| // Copyright 2015 Google Inc. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| // fixedpoint_SSE.h: optimized SSE specializations of the templates |
| // in fixedpoint.h. |
| |
| #ifndef GEMMLOWP_INTERNAL_FIXEDPOINT_SSE_H_ |
| #define GEMMLOWP_INTERNAL_FIXEDPOINT_SSE_H_ |
| |
| #include <smmintrin.h> |
| #include "fixedpoint.h" |
| |
| namespace gemmlowp { |
| |
| // SSE intrinsics are not finely typed: there is a single __m128i vector |
| // type that does not distinguish between "int32x4" and "int16x8" use |
| // cases, unlike the NEON equivalents. Because we had initially focused |
| // on int32x4, we did not pay attention and specialized these fixedpoint |
| // templates directly for __m128i hardcoding the int32x4 semantics, |
| // not leaving room for int16x8 semantics. Amending that by adding a separate |
| // data type, int16x8_m128i, that wraps __m128i while being a separate |
| // type. |
| struct int16x8_m128i { |
| __m128i v; |
| }; |
| |
| // Keep int16x8_m128i trivially constructible/destructible and provide |
| // easily optimized helper function. |
| inline int16x8_m128i to_int16x8_m128i(__m128i w) { |
| int16x8_m128i r; |
| r.v = w; |
| return r; |
| } |
| |
| template <> |
| struct FixedPointRawTypeTraits<__m128i> { |
| typedef std::int32_t ScalarRawType; |
| static constexpr int kLanes = 4; |
| }; |
| |
| template <> |
| struct FixedPointRawTypeTraits<int16x8_m128i> { |
| typedef std::int16_t ScalarRawType; |
| static constexpr int kLanes = 8; |
| }; |
| |
| template <> |
| inline __m128i BitAnd(__m128i a, __m128i b) { |
| return _mm_and_si128(a, b); |
| } |
| |
| template <> |
| inline int16x8_m128i BitAnd(int16x8_m128i a, int16x8_m128i b) { |
| return to_int16x8_m128i(_mm_and_si128(a.v, b.v)); |
| } |
| |
| template <> |
| inline __m128i BitOr(__m128i a, __m128i b) { |
| return _mm_or_si128(a, b); |
| } |
| |
| template <> |
| inline int16x8_m128i BitOr(int16x8_m128i a, int16x8_m128i b) { |
| return to_int16x8_m128i(_mm_or_si128(a.v, b.v)); |
| } |
| |
| template <> |
| inline __m128i BitXor(__m128i a, __m128i b) { |
| return _mm_xor_si128(a, b); |
| } |
| |
| template <> |
| inline int16x8_m128i BitXor(int16x8_m128i a, int16x8_m128i b) { |
| return to_int16x8_m128i(_mm_xor_si128(a.v, b.v)); |
| } |
| |
| template <> |
| inline __m128i BitNot(__m128i a) { |
| return _mm_andnot_si128(a, _mm_set1_epi32(-1)); |
| } |
| |
| template <> |
| inline int16x8_m128i BitNot(int16x8_m128i a) { |
| return to_int16x8_m128i(_mm_andnot_si128(a.v, _mm_set1_epi16(-1))); |
| } |
| |
| template <> |
| inline __m128i Add(__m128i a, __m128i b) { |
| return _mm_add_epi32(a, b); |
| } |
| |
| template <> |
| inline int16x8_m128i Add(int16x8_m128i a, int16x8_m128i b) { |
| return to_int16x8_m128i(_mm_add_epi16(a.v, b.v)); |
| } |
| |
| template <> |
| inline __m128i Mul(__m128i a, __m128i b) { |
| return _mm_mullo_epi32(a, b); |
