| /***************************************************************************** |
| |
| quantize.c - quantize a high resolution image into lower one |
| |
| Based on: "Color Image Quantization for frame buffer Display", by |
| Paul Heckbert SIGGRAPH 1982 page 297-307. |
| |
| This doesn't really belong in the core library, was undocumented, |
| and was removed in 4.2. Then it turned out some client apps were |
| actually using it, so it was restored in 5.0. |
| |
| ******************************************************************************/ |
| |
| #include <stdlib.h> |
| #include <stdio.h> |
| #include "gif_lib.h" |
| #include "gif_lib_private.h" |
| |
| #define ABS(x) ((x) > 0 ? (x) : (-(x))) |
| |
| #define COLOR_ARRAY_SIZE 32768 |
| #define BITS_PER_PRIM_COLOR 5 |
| #define MAX_PRIM_COLOR 0x1f |
| |
| static int SortRGBAxis; |
| |
| typedef struct QuantizedColorType { |
| GifByteType RGB[3]; |
| GifByteType NewColorIndex; |
| long Count; |
| struct QuantizedColorType *Pnext; |
| } QuantizedColorType; |
| |
| typedef struct NewColorMapType { |
| GifByteType RGBMin[3], RGBWidth[3]; |
| unsigned int NumEntries; /* # of QuantizedColorType in linked list below */ |
| unsigned long Count; /* Total number of pixels in all the entries */ |
| QuantizedColorType *QuantizedColors; |
| } NewColorMapType; |
| |
| static int SubdivColorMap(NewColorMapType * NewColorSubdiv, |
| unsigned int ColorMapSize, |
| unsigned int *NewColorMapSize); |
| static int SortCmpRtn(const void *Entry1, const void *Entry2); |
| |
| /****************************************************************************** |
| Quantize high resolution image into lower one. Input image consists of a |
| 2D array for each of the RGB colors with size Width by Height. There is no |
| Color map for the input. Output is a quantized image with 2D array of |
| indexes into the output color map. |
| Note input image can be 24 bits at the most (8 for red/green/blue) and |
| the output has 256 colors at the most (256 entries in the color map.). |
| ColorMapSize specifies size of color map up to 256 and will be updated to |
| real size before returning. |
| Also non of the parameter are allocated by this routine. |
| This function returns GIF_OK if successful, GIF_ERROR otherwise. |
| ******************************************************************************/ |
| int |
| GifQuantizeBuffer(unsigned int Width, |
| unsigned int Height, |
| int *ColorMapSize, |
| GifByteType * RedInput, |
| GifByteType * GreenInput, |
| GifByteType * BlueInput, |
| GifByteType * OutputBuffer, |
| GifColorType * OutputColorMap) { |
| |
| unsigned int Index, NumOfEntries; |
| int i, j, MaxRGBError[3]; |
| unsigned int NewColorMapSize; |
| long Red, Green, Blue; |
| NewColorMapType NewColorSubdiv[256]; |
| QuantizedColorType *ColorArrayEntries, *QuantizedColor; |
| |
| ColorArrayEntries = (QuantizedColorType *)malloc( |
| sizeof(QuantizedColorType) * COLOR_ARRAY_SIZE); |
| if (ColorArrayEntries == NULL) { |
| return GIF_ERROR; |
| } |
| |
| for (i = 0; i < COLOR_ARRAY_SIZE; i++) { |
| ColorArrayEntries[i].RGB[0] = i >> (2 * BITS_PER_PRIM_COLOR); |
