| // Copyright 2017 The Gemmlowp Authors. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| // simd_wrappers_neon.h: NEON specialization of simd_wrappers.h |
| |
| #ifndef GEMMLOWP_INTERNAL_SIMD_WRAPPERS_NEON_H_ |
| #define GEMMLOWP_INTERNAL_SIMD_WRAPPERS_NEON_H_ |
| |
| #include <arm_neon.h> |
| |
| namespace gemmlowp { |
| |
| using Int32x4 = int32x4_t; |
| using Int16x4 = int16x4_t; |
| using Int16x8 = int16x8_t; |
| using Uint8x8 = uint8x8_t; |
| using Int8x8 = int8x8_t; |
| |
| template <int ScalarCount> |
| struct RegisterType<std::int32_t, ScalarCount> { |
| using Type = |
| typename std::conditional<ScalarCount >= 4, Int32x4, std::int32_t>::type; |
| }; |
| |
| template <int ScalarCount> |
| struct RegisterType<std::int16_t, ScalarCount> { |
| using Type = typename std::conditional< |
| ScalarCount >= 8, Int16x8, |
| typename std::conditional<ScalarCount >= 4, Int16x4, |
| std::int16_t>::type>::type; |
| }; |
| |
| template <int ScalarCount> |
| struct RegisterType<std::uint8_t, ScalarCount> { |
| using Type = typename std::conditional< |
| ScalarCount >= 8, Uint8x8, |
| typename std::conditional<ScalarCount >= 4, std::uint32_t, |
| std::uint8_t>::type>::type; |
| }; |
| |
| template <int ScalarCount> |
| struct RegisterType<std::int8_t, ScalarCount> { |
| using Type = typename std::conditional< |
| ScalarCount >= 8, Int8x8, |
| typename std::conditional<ScalarCount >= 4, std::int32_t, |
| std::int8_t>::type>::type; |
| }; |
| |
| inline Int32x4 LoadInt32x4(const std::int32_t* src) { return vld1q_s32(src); } |
| inline Int16x4 LoadInt16x4(const std::int16_t* src) { return vld1_s16(src); } |
| inline Int16x8 LoadInt16x8(const std::int16_t* src) { return vld1q_s16(src); } |
| |
| inline void StoreInt32x4(std::int32_t* dst, Int32x4 value) { |
| vst1q_s32(dst, value); |
| } |
| |
| inline void StoreInt16x4(std::int16_t* dst, Int16x4 value) { |
| vst1_s16(dst, value); |
| } |
| |
| inline void StoreInt16x8(std::int16_t* dst, Int16x8 value) { |
| vst1q_s16(dst, value); |
| } |
| |
| template <int Lane> |
| std::int32_t GetLane(Int32x4 value) { |
| return vgetq_lane_s32(value, Lane); |
| } |
| |
| template <int Lane> |
| Int32x4 DupLane(Int32x4 value) { |
| switch (Lane) { |
| case 0: |
| return vdupq_lane_s32(vget_low_s32(value), 0); |
| case 1: |
| return vdupq_lane_s32(vget_low_s32(value), 1); |
| case 2: |
| return vdupq_lane_s32(vget_high_s32(value), 0); |
| case 3: |
| return vdupq_lane_s32(vget_high_s32(value), 1); |
| default: |
| static_assert(Lane >= 0 && Lane <= 3, ""); |
| return vdupq_n_s32(0); |
| } |
| } |
| |