| } |
| |
| template <> |
| inline int16x8_m128i Mul(int16x8_m128i a, int16x8_m128i b) { |
| return to_int16x8_m128i(_mm_mullo_epi16(a.v, b.v)); |
| } |
| |
| template <> |
| inline __m128i Sub(__m128i a, __m128i b) { |
| return _mm_sub_epi32(a, b); |
| } |
| |
| template <> |
| inline int16x8_m128i Sub(int16x8_m128i a, int16x8_m128i b) { |
| return to_int16x8_m128i(_mm_sub_epi16(a.v, b.v)); |
| } |
| |
| template <> |
| inline __m128i Neg(__m128i a) { |
| return _mm_sign_epi32(a, _mm_set1_epi32(-1)); |
| } |
| |
| template <> |
| inline int16x8_m128i Neg(int16x8_m128i a) { |
| return to_int16x8_m128i(_mm_sign_epi16(a.v, _mm_set1_epi16(-1))); |
| } |
| |
| template <> |
| inline __m128i ShiftLeft(__m128i a, int offset) { |
| return _mm_slli_epi32(a, offset); |
| } |
| |
| template <> |
| inline int16x8_m128i ShiftLeft(int16x8_m128i a, int offset) { |
| return to_int16x8_m128i(_mm_slli_epi16(a.v, offset)); |
| } |
| |
| template <> |
| inline __m128i ShiftRight(__m128i a, int offset) { |
| return _mm_srai_epi32(a, offset); |
| } |
| |
| template <> |
| inline int16x8_m128i ShiftRight(int16x8_m128i a, int offset) { |
| return to_int16x8_m128i(_mm_srai_epi16(a.v, offset)); |
| } |
| |
| template <> |
| inline __m128i SelectUsingMask(__m128i if_mask, __m128i then_val, |
| __m128i else_val) { |
| // borrowed from Intel's arm_neon_sse.h header. |
| return _mm_or_si128(_mm_and_si128(if_mask, then_val), |
| _mm_andnot_si128(if_mask, else_val)); |
| } |
| |
| template <> |
| inline int16x8_m128i SelectUsingMask(int16x8_m128i if_mask, |
| int16x8_m128i then_val, |
| int16x8_m128i else_val) { |
| // borrowed from Intel's arm_neon_sse.h header. |
| return to_int16x8_m128i(SelectUsingMask(if_mask.v, then_val.v, else_val.v)); |
| } |
| |
| template <> |
| inline __m128i MaskIfEqual(__m128i a, __m128i b) { |
| return _mm_cmpeq_epi32(a, b); |
| } |
| |
| template <> |
| inline int16x8_m128i MaskIfEqual(int16x8_m128i a, int16x8_m128i b) { |
| return to_int16x8_m128i(_mm_cmpeq_epi16(a.v, b.v)); |
| } |
| |
| template <> |
| inline __m128i MaskIfNotEqual(__m128i a, __m128i b) { |
| return BitNot(MaskIfEqual(a, b)); |
| } |
| |
| template <> |
| inline int16x8_m128i MaskIfNotEqual(int16x8_m128i a, int16x8_m128i b) { |
| return BitNot(MaskIfEqual(a, b)); |
| } |
| |
| template <> |
| inline __m128i MaskIfZero(__m128i a) { |
| return MaskIfEqual(a, _mm_set1_epi32(0)); |
| } |
| |
| template <> |
| inline int16x8_m128i MaskIfZero(int16x8_m128i a) { |
| return MaskIfEqual(a, to_int16x8_m128i(_mm_set1_epi16(0))); |
| } |
| |
| template <> |
| inline __m128i MaskIfNonZero(__m128i a) { |
| return MaskIfNotEqual(a, _mm_set1_epi32(0)); |
| } |
| |
| template <> |
| inline int16x8_m128i MaskIfNonZero(int16x8_m128i a) { |
| return MaskIfNotEqual(a, to_int16x8_m128i(_mm_set1_epi16(0))); |
| } |
| |
| template <> |
| inline __m128i MaskIfGreaterThan(__m128i a, __m128i b) { |
