| // Copyright 2020 Google Inc. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| // fixedpoint_wasmsimd.h: optimized WAsm SIMD specializations of the templates |
| // in fixedpoint.h. |
| |
| #ifndef GEMMLOWP_INTERNAL_FIXEDPOINT_WASMSIMD_H_ |
| #define GEMMLOWP_INTERNAL_FIXEDPOINT_WASMSIMD_H_ |
| |
| #include <wasm_simd128.h> |
| |
| namespace gemmlowp { |
| |
| // WAsm SIMD intrinsics are not typed: there is a single v128_t vector |
| // type that does not distinguish between "int32x4" and "int16x8" use |
| // cases, unlike the NEON equivalents. Because we had initially focused |
| // on int32x4, we did not pay attention and specialized these fixedpoint |
| // templates directly for v128_t hardcoding the int32x4 semantics, |
| // not leaving room for int16x8 semantics. Amending that by adding a separate |
| // data type, int16x8_v128_t, that wraps v128_t while being a separate |
| // type. |
| struct int16x8_v128_t { |
| v128_t v; |
| }; |
| |
| // Keep int16x8_v128_t trivially constructible/destructible and provide |
| // easily optimized helper function. |
| inline int16x8_v128_t to_int16x8_v128_t(v128_t w) { |
| int16x8_v128_t r; |
| r.v = w; |
| return r; |
| } |
| |
| template <> |
| struct FixedPointRawTypeTraits<v128_t> { |
| typedef std::int32_t ScalarRawType; |
| static constexpr int kLanes = 4; |
| }; |
| |
| template <> |
| struct FixedPointRawTypeTraits<int16x8_v128_t> { |
| typedef std::int16_t ScalarRawType; |
| static constexpr int kLanes = 8; |
| }; |
| |
| template <> |
| inline v128_t BitAnd(v128_t a, v128_t b) { |
| return wasm_v128_and(a, b); |
| } |
| |
| template <> |
| inline int16x8_v128_t BitAnd(int16x8_v128_t a, int16x8_v128_t b) { |
| return to_int16x8_v128_t(wasm_v128_and(a.v, b.v)); |
| } |
| |
| template <> |
| inline v128_t BitOr(v128_t a, v128_t b) { |
| return wasm_v128_or(a, b); |
| } |
| |
| template <> |
| inline int16x8_v128_t BitOr(int16x8_v128_t a, int16x8_v128_t b) { |
| return to_int16x8_v128_t(wasm_v128_or(a.v, b.v)); |
| } |
| |
| template <> |
| inline v128_t BitXor(v128_t a, v128_t b) { |
| return wasm_v128_xor(a, b); |
| } |
| |
| template <> |
| inline int16x8_v128_t BitXor(int16x8_v128_t a, int16x8_v128_t b) { |
| return to_int16x8_v128_t(wasm_v128_xor(a.v, b.v)); |
| } |
| |
| template <> |
| inline v128_t BitNot(v128_t a) { |
| return wasm_v128_not(a); |
| } |
| |
| template <> |
| inline int16x8_v128_t BitNot(int16x8_v128_t a) { |
| return to_int16x8_v128_t(wasm_v128_not(a.v)); |
| } |
| |
| template <> |
| inline v128_t Add(v128_t a, v128_t b) { |
| return wasm_i32x4_add(a, b); |
| } |
| |
| template <> |
| inline int16x8_v128_t Add(int16x8_v128_t a, int16x8_v128_t b) { |
| return to_int16x8_v128_t(wasm_i16x8_add(a.v, b.v)); |
| } |
| |
| template <> |
| inline v128_t Mul(v128_t a, v128_t b) { |
| return wasm_i32x4_mul(a, b); |
| } |
| |
| template <> |