| inline Int32x4 Mul(Int32x4 a, std::int32_t b) { return vmulq_n_s32(a, b); } |
| |
| inline Int32x4 Min(Int32x4 a, Int32x4 b) { return vminq_s32(a, b); } |
| |
| inline Int32x4 Max(Int32x4 a, Int32x4 b) { return vmaxq_s32(a, b); } |
| |
| inline Int32x4 Max(Int32x4 a, std::int32_t b) { |
| return vmaxq_s32(a, vdupq_n_s32(b)); |
| } |
| |
| inline Int32x4 SaturatingRoundingDoublingHighMul(Int32x4 a, std::int32_t b) { |
| return vqrdmulhq_n_s32(a, b); |
| } |
| |
| template <int Lane> |
| Int32x4 MulByRhsLane(Int32x4 a, Int32x4 b) { |
| switch (Lane) { |
| case 0: |
| return vmulq_lane_s32(a, vget_low_s32(b), 0); |
| case 1: |
| return vmulq_lane_s32(a, vget_low_s32(b), 1); |
| case 2: |
| return vmulq_lane_s32(a, vget_high_s32(b), 0); |
| case 3: |
| return vmulq_lane_s32(a, vget_high_s32(b), 1); |
| default: |
| static_assert(Lane >= 0 && Lane <= 3, ""); |
| return vdupq_n_s32(0); |
| } |
| } |
| |
| inline void MulAdd(Int32x4 lhs, Int32x4 rhs, Int32x4* acc) { |
| *acc = vmlaq_s32(*acc, lhs, rhs); |
| } |
| |
| inline void MulAdd(Int32x4 lhs, std::int32_t rhs, Int32x4* acc) { |
| *acc = vmlaq_n_s32(*acc, lhs, rhs); |
| } |
| |
| template <int Lane> |
| inline void MulAddByRhsLane(Int32x4 lhs, Int32x4 rhs, Int32x4* acc) { |
| switch (Lane) { |
| case 0: |
| *acc = vmlaq_lane_s32(*acc, lhs, vget_low_s32(rhs), 0); |
| break; |
| case 1: |
| *acc = vmlaq_lane_s32(*acc, lhs, vget_low_s32(rhs), 1); |
| break; |
| case 2: |
| *acc = vmlaq_lane_s32(*acc, lhs, vget_high_s32(rhs), 0); |
| break; |
| case 3: |
| *acc = vmlaq_lane_s32(*acc, lhs, vget_high_s32(rhs), 1); |
| break; |
| default: |
| static_assert(Lane >= 0 && Lane <= 3, ""); |
| } |
| } |
| |
| template <> |
| struct LoadContiguousImpl<RegBlockInt16<8, 8>> { |
| static RegBlockInt16<8, 8> Run(const std::int16_t* src) { |
| RegBlockInt16<8, 8> result; |
| for (int i = 0; i < 8; i++) { |
| result.buf.reg[i] = vld1q_s16(src + 8 * i); |
| } |
| return result; |
| } |
| }; |
| |
| template <> |
| struct LoadContiguousImpl<RegBlockUint8<8, 8>> { |
| static RegBlockUint8<8, 8> Run(const std::uint8_t* src) { |
| RegBlockUint8<8, 8> result; |
| for (int i = 0; i < 8; i++) { |
| result.buf.reg[i] = vld1_u8(src + 8 * i); |
| } |
| return result; |
| } |
| }; |
| |
| template <> |
| struct LoadContiguousImpl<RegBlockInt8<8, 8>> { |
| static RegBlockInt8<8, 8> Run(const std::int8_t* src) { |
| RegBlockInt8<8, 8> result; |
| for (int i = 0; i < 8; i++) { |
| result.buf.reg[i] = vld1_s8(src + 8 * i); |
| } |
| return result; |
| } |
| }; |
| |
| template <> |
| struct LoadContiguousImpl<RegBlockInt32<8, 8>> { |
| static RegBlockInt32<8, 8> Run(const std::int32_t* src) { |
