blob: bd62f5d7e7aa41d13a2bf0d78b7ee0ea90b4145e [file] [log] [blame]
// ----------------------------------------------------------------------
// CycleClock
// A CycleClock tells you the current time in Cycles. The "time"
// is actually time since power-on. This is like time() but doesn't
// involve a system call and is much more precise.
//
// NOTE: Not all cpu/platform/kernel combinations guarantee that this
// clock increments at a constant rate or is synchronized across all logical
// cpus in a system.
//
// If you need the above guarantees, please consider using a different
// API. There are efforts to provide an interface which provides a millisecond
// granularity and implemented as a memory read. A memory read is generally
// cheaper than the CycleClock for many architectures.
//
// Also, in some out of order CPU implementations, the CycleClock is not
// serializing. So if you're trying to count at cycles granularity, your
// data might be inaccurate due to out of order instruction execution.
// ----------------------------------------------------------------------
#ifndef BENCHMARK_CYCLECLOCK_H_
#define BENCHMARK_CYCLECLOCK_H_
#include <cstdint>
#include "benchmark/benchmark.h"
#include "internal_macros.h"
#if defined(BENCHMARK_OS_MACOSX)
#include <mach/mach_time.h>
#endif
// For MSVC, we want to use '_asm rdtsc' when possible (since it works
// with even ancient MSVC compilers), and when not possible the
// __rdtsc intrinsic, declared in <intrin.h>. Unfortunately, in some
// environments, <windows.h> and <intrin.h> have conflicting
// declarations of some other intrinsics, breaking compilation.
// Therefore, we simply declare __rdtsc ourselves. See also
// http://connect.microsoft.com/VisualStudio/feedback/details/262047
#if defined(COMPILER_MSVC) && !defined(_M_IX86) && !defined(_M_ARM64) && \
!defined(_M_ARM64EC)
extern "C" uint64_t __rdtsc();
#pragma intrinsic(__rdtsc)
#endif
#if !defined(BENCHMARK_OS_WINDOWS) || defined(BENCHMARK_OS_MINGW)
#include <sys/time.h>
#include <time.h>
#endif
#ifdef BENCHMARK_OS_EMSCRIPTEN
#include <emscripten.h>
#endif
namespace benchmark {
// NOTE: only i386 and x86_64 have been well tested.
// PPC, sparc, alpha, and ia64 are based on
// http://peter.kuscsik.com/wordpress/?p=14
// with modifications by m3b. See also
// https://setisvn.ssl.berkeley.edu/svn/lib/fftw-3.0.1/kernel/cycle.h
namespace cycleclock {
// This should return the number of cycles since power-on. Thread-safe.
inline BENCHMARK_ALWAYS_INLINE int64_t Now() {
#if defined(BENCHMARK_OS_MACOSX)
// this goes at the top because we need ALL Macs, regardless of
// architecture, to return the number of "mach time units" that
// have passed since startup. See sysinfo.cc where
// InitializeSystemInfo() sets the supposed cpu clock frequency of
// macs to the number of mach time units per second, not actual
// CPU clock frequency (which can change in the face of CPU
// frequency scaling). Also note that when the Mac sleeps, this
// counter pauses; it does not continue counting, nor does it
// reset to zero.
return static_cast<int64_t>(mach_absolute_time());
#elif defined(BENCHMARK_OS_EMSCRIPTEN)
// this goes above x86-specific code because old versions of Emscripten
// define __x86_64__, although they have nothing to do with it.
return static_cast<int64_t>(emscripten_get_now() * 1e+6);
#elif defined(__i386__)
int64_t ret;
__asm__ volatile("rdtsc" : "=A"(ret));
return ret;
#elif defined(__x86_64__) || defined(__amd64__)
uint64_t low, high;
__asm__ volatile("rdtsc" : "=a"(low), "=d"(high));
return static_cast<int64_t>((high << 32) | low);
#elif defined(__powerpc__) || defined(__ppc__)
// This returns a time-base, which is not always precisely a cycle-count.
#if defined(__powerpc64__) || defined(__ppc64__)
int64_t tb;
asm volatile("mfspr %0, 268" : "=r"(tb));
return tb;
#else
uint32_t tbl, tbu0, tbu1;
asm volatile(
"mftbu %0\n"
"mftb %1\n"
"mftbu %2"
: "=r"(tbu0), "=r"(tbl), "=r"(tbu1));
tbl &= -static_cast<int32_t>(tbu0 == tbu1);
// high 32 bits in tbu1; low 32 bits in tbl (tbu0 is no longer needed)
return (static_cast<uint64_t>(tbu1) << 32) | tbl;
#endif
#elif defined(__sparc__)
int64_t tick;
asm(".byte 0x83, 0x41, 0x00, 0x00");
asm("mov %%g1, %0" : "=r"(tick));
return tick;
#elif defined(__ia64__)
int64_t itc;
asm("mov %0 = ar.itc" : "=r"(itc));
return itc;
#elif defined(COMPILER_MSVC) && defined(_M_IX86)
// Older MSVC compilers (like 7.x) don't seem to support the
// __rdtsc intrinsic properly, so I prefer to use _asm instead
// when I know it will work. Otherwise, I'll use __rdtsc and hope
// the code is being compiled with a non-ancient compiler.
