
| __builtin_msa_st_b(reinterpret_cast<v16i8>(tmp), dst_ptr, 0); |
| dst_ptr += 16; |
| } |
| // Store last low half and first high half. |
| v2i64 tmp = reinterpret_cast<v2i64>( |
| src_lines_intertwined_4x[2 * 0 + outer][inner]); |
| tmp = __builtin_msa_insve_d( |
| tmp, 0, |
| reinterpret_cast<v2i64>( |
| src_lines_intertwined_4x[2 * (kCells - 1) + outer][inner])); |
| __builtin_msa_st_b(reinterpret_cast<v16i8>(tmp), dst_ptr, 0); |
| dst_ptr += 16; |
| // Store even number of high vector halves. |
| for (int cell = 1; cell < kCells; cell += 2) { |
| v2i64 tmp = __builtin_msa_ilvl_d( |
| reinterpret_cast<v2i64>( |
| src_lines_intertwined_4x[2 * (cell + 1) + outer][inner]), |
| reinterpret_cast<v2i64>( |
| src_lines_intertwined_4x[2 * cell + outer][inner])); |
| __builtin_msa_st_b(reinterpret_cast<v16i8>(tmp), dst_ptr, 0); |
| dst_ptr += 16; |
| } |
| } |
| } |
| } |
| // Compute sums across the depth dimension |
| v8i16 sums_of_2[kCells][4]; |
| for (int outer = 0; outer < 2; outer++) { |
| for (int inner = 0; inner < 2; inner++) { |
| int i = 2 * outer + inner; |
| for (int cell = 0; cell < kCells; cell++) { |
| sums_of_2[cell][i] = reinterpret_cast<v8i16>(__builtin_msa_hadd_u_h( |
| reinterpret_cast<v16u8>( |
| src_lines_intertwined_4x[2 * cell + outer][inner]), |
| reinterpret_cast<v16u8>( |
| src_lines_intertwined_4x[2 * cell + outer][inner]))); |
| } |
| } |
| } |
| v8i16 sums_of_4[kCells][2]; |
| for (int i = 0; i < 2; i++) { |
| for (int cell = 0; cell < kCells; cell++) { |
| sums_of_4[cell][i] = __builtin_msa_addv_h(sums_of_2[cell][2 * i], |
| sums_of_2[cell][2 * i + 1]); |
| } |
| } |
| v8i16 sums_of_8[kCells]; |
| for (int cell = 0; cell < kCells; cell++) { |
| sums_of_8[cell] = |
| __builtin_msa_addv_h(sums_of_4[cell][0], sums_of_4[cell][1]); |
| } |
| |
| v4i32 sums_of_16[kCells]; |
| const v8i16 zeroes = __builtin_msa_ldi_h(0); |
| for (int cell = 0; cell < kCells; cell++) { |
| sums_of_16[cell] = reinterpret_cast<v4i32>( |
| __builtin_msa_ilvr_h(zeroes, sums_of_8[cell])); |
| v8i16 tmp = __builtin_msa_ilvl_h(zeroes, sums_of_8[cell]); |
| sums_of_16[cell] = |
| __builtin_msa_addv_w(sums_of_16[cell], reinterpret_cast<v4i32>(tmp)); |
| } |
| // Update the sums_of_each_slice vector |
| for (int cell = 0; cell < kCells; cell++) { |
| std::int32_t* sums_of_each_slice_ptr = |
| dst->sums_of_each_slice() + start_width + 4 * cell; |
| v4i32 tmp = __builtin_msa_ld_w(sums_of_each_slice_ptr, 0); |
| tmp = __builtin_msa_addv_w(tmp, sums_of_16[cell]); |
| __builtin_msa_st_w(tmp, sums_of_each_slice_ptr, 0); |
| } |
| dst->seek_forward_n_cells(kCells * kRegisterSize / kCellDepth); |
| } |
| }; |
| |
| template <int Width> |
| using Int8FastKernelFormat = |
| KernelSideFormatInt8<CellFormat<Width, 16, CellOrder::WidthMajor>, 1>; |
| |
| template <int Width> |
| class PackingRegisterBlock<WidthMajorUint8SideMap, |
| PackedSideBlock<Int8FastKernelFormat<Width>>> |