| RegBlockInt32<8, 8> result; |
| for (int i = 0; i < 16; i++) { |
| result.buf.reg[i] = vld1q_s32(src + 4 * i); |
| } |
| return result; |
| } |
| }; |
| |
| // 4x1 := 4x1 + 1x1 |
| template <> |
| struct BroadcastShiftLeftImpl<RegBlockInt32<4, 1>, RegBlockInt32<1, 1>> { |
| static RegBlockInt32<4, 1> Run(const RegBlockInt32<4, 1>& lhs, |
| const RegBlockInt32<1, 1>& rhs) { |
| RegBlockInt32<4, 1> result; |
| result.buf.reg[0] = ShiftLeft(lhs.buf.reg[0], Dup<Int32x4>(rhs.buf.reg[0])); |
| return result; |
| } |
| }; |
| |
| // 1x4 := 1x4 + 1x1 |
| template <> |
| struct BroadcastShiftLeftImpl<RegBlockInt32<1, 4>, RegBlockInt32<1, 1>> { |
| static RegBlockInt32<1, 4> Run(const RegBlockInt32<1, 4>& lhs, |
| const RegBlockInt32<1, 1>& rhs) { |
| RegBlockInt32<1, 4> result; |
| result.buf.reg[0] = ShiftLeft(lhs.buf.reg[0], Dup<Int32x4>(rhs.buf.reg[0])); |
| return result; |
| } |
| }; |
| |
| // 4x1 := 4x1 + 4x1 |
| template <> |
| struct BroadcastShiftLeftImpl<RegBlockInt32<4, 1>, RegBlockInt32<4, 1>> { |
| static RegBlockInt32<4, 1> Run(const RegBlockInt32<4, 1>& lhs, |
| const RegBlockInt32<4, 1>& rhs) { |
| RegBlockInt32<4, 1> result; |
| result.buf.reg[0] = ShiftLeft(lhs.buf.reg[0], rhs.buf.reg[0]); |
| return result; |
| } |
| }; |
| |
| // 1x4 := 1x4 + 1x4 |
| template <> |
| struct BroadcastShiftLeftImpl<RegBlockInt32<1, 4>, RegBlockInt32<1, 4>> { |
| static RegBlockInt32<1, 4> Run(const RegBlockInt32<1, 4>& lhs, |
| const RegBlockInt32<1, 4>& rhs) { |
| RegBlockInt32<1, 4> result; |
| result.buf.reg[0] = ShiftLeft(lhs.buf.reg[0], rhs.buf.reg[0]); |
| return result; |
| } |
| }; |
| |
| // 4x4 := 4x4 + 1x4 |
| template <> |
| struct BroadcastShiftLeftImpl<RegBlockInt32<4, 4>, RegBlockInt32<1, 4>> { |
| static RegBlockInt32<4, 4> Run(const RegBlockInt32<4, 4>& lhs, |
| const RegBlockInt32<1, 4>& rhs) { |
| RegBlockInt32<4, 4> result; |
| result.buf.reg[0] = ShiftLeft(lhs.buf.reg[0], DupLane<0>(rhs.buf.reg[0])); |
| result.buf.reg[1] = ShiftLeft(lhs.buf.reg[1], DupLane<1>(rhs.buf.reg[0])); |
| result.buf.reg[2] = ShiftLeft(lhs.buf.reg[2], DupLane<2>(rhs.buf.reg[0])); |
| result.buf.reg[3] = ShiftLeft(lhs.buf.reg[3], DupLane<3>(rhs.buf.reg[0])); |
| return result; |
| } |
| }; |
| |
| // 4x4 := 4x4 + 4x1 |
| template <> |
| struct BroadcastShiftLeftImpl<RegBlockInt32<4, 4>, RegBlockInt32<4, 1>> { |
| static RegBlockInt32<4, 4> Run(const RegBlockInt32<4, 4>& lhs, |
| const RegBlockInt32<4, 1>& rhs) { |
| RegBlockInt32<4, 4> result; |
| result.buf.reg[0] = ShiftLeft(lhs.buf.reg[0], rhs.buf.reg[0]); |
| result.buf.reg[1] = ShiftLeft(lhs.buf.reg[1], rhs.buf.reg[0]); |
