blob: d8236de6b4b3a12c16dab2d7c17f008f7f41568a [file] [log] [blame]
// Copyright 2015 The Gemmlowp Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifdef __APPLE__
#include <sys/time.h>
#endif
#include <cstdint>
#include <cstdlib>
#include <ctime>
#include <iostream>
#include <map>
#include <vector>
#ifdef __APPLE__
#include <TargetConditionals.h>
#endif
#include "test.h"
#ifndef GEMMLOWP_TEST_BIT_DEPTH_PARAMS
#define GEMMLOWP_TEST_BIT_DEPTH_PARAMS DefaultL8R8BitDepthParams
#endif
#if defined(__arm__) && !defined(GEMMLOWP_NEON)
#warning "Building without NEON support on ARM, check your compiler setup!"
#endif
#if defined(__mips) && !defined(GEMMLOWP_MSA)
#warning "Building without MSA support on MIPS, check your compiler setup!"
#endif
#if defined(__AVX2__) && !defined(GEMMLOWP_AVX2)
#warning \
"Building without AVX2 support on AVX2 enabled machine, check your compiler setup!"
#endif
#if defined(__SSE4_2__) && !defined(GEMMLOWP_AVX2) && !defined(GEMMLOWP_SSE4)
#warning \
"Building without SSE4.2 support on SSE4.2 enabled machine, check your compiler setup!"
#endif
namespace gemmlowp {
const double min_accurate_duration = 1e-1;
const std::size_t min_working_set_size = 16 * 1024 * 1024;
struct gemm_t {
int rows, depth, cols;
gemm_t() : rows(0), depth(0), cols(0) {}
gemm_t(int r, int d, int c) : rows(r), depth(d), cols(c) {}
};
bool operator<(const gemm_t& a, const gemm_t& b) {
return a.rows < b.rows ||
(a.rows <= b.rows &&
(a.depth < b.depth || (a.depth <= b.depth && (a.cols < b.cols))));
}
template <typename LhsType, typename RhsType, typename ResultType>
double time_for_gemms(GemmContext* context, const std::vector<gemm_t>& gemms) {
typedef std::uint8_t Scalar;
// set up the matrix pool
std::size_t combined_gemm_sizes = 0;
for (auto gemm : gemms) {
int rows = gemm.rows;
int depth = gemm.depth;
int cols = gemm.cols;
combined_gemm_sizes +=
sizeof(Scalar) * (rows * depth + depth * cols + rows * cols);
}
const std::size_t pool_size = 1 + min_working_set_size / combined_gemm_sizes;
std::vector<LhsType> lhs(pool_size * gemms.size());
std::vector<RhsType> rhs(pool_size * gemms.size());
std::vector<ResultType> result(pool_size * gemms.size());
for (std::size_t i = 0; i < pool_size; i++) {
for (std::size_t j = 0; j < gemms.size(); j++) {
int k = i * gemms.size() + j;
lhs[k].Resize(gemms[j].rows, gemms[j].depth);
MakeConstant(&lhs[k], 0);
rhs[k].Resize(gemms[j].depth, gemms[j].cols);
MakeConstant(&rhs[k], 0);
result[k].Resize(gemms[j].rows, gemms[j].cols);
MakeConstant(&result[k], 0);
}
}
// main benchmark loop
int iters_at_a_time = 1;
float time_per_iter = 0.0f;
std::size_t pool_index = 0;
while (true) {
double starttime = real_time_in_seconds();
for (int i = 0; i < iters_at_a_time; i++) {
for (size_t j = 0; j < gemms.size(); j++) {
size_t k = pool_index * gemms.size() + j;
Gemm<std::uint8_t, GEMMLOWP_TEST_BIT_DEPTH_PARAMS>(
context, lhs[k].const_map(), rhs[k].const_map(), &result[k].map(),
-75, -91, 74980, 123, 20);
}
pool_index++;
if (pool_index == pool_size) {
pool_index = 0;
}
}
double endtime = real_time_in_seconds();
const float timing = static_cast<float>(endtime - starttime);
if (timing >= min_accurate_duration) {
time_per_iter = timing / iters_at_a_time;
break;
}
iters_at_a_time *= 2;
}
return time_per_iter;
}
template <typename LhsType, typename RhsType, typename ResultType>
double gflops_for_gemms(GemmContext* context,
const std::vector<gemm_t>& gemms) {
const double time_per_iter =
time_for_gemms<LhsType, RhsType, ResultType>(context, gemms);
double ops = 0;
for (auto gemm : gemms) {
ops += 2.0 * gemm.rows * gemm.depth * gemm.cols;
}
return 1e-9 * ops / time_per_iter;
}
void benchmark(GemmContext* context) {
std::map<gemm_t, std::vector<double>> benchmark_results;
std::vector<gemm_t> benchmark_gemms;
benchmark_gemms.emplace_back(10, 10, 10);
benchmark_gemms.emplace_back(20, 20, 20);
benchmark_gemms.emplace_back(30, 30, 30);
benchmark_gemms.emplace_back(40, 40, 40);
benchmark_gemms.emplace_back(50, 50, 50);
benchmark_gemms.emplace_back(60, 60, 60);
benchmark_gemms.emplace_back(64, 256, 147);
benchmark_gemms.emplace_back(100, 100, 1);
benchmark_gemms.emplace_back(100, 100, 100);
benchmark_gemms.emplace_back(100, 1000, 100);
benchmark_gemms.emplace_back(1000, 1000, 1);
benchmark_gemms.emplace_back(1000, 1000, 10);
benchmark_gemms.emplace_back(1000, 1000, 100);
benchmark_gemms.emplace_back(1000, 1000, 1000);
const int repeat = 2;
typedef Matrix<std::uint8_t, MapOrder::RowMajor> LhsType;
typedef Matrix<std::uint8_t, MapOrder::ColMajor> RhsType;
typedef Matrix<std::uint8_t, MapOrder::ColMajor> ResultType;
#ifdef GEMMLOWP_TEST_PROFILE
gemmlowp::RegisterCurrentThreadForProfiling();
gemmlowp::StartProfiling();
#endif
// We don't record the first repetition, it's just warm-up.