| inline int16x8_v128_t Mul(int16x8_v128_t a, int16x8_v128_t b) { |
| return to_int16x8_v128_t(wasm_i16x8_mul(a.v, b.v)); |
| } |
| |
| template <> |
| inline v128_t Sub(v128_t a, v128_t b) { |
| return wasm_i32x4_sub(a, b); |
| } |
| |
| template <> |
| inline int16x8_v128_t Sub(int16x8_v128_t a, int16x8_v128_t b) { |
| return to_int16x8_v128_t(wasm_i16x8_sub(a.v, b.v)); |
| } |
| |
| template <> |
| inline v128_t Neg(v128_t a) { |
| return wasm_i32x4_neg(a); |
| } |
| |
| template <> |
| inline int16x8_v128_t Neg(int16x8_v128_t a) { |
| return to_int16x8_v128_t(wasm_i16x8_neg(a.v)); |
| } |
| |
| template <> |
| inline v128_t ShiftLeft(v128_t a, int offset) { |
| return wasm_i32x4_shl(a, offset); |
| } |
| |
| template <> |
| inline int16x8_v128_t ShiftLeft(int16x8_v128_t a, int offset) { |
| return to_int16x8_v128_t(wasm_i16x8_shl(a.v, offset)); |
| } |
| |
| template <> |
| inline v128_t ShiftRight(v128_t a, int offset) { |
| return wasm_i32x4_shr(a, offset); |
| } |
| |
| template <> |
| inline int16x8_v128_t ShiftRight(int16x8_v128_t a, int offset) { |
| return to_int16x8_v128_t(wasm_i16x8_shr(a.v, offset)); |
| } |
| |
| template <> |
| inline v128_t SelectUsingMask(v128_t if_mask, v128_t then_val, |
| v128_t else_val) { |
| return wasm_v128_bitselect(then_val, else_val, if_mask); |
| } |
| |
| template <> |
| inline int16x8_v128_t SelectUsingMask(int16x8_v128_t if_mask, |
| int16x8_v128_t then_val, |
| int16x8_v128_t else_val) { |
| return to_int16x8_v128_t( |
| wasm_v128_bitselect(then_val.v, else_val.v, if_mask.v)); |
| } |
| |
| template <> |
| inline v128_t MaskIfEqual(v128_t a, v128_t b) { |
| return wasm_i32x4_eq(a, b); |
| } |
| |
| template <> |
| inline int16x8_v128_t MaskIfEqual(int16x8_v128_t a, int16x8_v128_t b) { |
| return to_int16x8_v128_t(wasm_i16x8_eq(a.v, b.v)); |
| } |
| |
| template <> |
| inline v128_t MaskIfNotEqual(v128_t a, v128_t b) { |
| return wasm_i32x4_ne(a, b); |
| } |
| |
| template <> |
| inline int16x8_v128_t MaskIfNotEqual(int16x8_v128_t a, int16x8_v128_t b) { |
| return to_int16x8_v128_t(wasm_i16x8_ne(a.v, b.v)); |
| } |
| |
| template <> |
| inline v128_t MaskIfZero(v128_t a) { |
| return MaskIfEqual(a, wasm_i32x4_const(0, 0, 0, 0)); |
| } |
| |
| template <> |
| inline int16x8_v128_t MaskIfZero(int16x8_v128_t a) { |
| return MaskIfEqual( |
| a, to_int16x8_v128_t(wasm_i16x8_const(0, 0, 0, 0, 0, 0, 0, 0))); |
| } |
| |
| template <> |
| inline v128_t MaskIfNonZero(v128_t a) { |
| return MaskIfNotEqual(a, wasm_i32x4_const(0, 0, 0, 0)); |
| } |
| |
| template <> |
| inline int16x8_v128_t MaskIfNonZero(int16x8_v128_t a) { |
| return MaskIfNotEqual( |
| a, to_int16x8_v128_t(wasm_i16x8_const(0, 0, 0, 0, 0, 0, 0, 0))); |
| } |
| |
| template <> |
| inline v128_t MaskIfGreaterThan(v128_t a, v128_t b) { |
| return wasm_i32x4_gt(a, b); |
| } |
| |
| template <> |
| inline int16x8_v128_t MaskIfGreaterThan(int16x8_v128_t a, int16x8_v128_t b) { |