| result.buf.reg[2] = ShiftLeft(lhs.buf.reg[2], rhs.buf.reg[0]); |
| result.buf.reg[3] = ShiftLeft(lhs.buf.reg[3], rhs.buf.reg[0]); |
| return result; |
| } |
| }; |
| |
| // 8x1 := 8x1 + 1x1 |
| template <> |
| struct BroadcastShiftLeftImpl<RegBlockInt32<8, 1>, RegBlockInt32<1, 1>> { |
| static RegBlockInt32<8, 1> Run(const RegBlockInt32<8, 1>& lhs, |
| const RegBlockInt32<1, 1>& rhs) { |
| RegBlockInt32<8, 1> result; |
| const Int32x4 p = Dup<Int32x4>(rhs.buf.reg[0]); |
| for (int i = 0; i < 2; i++) { |
| result.buf.reg[i] = ShiftLeft(lhs.buf.reg[i], p); |
| } |
| return result; |
| } |
| }; |
| |
| // 8x1 := 8x1 + 8x1 |
| template <> |
| struct BroadcastShiftLeftImpl<RegBlockInt32<8, 1>, RegBlockInt32<8, 1>> { |
| static RegBlockInt32<8, 1> Run(const RegBlockInt32<8, 1>& lhs, |
| const RegBlockInt32<8, 1>& rhs) { |
| RegBlockInt32<8, 1> result; |
| for (int i = 0; i < 2; i++) { |
| result.buf.reg[i] = ShiftLeft(lhs.buf.reg[i], rhs.buf.reg[i]); |
| } |
| return result; |
| } |
| }; |
| |
| // 8x4 := 8x4 + 1x4 |
| template <> |
| struct BroadcastShiftLeftImpl<RegBlockInt32<8, 4>, RegBlockInt32<1, 4>> { |
| static RegBlockInt32<8, 4> Run(const RegBlockInt32<8, 4>& lhs, |
| const RegBlockInt32<1, 4>& rhs) { |
| RegBlockInt32<8, 4> result; |
| result.buf.reg[0] = ShiftLeft(lhs.buf.reg[0], DupLane<0>(rhs.buf.reg[0])); |
| result.buf.reg[1] = ShiftLeft(lhs.buf.reg[1], DupLane<0>(rhs.buf.reg[0])); |
| result.buf.reg[2] = ShiftLeft(lhs.buf.reg[2], DupLane<1>(rhs.buf.reg[0])); |
| result.buf.reg[3] = ShiftLeft(lhs.buf.reg[3], DupLane<1>(rhs.buf.reg[0])); |
| result.buf.reg[4] = ShiftLeft(lhs.buf.reg[4], DupLane<2>(rhs.buf.reg[0])); |
| result.buf.reg[5] = ShiftLeft(lhs.buf.reg[5], DupLane<2>(rhs.buf.reg[0])); |
| result.buf.reg[6] = ShiftLeft(lhs.buf.reg[6], DupLane<3>(rhs.buf.reg[0])); |
| result.buf.reg[7] = ShiftLeft(lhs.buf.reg[7], DupLane<3>(rhs.buf.reg[0])); |
| return result; |
| } |
| }; |
| |
| // 8x4 := 8x4 + 8x1 |
| template <> |
| struct BroadcastShiftLeftImpl<RegBlockInt32<8, 4>, RegBlockInt32<8, 1>> { |
| static RegBlockInt32<8, 4> Run(const RegBlockInt32<8, 4>& lhs, |
| const RegBlockInt32<8, 1>& rhs) { |
| RegBlockInt32<8, 4> result; |
| result.buf.reg[0] = ShiftLeft(lhs.buf.reg[0], rhs.buf.reg[0]); |
| result.buf.reg[1] = ShiftLeft(lhs.buf.reg[1], rhs.buf.reg[1]); |
| result.buf.reg[2] = ShiftLeft(lhs.buf.reg[2], rhs.buf.reg[0]); |
| result.buf.reg[3] = ShiftLeft(lhs.buf.reg[3], rhs.buf.reg[1]); |
| result.buf.reg[4] = ShiftLeft(lhs.buf.reg[4], rhs.buf.reg[0]); |
| result.buf.reg[5] = ShiftLeft(lhs.buf.reg[5], rhs.buf.reg[1]); |