| ColorArrayEntries[i].RGB[1] = (i >> BITS_PER_PRIM_COLOR) & |
| MAX_PRIM_COLOR; |
| ColorArrayEntries[i].RGB[2] = i & MAX_PRIM_COLOR; |
| ColorArrayEntries[i].Count = 0; |
| } |
| |
| /* Sample the colors and their distribution: */ |
| for (i = 0; i < (int)(Width * Height); i++) { |
| Index = ((RedInput[i] >> (8 - BITS_PER_PRIM_COLOR)) << |
| (2 * BITS_PER_PRIM_COLOR)) + |
| ((GreenInput[i] >> (8 - BITS_PER_PRIM_COLOR)) << |
| BITS_PER_PRIM_COLOR) + |
| (BlueInput[i] >> (8 - BITS_PER_PRIM_COLOR)); |
| ColorArrayEntries[Index].Count++; |
| } |
| |
| /* Put all the colors in the first entry of the color map, and call the |
| * recursive subdivision process. */ |
| for (i = 0; i < 256; i++) { |
| NewColorSubdiv[i].QuantizedColors = NULL; |
| NewColorSubdiv[i].Count = NewColorSubdiv[i].NumEntries = 0; |
| for (j = 0; j < 3; j++) { |
| NewColorSubdiv[i].RGBMin[j] = 0; |
| NewColorSubdiv[i].RGBWidth[j] = 255; |
| } |
| } |
| |
| /* Find the non empty entries in the color table and chain them: */ |
| for (i = 0; i < COLOR_ARRAY_SIZE; i++) |
| if (ColorArrayEntries[i].Count > 0) |
| break; |
| QuantizedColor = NewColorSubdiv[0].QuantizedColors = &ColorArrayEntries[i]; |
| NumOfEntries = 1; |
| while (++i < COLOR_ARRAY_SIZE) |
| if (ColorArrayEntries[i].Count > 0) { |
| QuantizedColor->Pnext = &ColorArrayEntries[i]; |
| QuantizedColor = &ColorArrayEntries[i]; |
| NumOfEntries++; |
| } |
| QuantizedColor->Pnext = NULL; |
| |
| NewColorSubdiv[0].NumEntries = NumOfEntries; /* Different sampled colors */ |
| NewColorSubdiv[0].Count = ((long)Width) * Height; /* Pixels */ |
| NewColorMapSize = 1; |
| if (SubdivColorMap(NewColorSubdiv, *ColorMapSize, &NewColorMapSize) != |
| GIF_OK) { |
| free((char *)ColorArrayEntries); |
| return GIF_ERROR; |
| } |
| if (NewColorMapSize < *ColorMapSize) { |
| /* And clear rest of color map: */ |
| for (i = NewColorMapSize; i < *ColorMapSize; i++) |
| OutputColorMap[i].Red = OutputColorMap[i].Green = |
| OutputColorMap[i].Blue = 0; |
| } |
| |
| /* Average the colors in each entry to be the color to be used in the |
| * output color map, and plug it into the output color map itself. */ |
| for (i = 0; i < NewColorMapSize; i++) { |
| if ((j = NewColorSubdiv[i].NumEntries) > 0) { |
| QuantizedColor = NewColorSubdiv[i].QuantizedColors; |
| Red = Green = Blue = 0; |
| while (QuantizedColor) { |
| QuantizedColor->NewColorIndex = i; |
| Red += QuantizedColor->RGB[0]; |
| Green += QuantizedColor->RGB[1]; |
| Blue += QuantizedColor->RGB[2]; |
| QuantizedColor = QuantizedColor->Pnext; |
| } |
| OutputColorMap[i].Red = (Red << (8 - BITS_PER_PRIM_COLOR)) / j; |
| OutputColorMap[i].Green = (Green << (8 - BITS_PER_PRIM_COLOR)) / j; |
| OutputColorMap[i].Blue = (Blue << (8 - BITS_PER_PRIM_COLOR)) / j; |
| } |
| } |
| |
| /* Finally scan the input buffer again and put the mapped index in the |
| * output buffer. */ |
| MaxRGBError[0] = MaxRGBError[1] = MaxRGBError[2] = 0; |
| for (i = 0; i < (int)(Width * Height); i++) { |
| Index = ((RedInput[i] >> (8 - BITS_PER_PRIM_COLOR)) << |
| (2 * BITS_PER_PRIM_COLOR)) + |
| ((GreenInput[i] >> (8 - BITS_PER_PRIM_COLOR)) << |
| BITS_PER_PRIM_COLOR) + |
| (BlueInput[i] >> (8 - BITS_PER_PRIM_COLOR)); |