| return to_int16x8_v128_t(wasm_i16x8_gt(a.v, b.v)); |
| } |
| |
| template <> |
| inline v128_t MaskIfLessThan(v128_t a, v128_t b) { |
| return wasm_i32x4_lt(a, b); |
| } |
| |
| template <> |
| inline int16x8_v128_t MaskIfLessThan(int16x8_v128_t a, int16x8_v128_t b) { |
| return to_int16x8_v128_t(wasm_i16x8_lt(a.v, b.v)); |
| } |
| |
| template <> |
| inline v128_t MaskIfGreaterThanOrEqual(v128_t a, v128_t b) { |
| return wasm_i32x4_ge(a, b); |
| } |
| |
| template <> |
| inline int16x8_v128_t MaskIfGreaterThanOrEqual(int16x8_v128_t a, |
| int16x8_v128_t b) { |
| return to_int16x8_v128_t(wasm_i16x8_ge(a.v, b.v)); |
| } |
| |
| template <> |
| inline v128_t MaskIfLessThanOrEqual(v128_t a, v128_t b) { |
| return wasm_i32x4_le(a, b); |
| } |
| |
| template <> |
| inline int16x8_v128_t MaskIfLessThanOrEqual(int16x8_v128_t a, |
| int16x8_v128_t b) { |
| return to_int16x8_v128_t(wasm_i16x8_le(a.v, b.v)); |
| } |
| |
| /* Assumptions: |
| - All and Any are used on masks. |
| - masks are all_ones for true lanes, all_zeroes otherwise. |
| Hence, All means all 128bits set, and Any means any bit set. |
| */ |
| |
| template <> |
| inline bool All(v128_t a) { |
| return wasm_i32x4_all_true(a); |
| } |
| |
| template <> |
| inline bool All(int16x8_v128_t a) { |
| return wasm_i16x8_all_true(a.v); |
| } |
| |
| template <> |
| inline bool Any(v128_t a) { |
| return wasm_i32x4_any_true(a); |
| } |
| |
| template <> |
| inline bool Any(int16x8_v128_t a) { |
| return wasm_i16x8_any_true(a.v); |
| } |
| |
| template <> |
| inline v128_t RoundingHalfSum(v128_t a, v128_t b) { |
| // We divide the inputs before the add to avoid the overflow and costly test. |
| const v128_t one = wasm_i32x4_const(1, 1, 1, 1); |
| const v128_t sign_bit_mask = |
| wasm_i32x4_const(0x80000000, 0x80000000, 0x80000000, 0x80000000); |
| const v128_t sum = Add(a, b); |
| const v128_t rounded_half_sum = ShiftRight(Add(sum, one), 1); |
| const v128_t overflow = |
| BitAnd(BitAnd(BitXor(a, rounded_half_sum), BitXor(b, rounded_half_sum)), |
| sign_bit_mask); |
| const v128_t result = BitXor(rounded_half_sum, overflow); |
| return result; |
| } |
| |
| template <> |
| inline int16x8_v128_t RoundingHalfSum(int16x8_v128_t a, int16x8_v128_t b) { |
| // Idea: go to unsigned to use wasm_u16x8_avgr, |
| // borrowed from Intel's arm_neon_sse.h header. |
| const v128_t constant_neg_32768 = wasm_i16x8_const( |
| -32768, -32768, -32768, -32768, -32768, -32768, -32768, -32768); |
| const v128_t a_unsigned = wasm_v128_xor(a.v, constant_neg_32768); |
| const v128_t b_unsigned = wasm_v128_xor(b.v, constant_neg_32768); |
| const v128_t avg_unsigned = wasm_u16x8_avgr(a_unsigned, b_unsigned); |
| const v128_t avg = wasm_v128_xor(avg_unsigned, constant_neg_32768); |
| return to_int16x8_v128_t(avg); |
| } |
| |
| template <> |