| result.buf.reg[6] = ShiftLeft(lhs.buf.reg[6], rhs.buf.reg[0]); |
| result.buf.reg[7] = ShiftLeft(lhs.buf.reg[7], rhs.buf.reg[1]); |
| return result; |
| } |
| }; |
| |
| // 1x8 := 1x8 + 1x8 |
| template <> |
| struct BroadcastShiftLeftImpl<RegBlockInt32<1, 8>, RegBlockInt32<1, 8>> { |
| static RegBlockInt32<1, 8> Run(const RegBlockInt32<1, 8>& lhs, |
| const RegBlockInt32<1, 8>& rhs) { |
| RegBlockInt32<1, 8> result; |
| result.buf.reg[0] = ShiftLeft(lhs.buf.reg[0], rhs.buf.reg[0]); |
| result.buf.reg[1] = ShiftLeft(lhs.buf.reg[1], rhs.buf.reg[1]); |
| return result; |
| } |
| }; |
| |
| // 1x8 := 1x8 + 1x1 |
| template <> |
| struct BroadcastShiftLeftImpl<RegBlockInt32<1, 8>, RegBlockInt32<1, 1>> { |
| static RegBlockInt32<1, 8> Run(const RegBlockInt32<1, 8>& lhs, |
| const RegBlockInt32<1, 1>& rhs) { |
| RegBlockInt32<1, 8> result; |
| result.buf.reg[0] = ShiftLeft(lhs.buf.reg[0], Dup<Int32x4>(rhs.buf.reg[0])); |
| result.buf.reg[1] = ShiftLeft(lhs.buf.reg[1], Dup<Int32x4>(rhs.buf.reg[0])); |
| return result; |
| } |
| }; |
| |
| // 4x1 := 4x1 + 1x1 |
| template <> |
| struct BroadcastRoundingDivideByPOTImpl<RegBlockInt32<4, 1>, |
| RegBlockInt32<1, 1>> { |
| static RegBlockInt32<4, 1> Run(const RegBlockInt32<4, 1>& lhs, |
| const RegBlockInt32<1, 1>& rhs) { |
| RegBlockInt32<4, 1> result; |
| result.buf.reg[0] = |
| RoundingDivideByPOT(lhs.buf.reg[0], Dup<Int32x4>(rhs.buf.reg[0])); |
| return result; |
| } |
| }; |
| |
| // 1x4 := 1x4 + 1x1 |
| template <> |
| struct BroadcastRoundingDivideByPOTImpl<RegBlockInt32<1, 4>, |
| RegBlockInt32<1, 1>> { |
| static RegBlockInt32<1, 4> Run(const RegBlockInt32<1, 4>& lhs, |
| const RegBlockInt32<1, 1>& rhs) { |
| RegBlockInt32<1, 4> result; |
| result.buf.reg[0] = |
| RoundingDivideByPOT(lhs.buf.reg[0], Dup<Int32x4>(rhs.buf.reg[0])); |
| return result; |
| } |
| }; |
| |
| // 4x1 := 4x1 + 4x1 |
| template <> |
| struct BroadcastRoundingDivideByPOTImpl<RegBlockInt32<4, 1>, |
| RegBlockInt32<4, 1>> { |
| static RegBlockInt32<4, 1> Run(const RegBlockInt32<4, 1>& lhs, |
| const RegBlockInt32<4, 1>& rhs) { |
| RegBlockInt32<4, 1> result; |
| result.buf.reg[0] = RoundingDivideByPOT(lhs.buf.reg[0], rhs.buf.reg[0]); |
| return result; |
| } |
| }; |
| |
| // 1x4 := 1x4 + 1x4 |
| template <> |
| struct BroadcastRoundingDivideByPOTImpl<RegBlockInt32<1, 4>, |
| RegBlockInt32<1, 4>> { |
| static RegBlockInt32<1, 4> Run(const RegBlockInt32<1, 4>& lhs, |
| const RegBlockInt32<1, 4>& rhs) { |
| RegBlockInt32<1, 4> result; |
| result.buf.reg[0] = RoundingDivideByPOT(lhs.buf.reg[0], rhs.buf.reg[0]); |
| return result; |
| } |
| }; |
| |
| // 4x4 := 4x4 + 1x4 |