| Index = ColorArrayEntries[Index].NewColorIndex; |
| OutputBuffer[i] = Index; |
| if (MaxRGBError[0] < ABS(OutputColorMap[Index].Red - RedInput[i])) |
| MaxRGBError[0] = ABS(OutputColorMap[Index].Red - RedInput[i]); |
| if (MaxRGBError[1] < ABS(OutputColorMap[Index].Green - GreenInput[i])) |
| MaxRGBError[1] = ABS(OutputColorMap[Index].Green - GreenInput[i]); |
| if (MaxRGBError[2] < ABS(OutputColorMap[Index].Blue - BlueInput[i])) |
| MaxRGBError[2] = ABS(OutputColorMap[Index].Blue - BlueInput[i]); |
| } |
| |
| #ifdef DEBUG |
| fprintf(stderr, |
| "Quantization L(0) errors: Red = %d, Green = %d, Blue = %d.\n", |
| MaxRGBError[0], MaxRGBError[1], MaxRGBError[2]); |
| #endif /* DEBUG */ |
| |
| free((char *)ColorArrayEntries); |
| |
| *ColorMapSize = NewColorMapSize; |
| |
| return GIF_OK; |
| } |
| |
| /****************************************************************************** |
| Routine to subdivide the RGB space recursively using median cut in each |
| axes alternatingly until ColorMapSize different cubes exists. |
| The biggest cube in one dimension is subdivide unless it has only one entry. |
| Returns GIF_ERROR if failed, otherwise GIF_OK. |
| *******************************************************************************/ |
| static int |
| SubdivColorMap(NewColorMapType * NewColorSubdiv, |
| unsigned int ColorMapSize, |
| unsigned int *NewColorMapSize) { |
| |
| int MaxSize; |
| unsigned int i, j, Index = 0, NumEntries, MinColor, MaxColor; |
| long Sum, Count; |
| QuantizedColorType *QuantizedColor, **SortArray; |
| |
| while (ColorMapSize > *NewColorMapSize) { |
| /* Find candidate for subdivision: */ |
| MaxSize = -1; |
| for (i = 0; i < *NewColorMapSize; i++) { |
| for (j = 0; j < 3; j++) { |
| if ((((int)NewColorSubdiv[i].RGBWidth[j]) > MaxSize) && |
| (NewColorSubdiv[i].NumEntries > 1)) { |
| MaxSize = NewColorSubdiv[i].RGBWidth[j]; |
| Index = i; |
| SortRGBAxis = j; |
| } |
| } |
| } |
| |
| if (MaxSize == -1) |
| return GIF_OK; |
| |
| /* Split the entry Index into two along the axis SortRGBAxis: */ |
| |
| /* Sort all elements in that entry along the given axis and split at |
| * the median. */ |
| SortArray = (QuantizedColorType **)malloc( |
| sizeof(QuantizedColorType *) * |
| NewColorSubdiv[Index].NumEntries); |
| if (SortArray == NULL) |
| return GIF_ERROR; |
| for (j = 0, QuantizedColor = NewColorSubdiv[Index].QuantizedColors; |
| j < NewColorSubdiv[Index].NumEntries && QuantizedColor != NULL; |
| j++, QuantizedColor = QuantizedColor->Pnext) |
| SortArray[j] = QuantizedColor; |
| |
| /* |
| * Because qsort isn't stable, this can produce differing |
| * results for the order of tuples depending on platform |
| * details of how qsort() is implemented. |
| * |
| * We mitigate this problem by sorting on all three axes rather |
| * than only the one specied by SortRGBAxis; that way the instability |
| * can only become an issue if there are multiple color indices |
| * referring to identical RGB tuples. Older versions of this |
| * sorted on only the one axis. |
| */ |
| qsort(SortArray, NewColorSubdiv[Index].NumEntries, |
| sizeof(QuantizedColorType *), SortCmpRtn); |