| inline v128_t SaturatingRoundingDoublingHighMul(v128_t a, v128_t b) { |
| // TODO: switch to extended multiplication once implemented in the toolchain |
| const v128_t a_sign = wasm_i32x4_shr(a, 31); |
| const v128_t b_sign = wasm_i32x4_shr(b, 31); |
| |
| const v128_t a_ext_lo = wasm_v32x4_shuffle(a, a_sign, 0, 4, 1, 5); |
| const v128_t a_ext_hi = wasm_v32x4_shuffle(a, a_sign, 2, 6, 3, 7); |
| const v128_t b_ext_lo = wasm_v32x4_shuffle(b, b_sign, 0, 4, 1, 5); |
| const v128_t b_ext_hi = wasm_v32x4_shuffle(b, b_sign, 2, 6, 3, 7); |
| |
| const v128_t ab_lo = wasm_i64x2_mul(a_ext_lo, b_ext_lo); |
| const v128_t ab_hi = wasm_i64x2_mul(a_ext_hi, b_ext_hi); |
| |
| const v128_t nudge_2x = |
| wasm_i64x2_const(INT64_C(0x80000000), INT64_C(0x80000000)); |
| const v128_t ab_lo_2x = wasm_i64x2_add(ab_lo, ab_lo); |
| const v128_t ab_hi_2x = wasm_i64x2_add(ab_hi, ab_hi); |
| |
| const v128_t ab_lo_rounded_2x = wasm_i64x2_add(ab_lo_2x, nudge_2x); |
| const v128_t ab_hi_rounded_2x = wasm_i64x2_add(ab_hi_2x, nudge_2x); |
| |
| const v128_t prod = |
| wasm_v32x4_shuffle(ab_lo_rounded_2x, ab_hi_rounded_2x, 1, 3, 5, 7); |
| |
| // Saturation only happen if a == b == INT_MIN, and this is the only case |
| // where prod == INT_MIN (0x80000000) instead of INT_MAX (0x7FFFFFFF). |
| const v128_t min = wasm_i32x4_const(INT32_C(0x80000000), INT32_C(0x80000000), |
| INT32_C(0x80000000), INT32_C(0x80000000)); |
| |
| return wasm_v128_xor(prod, wasm_i32x4_eq(prod, min)); |
| } |
| |
| template <> |
| inline int16x8_v128_t SaturatingRoundingDoublingHighMul(int16x8_v128_t a, |
| int16x8_v128_t b) { |
| #if 0 |
| // TODO: enable if https://github.com/WebAssembly/simd/pull/365 is accepted |
| return to_int16x8_v128_t(__builtin_wasm_q15mulr_saturate_s_i16x8(a.v, b.v)); |
| #else |
| // TODO: switch to extended multiplication once implemented in the toolchain |
| v128_t lo = wasm_i32x4_mul(wasm_i32x4_widen_low_i16x8(a.v), |
| wasm_i32x4_widen_low_i16x8(b.v)); |
| v128_t hi = wasm_i32x4_mul(wasm_i32x4_widen_high_i16x8(a.v), |
| wasm_i32x4_widen_high_i16x8(b.v)); |
| const v128_t inc = wasm_i32x4_const(0x4000, 0x4000, 0x4000, 0x4000); |
| lo = wasm_i32x4_add(lo, inc); |
| hi = wasm_i32x4_add(hi, inc); |
| lo = wasm_i32x4_shr(lo, 15); |
| hi = wasm_i32x4_shr(hi, 15); |
| return to_int16x8_v128_t(wasm_i16x8_narrow_i32x4(lo, hi)); |
| #endif |
| } |
| |
| template <> |
| inline v128_t Dup<v128_t>(std::int32_t x) { |
| return wasm_i32x4_splat(x); |
| } |
| |
| template <> |
| inline int16x8_v128_t Dup<int16x8_v128_t>(std::int16_t x) { |
| return to_int16x8_v128_t(wasm_i16x8_splat(x)); |
| } |
| |
| // So far this is only needed for int16. |
| template <> |
| inline int16x8_v128_t SaturatingAdd(int16x8_v128_t a, int16x8_v128_t b) { |
| return to_int16x8_v128_t(wasm_i16x8_add_saturate(a.v, b.v)); |
| } |
| |
| } // end namespace gemmlowp |
| |
| #endif // GEMMLOWP_INTERNAL_FIXEDPOINT_WASMSIMD_H_ |