| template <> |
| struct BroadcastRoundingDivideByPOTImpl<RegBlockInt32<4, 4>, |
| RegBlockInt32<1, 4>> { |
| static RegBlockInt32<4, 4> Run(const RegBlockInt32<4, 4>& lhs, |
| const RegBlockInt32<1, 4>& rhs) { |
| RegBlockInt32<4, 4> result; |
| result.buf.reg[0] = |
| RoundingDivideByPOT(lhs.buf.reg[0], DupLane<0>(rhs.buf.reg[0])); |
| result.buf.reg[1] = |
| RoundingDivideByPOT(lhs.buf.reg[1], DupLane<1>(rhs.buf.reg[0])); |
| result.buf.reg[2] = |
| RoundingDivideByPOT(lhs.buf.reg[2], DupLane<2>(rhs.buf.reg[0])); |
| result.buf.reg[3] = |
| RoundingDivideByPOT(lhs.buf.reg[3], DupLane<3>(rhs.buf.reg[0])); |
| return result; |
| } |
| }; |
| |
| // 4x4 := 4x4 + 4x1 |
| template <> |
| struct BroadcastRoundingDivideByPOTImpl<RegBlockInt32<4, 4>, |
| RegBlockInt32<4, 1>> { |
| static RegBlockInt32<4, 4> Run(const RegBlockInt32<4, 4>& lhs, |
| const RegBlockInt32<4, 1>& rhs) { |
| RegBlockInt32<4, 4> result; |
| result.buf.reg[0] = RoundingDivideByPOT(lhs.buf.reg[0], rhs.buf.reg[0]); |
| result.buf.reg[1] = RoundingDivideByPOT(lhs.buf.reg[1], rhs.buf.reg[0]); |
| result.buf.reg[2] = RoundingDivideByPOT(lhs.buf.reg[2], rhs.buf.reg[0]); |
| result.buf.reg[3] = RoundingDivideByPOT(lhs.buf.reg[3], rhs.buf.reg[0]); |
| return result; |
| } |
| }; |
| |
| // 8x1 := 8x1 + 1x1 |
| template <> |
| struct BroadcastRoundingDivideByPOTImpl<RegBlockInt32<8, 1>, |
| RegBlockInt32<1, 1>> { |
| static RegBlockInt32<8, 1> Run(const RegBlockInt32<8, 1>& lhs, |
| const RegBlockInt32<1, 1>& rhs) { |
| RegBlockInt32<8, 1> result; |
| const Int32x4 p = Dup<Int32x4>(rhs.buf.reg[0]); |
| for (int i = 0; i < 2; i++) { |
| result.buf.reg[i] = RoundingDivideByPOT(lhs.buf.reg[i], p); |
| } |
| return result; |
| } |
| }; |
| |
| // 8x1 := 8x1 + 8x1 |
| template <> |
| struct BroadcastRoundingDivideByPOTImpl<RegBlockInt32<8, 1>, |
| RegBlockInt32<8, 1>> { |
| static RegBlockInt32<8, 1> Run(const RegBlockInt32<8, 1>& lhs, |
| const RegBlockInt32<8, 1>& rhs) { |
| RegBlockInt32<8, 1> result; |
| for (int i = 0; i < 2; i++) { |
| result.buf.reg[i] = RoundingDivideByPOT(lhs.buf.reg[i], rhs.buf.reg[i]); |
| } |
| return result; |
| } |
| }; |
| |
| // 8x4 := 8x4 + 1x4 |
| template <> |
| struct BroadcastRoundingDivideByPOTImpl<RegBlockInt32<8, 4>, |
| RegBlockInt32<1, 4>> { |
| static RegBlockInt32<8, 4> Run(const RegBlockInt32<8, 4>& lhs, |
| const RegBlockInt32<1, 4>& rhs) { |
| RegBlockInt32<8, 4> result; |
| result.buf.reg[0] = |
| RoundingDivideByPOT(lhs.buf.reg[0], DupLane<0>(rhs.buf.reg[0])); |
| result.buf.reg[1] = |
| RoundingDivideByPOT(lhs.buf.reg[1], DupLane<0>(rhs.buf.reg[0])); |
