blob: a1e48c3a0fcd1d9a8fe566d373adfbd10b2f619c [file] [log] [blame]
// Copyright 2015 The Gemmlowp Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef GEMMLOWP_META_MULTI_THREAD_GEMM_H_
#define GEMMLOWP_META_MULTI_THREAD_GEMM_H_
#include "../internal/common.h"
#ifdef GEMMLOWP_NEON
#include "legacy_multi_thread_common.h"
#include "legacy_multi_thread_gemv.h"
#include "legacy_operations_common.h"
#include "legacy_single_thread_gemm.h"
namespace gemmlowp {
namespace meta {
namespace internal {
const std::int32_t kMaxCacheFriendlySize = 256 * 1024;
template <typename IN_TYPE, typename OUT_TYPE, typename F>
void CacheFriendlyMatrixMatrix(std::uint8_t* scratch, const IN_TYPE* lhs,
const IN_TYPE* rhs, std::int32_t m,
std::int32_t n, std::int32_t k, OUT_TYPE* result,
std::int32_t result_stride, const F& operation) {
const std::int32_t rhs_size = n * k * sizeof(IN_TYPE);
if (rhs_size > kMaxCacheFriendlySize) {
const std::int32_t optimal_n =
std::max(1, 4 * (kMaxCacheFriendlySize / (k * 4)));
const std::int32_t chunks_count_less_one = n / optimal_n - 1;
const std::int32_t chunk_size = optimal_n * k;
for (int i = 0; i < chunks_count_less_one; ++i) {
operation.ExecuteCacheFriendlyMatrixMatrix(
scratch, lhs, rhs + i * chunk_size, m, optimal_n, k,
result + i * optimal_n, result_stride);
}
const std::int32_t n_left = n - chunks_count_less_one * optimal_n;
operation.ExecuteCacheFriendlyMatrixMatrix(
scratch, lhs, rhs + chunks_count_less_one * chunk_size, m, n_left, k,
result + chunks_count_less_one * optimal_n, result_stride);
} else {
operation.ExecuteCacheFriendlyMatrixMatrix(scratch, lhs, rhs, m, n, k,
result, result_stride);
}
}
class GemmQuantized8BitOperation : public Quantized8BitOperation {
public:
GemmQuantized8BitOperation(std::int32_t lhs_offset, std::int32_t rhs_offset,
std::int32_t sum_offset, std::int32_t multiplier,
std::int32_t shift)
: Quantized8BitOperation(lhs_offset, rhs_offset, sum_offset, multiplier,
shift) {}
void ExecuteMatrixMatrix(std::uint8_t* scratch, const std::uint8_t* lhs,
const std::uint8_t* rhs, std::int32_t m,
std::int32_t n, std::int32_t k, std::uint8_t* result,
std::int32_t result_stride) const {
CacheFriendlyMatrixMatrix(scratch, lhs, rhs, m, n, k, result, result_stride,
*this);
}
void ExecuteCacheFriendlyMatrixMatrix(std::uint8_t* scratch,
const std::uint8_t* lhs,
const std::uint8_t* rhs, std::int32_t m,
std::int32_t n, std::int32_t k,
std::uint8_t* result,
std::int32_t result_stride) const {
gemm_q8_strided(scratch, lhs, rhs, m, n, k, lhs_offset, rhs_offset,
sum_offset, multiplier, shift, result, result_stride);
}
static std::int32_t ScratchPerThread(std::int32_t m, std::int32_t n,
std::int32_t k) {
return 4 * kMaxCacheFriendlySize;
}
};
class GemmFloatOperation : public FloatOperation {
public:
GemmFloatOperation(std::int32_t lhs_offset, std::int32_t rhs_offset,
float result_offset)
: FloatOperation(lhs_offset, rhs_offset, result_offset) {}
void ExecuteMatrixMatrix(std::uint8_t* scratch, const std::uint8_t* lhs,
const std::uint8_t* rhs, std::int32_t m,
std::int32_t n, std::int32_t k, float* result,
std::int32_t result_stride) const {
CacheFriendlyMatrixMatrix(scratch, lhs, rhs, m, n, k, result, result_stride,
*this);
}
void ExecuteCacheFriendlyMatrixMatrix(std::uint8_t* scratch,
const std::uint8_t* lhs,
const std::uint8_t* rhs, std::int32_t m,
std::int32_t n, std::int32_t k,
float* result,
std::int32_t result_stride) const {
gemm_f_strided(scratch, lhs, rhs, m, n, k, lhs_offset, rhs_offset,
result_offset, result, result_stride);
}
static std::int32_t ScratchPerThread(std::int32_t m, std::int32_t n,
std::int32_t k) {
return 4 * kMaxCacheFriendlySize;
}
};
class GemmInt32Operation : public Int32Operation {
public:
GemmInt32Operation(std::int32_t lhs_offset, std::int32_t rhs_offset)
: Int32Operation(lhs_offset, rhs_offset) {}
void ExecuteMatrixMatrix(std::uint8_t* scratch, const std::uint8_t* lhs,
const std::uint8_t* rhs, std::int32_t m,
std::int32_t n, std::int32_t k, std::int32_t* result,
std::int32_t result_stride) const {
CacheFriendlyMatrixMatrix(scratch, lhs, rhs, m, n, k, result, result_stride,
*this);
}