_asm rdtsc
#elif defined(COMPILER_MSVC) && (defined(_M_ARM64) || defined(_M_ARM64EC))
// See // https://docs.microsoft.com/en-us/cpp/intrinsics/arm64-intrinsics
// and https://reviews.llvm.org/D53115
int64_t virtual_timer_value;
virtual_timer_value = _ReadStatusReg(ARM64_CNTVCT);
return virtual_timer_value;
#elif defined(COMPILER_MSVC)
return __rdtsc();
#elif defined(BENCHMARK_OS_NACL)
// Native Client validator on x86/x86-64 allows RDTSC instructions,
// and this case is handled above. Native Client validator on ARM
// rejects MRC instructions (used in the ARM-specific sequence below),
// so we handle it here. Portable Native Client compiles to
// architecture-agnostic bytecode, which doesn't provide any
// cycle counter access mnemonics.
// Native Client does not provide any API to access cycle counter.
// Use clock_gettime(CLOCK_MONOTONIC, ...) instead of gettimeofday
// because is provides nanosecond resolution (which is noticeable at
// least for PNaCl modules running on x86 Mac & Linux).
// Initialize to always return 0 if clock_gettime fails.
struct timespec ts = {0, 0};
clock_gettime(CLOCK_MONOTONIC, &ts);
return static_cast<int64_t>(ts.tv_sec) * 1000000000 + ts.tv_nsec;
#elif defined(__aarch64__)
// System timer of ARMv8 runs at a different frequency than the CPU's.
// The frequency is fixed, typically in the range 1-50MHz. It can be
// read at CNTFRQ special register. We assume the OS has set up
// the virtual timer properly.
int64_t virtual_timer_value;
asm volatile("mrs %0, cntvct_el0" : "=r"(virtual_timer_value));
return virtual_timer_value;
#elif defined(__ARM_ARCH)
// V6 is the earliest arch that has a standard cyclecount
// Native Client validator doesn't allow MRC instructions.
#if (__ARM_ARCH >= 6)
uint32_t pmccntr;
uint32_t pmuseren;
uint32_t pmcntenset;
// Read the user mode perf monitor counter access permissions.
asm volatile("mrc p15, 0, %0, c9, c14, 0" : "=r"(pmuseren));
if (pmuseren & 1) { // Allows reading perfmon counters for user mode code.
asm volatile("mrc p15, 0, %0, c9, c12, 1" : "=r"(pmcntenset));
if (pmcntenset & 0x80000000ul) { // Is it counting?
asm volatile("mrc p15, 0, %0, c9, c13, 0" : "=r"(pmccntr));
// The counter is set up to count every 64th cycle
return static_cast<int64_t>(pmccntr) * 64; // Should optimize to << 6
}
}
#endif
struct timeval tv;
gettimeofday(&tv, nullptr);
return static_cast<int64_t>(tv.tv_sec) * 1000000 + tv.tv_usec;
#elif defined(__mips__) || defined(__m68k__)
// mips apparently only allows rdtsc for superusers, so we fall
// back to gettimeofday. It's possible clock_gettime would be better.
struct timeval tv;
gettimeofday(&tv, nullptr);
return static_cast<int64_t>(tv.tv_sec) * 1000000 + tv.tv_usec;
#elif defined(__loongarch__) || defined(__csky__)
struct timeval tv;
gettimeofday(&tv, nullptr);
return static_cast<int64_t>(tv.tv_sec) * 1000000 + tv.tv_usec;
#elif defined(__s390__) // Covers both s390 and s390x.
// Return the CPU clock.
uint64_t tsc;
#if defined(BENCHMARK_OS_ZOS)
// z/OS HLASM syntax.
asm(" stck %0" : "=m"(tsc) : : "cc");
#else
// Linux on Z syntax.
asm("stck %0" : "=Q"(tsc) : : "cc");
#endif
return tsc;
#elif defined(__riscv) // RISC-V
// Use RDTIME (and RDTIMEH on riscv32).
// RDCYCLE is a privileged instruction since Linux 6.6.
#if __riscv_xlen == 32
uint32_t cycles_lo, cycles_hi0, cycles_hi1;
// This asm also includes the PowerPC overflow handling strategy, as above.
// Implemented in assembly because Clang insisted on branching.
asm volatile(
"rdtimeh %0\n"
"rdtime %1\n"
"rdtimeh %2\n"
"sub %0, %0, %2\n"
"seqz %0, %0\n"
"sub %0, zero, %0\n"
"and %1, %1, %0\n"
: "=r"(cycles_hi0), "=r"(cycles_lo), "=r"(cycles_hi1));
return static_cast<int64_t>((static_cast<uint64_t>(cycles_hi1) << 32) |
cycles_lo);
#else
uint64_t cycles;
asm volatile("rdtime %0" : "=r"(cycles));
return static_cast<int64_t>(cycles);
#endif
#elif defined(__e2k__) || defined(__elbrus__)
struct timeval tv;
gettimeofday(&tv, nullptr);
return static_cast<int64_t>(tv.tv_sec) * 1000000 + tv.tv_usec;
#elif defined(__hexagon__)
uint64_t pcycle;
asm volatile("%0 = C15:14" : "=r"(pcycle));
return static_cast<double>(pcycle);
#elif defined(__alpha__)
// Alpha has a cycle counter, the PCC register, but it is an unsigned 32-bit
// integer and thus wraps every ~4s, making using it for tick counts
// unreliable beyond this time range. The real-time clock is low-precision,
// roughtly ~1ms, but it is the only option that can reasonable count
// indefinitely.
struct timeval tv;
gettimeofday(&tv, nullptr);
return static_cast<int64_t>(tv.tv_sec) * 1000000 + tv.tv_usec;
#else
// The soft failover to a generic implementation is automatic only for ARM.
// For other platforms the developer is expected to make an attempt to create
// a fast implementation and use generic version if nothing better is
// available.
#error You need to define CycleTimer for your OS and CPU
#endif
}
} // end namespace cycleclock
} // end namespace benchmark
#endif // BENCHMARK_CYCLECLOCK_H_