for (int r = 0; r < repeat + 1; r++) {
std::cout << "repetition " << r + 1 << "/" << repeat + 1 << "...\r"
<< std::flush;
for (auto gemm : benchmark_gemms) {
double gflops = 0;
std::vector<gemm_t> unique_gemm;
unique_gemm.push_back(gemm);
gflops =
gflops_for_gemms<LhsType, RhsType, ResultType>(context, unique_gemm);
if (r > 0) {
benchmark_results[gemm].emplace_back(gflops);
}
}
}
#ifdef GEMMLOWP_TEST_PROFILE
gemmlowp::FinishProfiling();
#endif
std::cout << " \r"
<< std::flush;
std::cout.precision(4);
for (auto b : benchmark_results) {
sort(b.second.begin(), b.second.end());
std::cout << b.first.rows << "x" << b.first.depth << "x" << b.first.cols
<< " : " << b.second.back() << " GFlops/s" << std::endl;
}
std::cout << std::endl;
}
void benchmark_gemm_sizes(GemmContext* context,
const std::vector<gemm_t>& gemms, double mintime) {
typedef Matrix<std::uint8_t, MapOrder::RowMajor> LhsType;
typedef Matrix<std::uint8_t, MapOrder::ColMajor> RhsType;
typedef Matrix<std::uint8_t, MapOrder::ColMajor> ResultType;
std::vector<float> gemm_times;
std::cout << "running for " << mintime << " seconds..." << std::endl;
#ifdef GEMMLOWP_TEST_PROFILE
gemmlowp::RegisterCurrentThreadForProfiling();
gemmlowp::StartProfiling();
#endif
double starttime = real_time_in_seconds();
while (real_time_in_seconds() < starttime + mintime) {
gemm_times.push_back(
time_for_gemms<LhsType, RhsType, ResultType>(context, gemms));
}
#ifdef GEMMLOWP_TEST_PROFILE
gemmlowp::FinishProfiling();
#endif
std::sort(gemm_times.begin(), gemm_times.end());
double sum_gemm_times = 0;
double sum_gemm_times_trimmed = 0;
int count_gemm_times_trimmed = 0;
const float trim_ratio = 0.25;
const size_t count_trimmed = gemm_times.size() * trim_ratio;
double sum_gemm_times_best = 0;
int count_gemm_times_best = 0;
const float best_ratio = 0.1;
const size_t count_best = gemm_times.size() * best_ratio;
for (size_t i = 0; i < gemm_times.size(); i++) {
sum_gemm_times += gemm_times[i];
if (i >= count_trimmed && i < gemm_times.size() - count_trimmed) {
sum_gemm_times_trimmed += gemm_times[i];
count_gemm_times_trimmed++;
}
if (i < count_best) {
sum_gemm_times_best += gemm_times[i];
count_gemm_times_best++;
}
}
const double min_latency = gemm_times.front();
const double max_latency = gemm_times.back();
const double mean_latency = sum_gemm_times / gemm_times.size();
const double trimmed_mean_latency =
sum_gemm_times_trimmed / count_gemm_times_trimmed;
const double best_mean_latency = sum_gemm_times_best / count_gemm_times_best;
std::cout << "Graph latency (over " << gemm_times.size()
<< " iterations):" << std::endl;
std::cout << " Best: " << min_latency << "s" << std::endl;
std::cout << " Worst: " << max_latency << "s" << std::endl;
std::cout << " Mean: " << mean_latency << "s" << std::endl;
std::cout << " " << 100 * trim_ratio
<< "% trimmed mean: " << trimmed_mean_latency << "s" << std::endl;
std::cout << " Mean of " << 100 * best_ratio
<< "% best: " << best_mean_latency << "s" << std::endl;
}
void benchmark_googlenet(GemmContext* context) {
// These are the m, n, k sizes for a typical GoogLeNet.