| return _mm_cmpgt_epi32(a, b); |
| } |
| |
| template <> |
| inline int16x8_m128i MaskIfGreaterThan(int16x8_m128i a, int16x8_m128i b) { |
| return to_int16x8_m128i(_mm_cmpgt_epi16(a.v, b.v)); |
| } |
| |
| template <> |
| inline __m128i MaskIfLessThan(__m128i a, __m128i b) { |
| return _mm_cmplt_epi32(a, b); |
| } |
| |
| template <> |
| inline int16x8_m128i MaskIfLessThan(int16x8_m128i a, int16x8_m128i b) { |
| return to_int16x8_m128i(_mm_cmplt_epi16(a.v, b.v)); |
| } |
| |
| template <> |
| inline __m128i MaskIfGreaterThanOrEqual(__m128i a, __m128i b) { |
| return BitNot(MaskIfLessThan(a, b)); |
| } |
| |
| template <> |
| inline int16x8_m128i MaskIfGreaterThanOrEqual(int16x8_m128i a, |
| int16x8_m128i b) { |
| return BitNot(MaskIfLessThan(a, b)); |
| } |
| |
| template <> |
| inline __m128i MaskIfLessThanOrEqual(__m128i a, __m128i b) { |
| return BitNot(MaskIfGreaterThan(a, b)); |
| } |
| |
| template <> |
| inline int16x8_m128i MaskIfLessThanOrEqual(int16x8_m128i a, int16x8_m128i b) { |
| return BitNot(MaskIfGreaterThan(a, b)); |
| } |
| |
| /* Assumptions: |
| - All and Any are used on masks. |
| - masks are all_ones for true lanes, all_zeroes otherwise. |
| Hence, All means all 128bits set, and Any means any bit set. |
| */ |
| |
| template <> |
| inline bool All(__m128i a) { |
| return _mm_testc_si128(a, a); |
| } |
| |
| template <> |
| inline bool All(int16x8_m128i a) { |
| return _mm_testc_si128(a.v, a.v); |
| } |
| |
| template <> |
| inline bool Any(__m128i a) { |
| return !_mm_testz_si128(a, a); |
| } |
| |
| template <> |
| inline bool Any(int16x8_m128i a) { |
| return !_mm_testz_si128(a.v, a.v); |
| } |
| |
| template <> |
| inline __m128i RoundingHalfSum(__m128i a, __m128i b) { |
| /* __m128i round_bit_mask, a_over_2, b_over_2, round_bit, sum; */ |
| /* We divide the inputs before the add to avoid the overflow and costly test |
| */ |
| /* of checking if an overflow occured on signed add */ |
| /* round_bit_mask = _mm_set1_epi32(1); */ |
| /* a_over_2 = _mm_srai_epi32(a, 1); */ |
| /* b_over_2 = _mm_srai_epi32(b, 1); */ |
| /* sum = Add(a_over_2, b_over_2); */ |
| /* round_bit = _mm_sign_epi32(BitAnd(BitOr(a,b), round_bit_mask), sum); */ |
| /* return Add(sum, round_bit); */ |
| |
| /* Other possibility detecting overflow and xor the sign if an overflow |
| * happened*/ |
| __m128i one, sign_bit_mask, sum, rounded_half_sum, overflow, result; |
| one = _mm_set1_epi32(1); |
| sign_bit_mask = _mm_set1_epi32(0x80000000); |
| sum = Add(a, b); |
| rounded_half_sum = _mm_srai_epi32(Add(sum, one), 1); |
| overflow = |
| BitAnd(BitAnd(BitXor(a, rounded_half_sum), BitXor(b, rounded_half_sum)), |
| sign_bit_mask); |
| result = BitXor(rounded_half_sum, overflow); |
| return result; |
| } |
| |
| template <> |
| inline int16x8_m128i RoundingHalfSum(int16x8_m128i a, int16x8_m128i b) { |