| : public PackingRegisterBlockBase< |
| WidthMajorUint8SideMap, |
| PackedSideBlock<Int8FastKernelFormat<Width>>> { |
| public: |
| static_assert(Width == 2 || Width == 4, ""); |
| typedef Int8FastKernelFormat<Width> KernelSideFormat; |
| typedef typename KernelSideFormat::Cell CellFormat; |
| static const int kCells = KernelSideFormat::kCells; |
| static const int kCellWidth = CellFormat::kWidth; |
| static const int kKernelWidth = CellFormat::kWidth * kCells; |
| static const int kCellDepth = CellFormat::kDepth; |
| static const int kCellSize = CellFormat::kSize; |
| |
| void Pack(PackedSideBlock<KernelSideFormat>* dst, int start_width) { |
| std::int32_t* sums_ptr = dst->sums_of_each_slice() + start_width; |
| std::uint8_t* dst_ptr = dst->current_data(); |
| const std::uint8_t* const src_ptr = this->complete_src_.data(); |
| const int stride = this->complete_src_.stride(); |
| // Load source WidthMajor data. |
| v16i8 src_lines[Width]; |
| for (int i = 0; i < Width; i++) { |
| src_lines[i] = __builtin_msa_ld_b( |
| const_cast<std::uint8_t*>(src_ptr + i * stride), 0); |
| } |
| for (int i = 0; i < Width; i++) { |
| // Subtract 128 by inverting bit 7. |
| src_lines[i] = reinterpret_cast<v16i8>( |
| __builtin_msa_bnegi_b(reinterpret_cast<v16u8>(src_lines[i]), 7)); |
| } |
| for (int i = 0; i < Width; i++) { |
| __builtin_msa_st_b(src_lines[i], dst_ptr + 16 * i, 0); |
| } |
| v8i16 sums2[Width]; |
| for (int i = 0; i < Width; i++) { |
| sums2[i] = __builtin_msa_hadd_s_h(src_lines[i], src_lines[i]); |
| } |
| v4i32 sums4_wide[Width]; |
| for (int i = 0; i < Width; i++) { |
| sums4_wide[i] = __builtin_msa_hadd_s_w(sums2[i], sums2[i]); |
| } |
| v8i16 sums4[Width / 2]; |
| for (int i = 0; i < Width / 2; i++) { |
| sums4[i] = __builtin_msa_pckev_h( |
| reinterpret_cast<v8i16>(sums4_wide[2 * i + 1]), |
| reinterpret_cast<v8i16>(sums4_wide[2 * i])); |
| } |
| v4i32 sums8_wide[Width / 2]; |
| for (int i = 0; i < Width / 2; i++) { |
| sums8_wide[i] = __builtin_msa_hadd_s_w(sums4[i], sums4[i]); |
| } |
| if (Width == 4) { |
| v4i32 sum = __builtin_msa_ld_w(const_cast<std::int32_t*>(sums_ptr), 0); |
| v8i16 sums8 = __builtin_msa_pckev_h( |
| reinterpret_cast<v8i16>(sums8_wide[1]), |
| reinterpret_cast<v8i16>(sums8_wide[0])); |
| v4i32 sums16 = __builtin_msa_hadd_s_w(sums8, sums8); |
| sum = __builtin_msa_addv_w(sum, sums16); |
| __builtin_msa_st_w(sum, sums_ptr, 0); |
| } else { |
| assert(Width == 2); |
| std::int32_t sum[2] = { sums_ptr[0], sums_ptr[1] }; |
| v2i64 sums16 = __builtin_msa_hadd_s_d(sums8_wide[0], sums8_wide[0]); |
| sum[0] += __builtin_msa_copy_s_w(reinterpret_cast<v4i32>(sums16), 0); |
| sum[1] += __builtin_msa_copy_s_w(reinterpret_cast<v4i32>(sums16), 2); |
| sums_ptr[0] = sum[0]; |
| sums_ptr[1] = sum[1]; |
| } |
| dst->seek_forward_n_cells(1); |
| } |
| }; |
| |
| } // namespace gemmlowp |
| |
| #endif // GEMMLOWP_INTERNAL_PACK_MSA_H_ |