const int googlenet_gemm_sizes[] = {
12544, 64, 147, 3136, 64, 64, 3136, 192, 576, 784, 64, 192,
784, 96, 192, 784, 128, 864, 784, 16, 192, 784, 32, 400,
784, 32, 192, 784, 128, 256, 784, 128, 256, 784, 192, 1152,
784, 32, 256, 784, 96, 800, 784, 64, 256, 196, 192, 480,
196, 96, 480, 196, 204, 864, 196, 16, 480, 196, 48, 400,
196, 64, 480, 196, 160, 508, 196, 112, 508, 196, 224, 1008,
196, 24, 508, 196, 64, 600, 196, 64, 508, 196, 128, 512,
196, 128, 512, 196, 256, 1152, 196, 24, 512, 196, 64, 600,
196, 64, 512, 196, 112, 512, 196, 144, 512, 196, 288, 1296,
196, 32, 512, 196, 64, 800, 196, 64, 512, 196, 256, 528,
196, 160, 528, 196, 320, 1440, 196, 32, 528, 196, 128, 800,
196, 128, 528, 49, 256, 832, 49, 160, 832, 49, 320, 1440,
49, 48, 832, 49, 128, 1200, 49, 128, 832, 49, 384, 832,
49, 192, 832, 49, 384, 1728, 49, 48, 832, 49, 128, 1200,
49, 128, 832, 16, 128, 508, 1, 1024, 2048, 1, 1008, 1024,
16, 128, 528, 1, 1024, 2048, 1, 1008, 1024, 1, 1008, 1024,
};
assert(sizeof(googlenet_gemm_sizes) % (3 * sizeof(googlenet_gemm_sizes[0])) ==
0);
const std::size_t num_googlenet_gemms =
sizeof(googlenet_gemm_sizes) / (3 * sizeof(googlenet_gemm_sizes[0]));
std::vector<gemm_t> googlenet_gemms(num_googlenet_gemms);
for (std::size_t i = 0; i < num_googlenet_gemms; i++) {
googlenet_gemms[i].rows = googlenet_gemm_sizes[3 * i + 1];
googlenet_gemms[i].depth = googlenet_gemm_sizes[3 * i + 2];
googlenet_gemms[i].cols = googlenet_gemm_sizes[3 * i + 0];
}
const double mintime = 20.0;
benchmark_gemm_sizes(context, googlenet_gemms, mintime);
}
void benchmark_small_model(GemmContext* context) {
// These are the m, n, k sizes for a small model with large batches.
const int small_model_gemm_sizes[] = {
29232, 16, 25, 7308, 6, 400, 203, 3002, 216,
};
assert(sizeof(small_model_gemm_sizes) %
(3 * sizeof(small_model_gemm_sizes[0])) ==
0);
const std::size_t num_small_model_gemms =
sizeof(small_model_gemm_sizes) / (3 * sizeof(small_model_gemm_sizes[0]));
std::vector<gemm_t> small_model_gemms(num_small_model_gemms);
for (std::size_t i = 0; i < num_small_model_gemms; i++) {
small_model_gemms[i].rows = small_model_gemm_sizes[3 * i + 1];
small_model_gemms[i].depth = small_model_gemm_sizes[3 * i + 2];
small_model_gemms[i].cols = small_model_gemm_sizes[3 * i + 0];
}
const double mintime = 10.0;
benchmark_gemm_sizes(context, small_model_gemms, mintime);
}
void benchmark_all() {
{
gemmlowp::GemmContext context;
std::cout << "Benchmarking small model GEMMs..." << std::endl;
gemmlowp::benchmark_small_model(&context);
}
{
gemmlowp::GemmContext context;
std::cout << "Benchmarking typical GoogLeNet GEMMs..." << std::endl;
gemmlowp::benchmark_googlenet(&context);
}
{
gemmlowp::GemmContext context;
context.set_max_num_threads(0);
std::cout << "Benchmarking multi-threaded mode..." << std::endl;
gemmlowp::benchmark(&context);
}
{
gemmlowp::GemmContext context;
context.set_max_num_threads(1);
std::cout << "Benchmarking single-threaded mode..." << std::endl;
gemmlowp::benchmark(&context);
}
}
} // end namespace gemmlowp
// For iOS, we need to define our own main(), so skip it here.
#if !(defined(__APPLE__) && (TARGET_OS_IPHONE || TARGET_IPHONE_SIMULATOR))
int main() { gemmlowp::benchmark_all(); }
#endif