| |
| /* Relink the sorted list into one: */ |
| for (j = 0; j < NewColorSubdiv[Index].NumEntries - 1; j++) |
| SortArray[j]->Pnext = SortArray[j + 1]; |
| SortArray[NewColorSubdiv[Index].NumEntries - 1]->Pnext = NULL; |
| NewColorSubdiv[Index].QuantizedColors = QuantizedColor = SortArray[0]; |
| free((char *)SortArray); |
| |
| /* Now simply add the Counts until we have half of the Count: */ |
| Sum = NewColorSubdiv[Index].Count / 2 - QuantizedColor->Count; |
| NumEntries = 1; |
| Count = QuantizedColor->Count; |
| while (QuantizedColor->Pnext != NULL && |
| (Sum -= QuantizedColor->Pnext->Count) >= 0 && |
| QuantizedColor->Pnext->Pnext != NULL) { |
| QuantizedColor = QuantizedColor->Pnext; |
| NumEntries++; |
| Count += QuantizedColor->Count; |
| } |
| /* Save the values of the last color of the first half, and first |
| * of the second half so we can update the Bounding Boxes later. |
| * Also as the colors are quantized and the BBoxes are full 0..255, |
| * they need to be rescaled. |
| */ |
| MaxColor = QuantizedColor->RGB[SortRGBAxis]; /* Max. of first half */ |
| /* coverity[var_deref_op] */ |
| MinColor = QuantizedColor->Pnext->RGB[SortRGBAxis]; /* of second */ |
| MaxColor <<= (8 - BITS_PER_PRIM_COLOR); |
| MinColor <<= (8 - BITS_PER_PRIM_COLOR); |
| |
| /* Partition right here: */ |
| NewColorSubdiv[*NewColorMapSize].QuantizedColors = |
| QuantizedColor->Pnext; |
| QuantizedColor->Pnext = NULL; |
| NewColorSubdiv[*NewColorMapSize].Count = Count; |
| NewColorSubdiv[Index].Count -= Count; |
| NewColorSubdiv[*NewColorMapSize].NumEntries = |
| NewColorSubdiv[Index].NumEntries - NumEntries; |
| NewColorSubdiv[Index].NumEntries = NumEntries; |
| for (j = 0; j < 3; j++) { |
| NewColorSubdiv[*NewColorMapSize].RGBMin[j] = |
| NewColorSubdiv[Index].RGBMin[j]; |
| NewColorSubdiv[*NewColorMapSize].RGBWidth[j] = |
| NewColorSubdiv[Index].RGBWidth[j]; |
| } |
| NewColorSubdiv[*NewColorMapSize].RGBWidth[SortRGBAxis] = |
| NewColorSubdiv[*NewColorMapSize].RGBMin[SortRGBAxis] + |
| NewColorSubdiv[*NewColorMapSize].RGBWidth[SortRGBAxis] - MinColor; |
| NewColorSubdiv[*NewColorMapSize].RGBMin[SortRGBAxis] = MinColor; |
| |
| NewColorSubdiv[Index].RGBWidth[SortRGBAxis] = |
| MaxColor - NewColorSubdiv[Index].RGBMin[SortRGBAxis]; |
| |
| (*NewColorMapSize)++; |
| } |
| |
| return GIF_OK; |
| } |
| |
| /**************************************************************************** |
| Routine called by qsort to compare two entries. |
| *****************************************************************************/ |
| |
| static int |
| SortCmpRtn(const void *Entry1, |
| const void *Entry2) { |
| QuantizedColorType *entry1 = (*((QuantizedColorType **) Entry1)); |
| QuantizedColorType *entry2 = (*((QuantizedColorType **) Entry2)); |
| |
| /* sort on all axes of the color space! */ |
| int hash1 = entry1->RGB[SortRGBAxis] * 256 * 256 |
| + entry1->RGB[(SortRGBAxis+1) % 3] * 256 |
| + entry1->RGB[(SortRGBAxis+2) % 3]; |
| int hash2 = entry2->RGB[SortRGBAxis] * 256 * 256 |
| + entry2->RGB[(SortRGBAxis+1) % 3] * 256 |
| + entry2->RGB[(SortRGBAxis+2) % 3]; |
| |
| return hash1 - hash2; |
| } |
| |
| /* end */ |