| // Idea: go to unsigned to use _mm_avg_epu16, |
| // borrowed from Intel's arm_neon_sse.h header. |
| __m128i constant_neg_32768 = _mm_set1_epi16(-32768); |
| __m128i a_unsigned = _mm_sub_epi16(a.v, constant_neg_32768); |
| __m128i b_unsigned = _mm_sub_epi16(b.v, constant_neg_32768); |
| __m128i avg_unsigned = _mm_avg_epu16(a_unsigned, b_unsigned); |
| __m128i avg = _mm_add_epi16(avg_unsigned, constant_neg_32768); |
| return to_int16x8_m128i(avg); |
| } |
| |
| template <> |
| inline __m128i SaturatingRoundingDoublingHighMul(__m128i a, __m128i b) { |
| __m128i min, saturation_mask, a0_a2, a1_a3, b0_b2, b1_b3; |
| __m128i a0b0_a2b2, a1b1_a3b3, a0b0_a2b2_rounded, a1b1_a3b3_rounded; |
| __m128i a0b0_a2b2_rounded_2x, a1b1_a3b3_rounded_2x, result; |
| __m128i nudge; |
| |
| // saturation only happen if a == b == INT_MIN |
| min = _mm_set1_epi32(std::numeric_limits<std::int32_t>::min()); |
| saturation_mask = BitAnd(MaskIfEqual(a, b), MaskIfEqual(a, min)); |
| |
| // a = a0 | a1 | a2 | a3 |
| // b = b0 | b1 | b2 | b3 |
| a0_a2 = a; |
| a1_a3 = _mm_srli_si128(a, 4); |
| b0_b2 = b; |
| b1_b3 = _mm_srli_si128(b, 4); |
| |
| a0b0_a2b2 = _mm_mul_epi32(a0_a2, b0_b2); |
| a1b1_a3b3 = _mm_mul_epi32(a1_a3, b1_b3); |
| |
| // do the rounding and take into account that it will be doubled |
| nudge = _mm_set1_epi64x(1 << 30); |
| a0b0_a2b2_rounded = _mm_add_epi64(a0b0_a2b2, nudge); |
| a1b1_a3b3_rounded = _mm_add_epi64(a1b1_a3b3, nudge); |
| |
| // do the doubling |
| a0b0_a2b2_rounded_2x = _mm_slli_epi64(a0b0_a2b2_rounded, 1); |
| a1b1_a3b3_rounded_2x = _mm_slli_epi64(a1b1_a3b3_rounded, 1); |
| |
| // get the high part of the products |
| result = _mm_blend_epi16(_mm_srli_si128(a0b0_a2b2_rounded_2x, 4), |
| a1b1_a3b3_rounded_2x, 0xcc); |
| |
| // saturate those which overflowed |
| return SelectUsingMask(saturation_mask, min, result); |
| } |
| |
| template <> |
| inline int16x8_m128i SaturatingRoundingDoublingHighMul(int16x8_m128i a, |
| int16x8_m128i b) { |
| // Idea: use _mm_mulhrs_epi16 then saturate with a bit-operation, |
| // borrowed from Intel's arm_neon_sse.h header. |
| __m128i result_unsaturated = _mm_mulhrs_epi16(a.v, b.v); |
| __m128i saturation_mask = |
| _mm_cmpeq_epi16(result_unsaturated, _mm_set1_epi16(0x8000)); |
| __m128i result = _mm_xor_si128(result_unsaturated, saturation_mask); |
| return to_int16x8_m128i(result); |
| } |
| |
| template <> |
| inline __m128i Dup<__m128i>(std::int32_t x) { |
| return _mm_set1_epi32(x); |
| } |
| |
| template <> |
| inline int16x8_m128i Dup<int16x8_m128i>(std::int16_t x) { |
| return to_int16x8_m128i(_mm_set1_epi16(x)); |
| } |
| |
| // So far this is only needed for int16. |
| template <> |
| inline int16x8_m128i SaturatingAdd(int16x8_m128i a, int16x8_m128i b) { |
| return to_int16x8_m128i(_mm_adds_epi16(a.v, b.v)); |
| } |
| |
| } // end namespace gemmlowp |
| |
| #endif // GEMMLOWP_INTERNAL_FIXEDPOINT_SSE_H_ |