| result.buf.reg[2] = |
| RoundingDivideByPOT(lhs.buf.reg[2], DupLane<1>(rhs.buf.reg[0])); |
| result.buf.reg[3] = |
| RoundingDivideByPOT(lhs.buf.reg[3], DupLane<1>(rhs.buf.reg[0])); |
| result.buf.reg[4] = |
| RoundingDivideByPOT(lhs.buf.reg[4], DupLane<2>(rhs.buf.reg[0])); |
| result.buf.reg[5] = |
| RoundingDivideByPOT(lhs.buf.reg[5], DupLane<2>(rhs.buf.reg[0])); |
| result.buf.reg[6] = |
| RoundingDivideByPOT(lhs.buf.reg[6], DupLane<3>(rhs.buf.reg[0])); |
| result.buf.reg[7] = |
| RoundingDivideByPOT(lhs.buf.reg[7], DupLane<3>(rhs.buf.reg[0])); |
| return result; |
| } |
| }; |
| |
| // 8x4 := 8x4 + 8x1 |
| template <> |
| struct BroadcastRoundingDivideByPOTImpl<RegBlockInt32<8, 4>, |
| RegBlockInt32<8, 1>> { |
| static RegBlockInt32<8, 4> Run(const RegBlockInt32<8, 4>& lhs, |
| const RegBlockInt32<8, 1>& rhs) { |
| RegBlockInt32<8, 4> result; |
| result.buf.reg[0] = RoundingDivideByPOT(lhs.buf.reg[0], rhs.buf.reg[0]); |
| result.buf.reg[1] = RoundingDivideByPOT(lhs.buf.reg[1], rhs.buf.reg[1]); |
| result.buf.reg[2] = RoundingDivideByPOT(lhs.buf.reg[2], rhs.buf.reg[0]); |
| result.buf.reg[3] = RoundingDivideByPOT(lhs.buf.reg[3], rhs.buf.reg[1]); |
| result.buf.reg[4] = RoundingDivideByPOT(lhs.buf.reg[4], rhs.buf.reg[0]); |
| result.buf.reg[5] = RoundingDivideByPOT(lhs.buf.reg[5], rhs.buf.reg[1]); |
| result.buf.reg[6] = RoundingDivideByPOT(lhs.buf.reg[6], rhs.buf.reg[0]); |
| result.buf.reg[7] = RoundingDivideByPOT(lhs.buf.reg[7], rhs.buf.reg[1]); |
| return result; |
| } |
| }; |
| |
| // 1x8 := 1x8 + 1x8 |
| template <> |
| struct BroadcastRoundingDivideByPOTImpl<RegBlockInt32<1, 8>, |
| RegBlockInt32<1, 8>> { |
| static RegBlockInt32<1, 8> Run(const RegBlockInt32<1, 8>& lhs, |
| const RegBlockInt32<1, 8>& rhs) { |
| RegBlockInt32<1, 8> result; |
| result.buf.reg[0] = RoundingDivideByPOT(lhs.buf.reg[0], rhs.buf.reg[0]); |
| result.buf.reg[1] = RoundingDivideByPOT(lhs.buf.reg[1], rhs.buf.reg[1]); |
| return result; |
| } |
| }; |
| |
| // 1x8 := 1x8 + 1x1 |
| template <> |
| struct BroadcastRoundingDivideByPOTImpl<RegBlockInt32<1, 8>, |
| RegBlockInt32<1, 1>> { |
| static RegBlockInt32<1, 8> Run(const RegBlockInt32<1, 8>& lhs, |
| const RegBlockInt32<1, 1>& rhs) { |
| RegBlockInt32<1, 8> result; |
| result.buf.reg[0] = |
| RoundingDivideByPOT(lhs.buf.reg[0], Dup<Int32x4>(rhs.buf.reg[0])); |
| result.buf.reg[1] = |
| RoundingDivideByPOT(lhs.buf.reg[1], Dup<Int32x4>(rhs.buf.reg[0])); |
| return result; |
| } |
| }; |
| |
| } // end namespace gemmlowp |
| |
| #include "simd_wrappers_common_neon_sse.h" |
| |
| #endif // GEMMLOWP_INTERNAL_SIMD_WRAPPERS_NEON_H_ |