void ExecuteCacheFriendlyMatrixMatrix(std::uint8_t* scratch,
const std::uint8_t* lhs,
const std::uint8_t* rhs, std::int32_t m,
std::int32_t n, std::int32_t k,
std::int32_t* result,
std::int32_t result_stride) const {
gemm_i32_strided(scratch, lhs, rhs, m, n, k, lhs_offset, rhs_offset, result,
result_stride);
}
static std::int32_t ScratchPerThread(std::int32_t m, std::int32_t n,
std::int32_t k) {
return 4 * kMaxCacheFriendlySize;
}
};
} // namespace internal
std::int32_t gemm_q8_scratch(std::int32_t m, std::int32_t n, std::int32_t k,
std::int32_t max_threads) {
return internal::ResolveMaxThreads(max_threads) *
internal::GemmQuantized8BitOperation::ScratchPerThread(m, n, k);
}
void multi_thread_gemm_q8(gemmlowp::WorkersPool* pool, std::int32_t max_threads,
std::uint8_t* scratch, const std::uint8_t* lhs,
const std::uint8_t* rhs, std::int32_t m,
std::int32_t n, std::int32_t k,
std::int32_t lhs_offset, std::int32_t rhs_offset,
std::int32_t sum_offset, std::int32_t multiplier,
std::int32_t shift, std::uint8_t* result) {
if (m == 1) {
multi_thread_gemv_q8(pool, max_threads, scratch, lhs, rhs, n, k, lhs_offset,
rhs_offset, sum_offset, multiplier, shift, result);
return;
} else if (n == 1) {
multi_thread_gemv_q8(pool, max_threads, scratch, rhs, lhs, m, k, rhs_offset,
lhs_offset, sum_offset, multiplier, shift, result);
return;
}
max_threads = internal::ResolveMaxThreads(max_threads);
internal::GemmQuantized8BitOperation operation(lhs_offset, rhs_offset,
sum_offset, multiplier, shift);
if (max_threads == 1) {
internal::CacheFriendlyMatrixMatrix(scratch, lhs, rhs, m, n, k, result, n,
operation);
} else {
internal::MultiThreadedMatrixMatrix(pool, max_threads, scratch, lhs, rhs, m,
n, k, result, n, operation);
}
}
std::int32_t gemm_f_scratch(std::int32_t m, std::int32_t n, std::int32_t k,
std::int32_t max_threads) {
return internal::ResolveMaxThreads(max_threads) *
internal::GemmFloatOperation::ScratchPerThread(m, n, k);
}
void multi_thread_gemm_f(gemmlowp::WorkersPool* pool, std::int32_t max_threads,
std::uint8_t* scratch, const std::uint8_t* lhs,
const std::uint8_t* rhs, std::int32_t m,
std::int32_t n, std::int32_t k,
std::int32_t lhs_offset, std::int32_t rhs_offset,
float result_offset, float* result) {
if (m == 1) {
multi_thread_gemv_f(pool, max_threads, scratch, lhs, rhs, n, k, lhs_offset,
rhs_offset, result_offset, result);
return;
} else if (n == 1) {
multi_thread_gemv_f(pool, max_threads, scratch, rhs, lhs, m, k, rhs_offset,
lhs_offset, result_offset, result);
return;
}
max_threads = internal::ResolveMaxThreads(max_threads);
internal::GemmFloatOperation operation(lhs_offset, rhs_offset, result_offset);
if (max_threads == 1) {
internal::CacheFriendlyMatrixMatrix(scratch, lhs, rhs, m, n, k, result, n,
operation);
} else {
internal::MultiThreadedMatrixMatrix(pool, max_threads, scratch, lhs, rhs, m,
n, k, result, n, operation);
}
}
std::int32_t gemm_i32_scratch(std::int32_t m, std::int32_t n, std::int32_t k,
std::int32_t max_threads) {
return internal::ResolveMaxThreads(max_threads) *
internal::GemmInt32Operation::ScratchPerThread(m, n, k);
}
void multi_thread_gemm_i32(gemmlowp::WorkersPool* pool,
std::int32_t max_threads, std::uint8_t* scratch,
const std::uint8_t* lhs, const std::uint8_t* rhs,
std::int32_t m, std::int32_t n, std::int32_t k,
std::int32_t lhs_offset, std::int32_t rhs_offset,
std::int32_t* result) {
if (m == 1) {
multi_thread_gemv_i32(pool, max_threads, scratch, lhs, rhs, n, k,
lhs_offset, rhs_offset, result);
return;
} else if (n == 1) {
multi_thread_gemv_i32(pool, max_threads, scratch, rhs, lhs, m, k,
rhs_offset, lhs_offset, result);
return;
}
max_threads = internal::ResolveMaxThreads(max_threads);
internal::GemmInt32Operation operation(lhs_offset, rhs_offset);
if (max_threads == 1) {
internal::CacheFriendlyMatrixMatrix(scratch, lhs, rhs, m, n, k, result, n,
operation);
} else {
internal::MultiThreadedMatrixMatrix(pool, max_threads, scratch, lhs, rhs, m,
n, k, result, n, operation);
}
}
} // namespace meta
} // namespace gemmlowp
#else
#warning "Meta gemm fast-path requires GEMMLOWP_NEON_(32|64)!"
#endif
#endif // GEMMLOWP_META_MULTI_THREAD_GEMM_H_