blob: 76e78f45bc035e8ed50feae309ea640397eba102 [file] [log] [blame]
// Copyright 2013 Google LLC
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google LLC nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// exploitability_linux.cc: Linux specific exploitability engine.
//
// Provides a guess at the exploitability of the crash for the Linux
// platform given a minidump and process_state.
//
// Author: Matthew Riley
#ifdef HAVE_CONFIG_H
#include <config.h> // Must come first
#endif
#include "processor/exploitability_linux.h"
#include <string.h>
#include "google_breakpad/common/minidump_exception_linux.h"
#include "google_breakpad/processor/call_stack.h"
#include "google_breakpad/processor/process_state.h"
#include "google_breakpad/processor/stack_frame.h"
#ifdef __linux__
#include "processor/disassembler_objdump.h"
#endif
#include "processor/logging.h"
namespace {
// Prefixes for memory mapping names.
constexpr char kHeapPrefix[] = "[heap";
constexpr char kStackPrefix[] = "[stack";
// This function in libc is called if the program was compiled with
// -fstack-protector and a function's stack canary changes.
constexpr char kStackCheckFailureFunction[] = "__stack_chk_fail";
// This function in libc is called if the program was compiled with
// -D_FORTIFY_SOURCE=2, a function like strcpy() is called, and the runtime
// can determine that the call would overflow the target buffer.
constexpr char kBoundsCheckFailureFunction[] = "__chk_fail";
} // namespace
namespace google_breakpad {
ExploitabilityLinux::ExploitabilityLinux(Minidump* dump,
ProcessState* process_state)
: Exploitability(dump, process_state),
enable_objdump_(false) { }
ExploitabilityLinux::ExploitabilityLinux(Minidump* dump,
ProcessState* process_state,
bool enable_objdump)
: Exploitability(dump, process_state),
enable_objdump_(enable_objdump) { }
ExploitabilityRating ExploitabilityLinux::CheckPlatformExploitability() {
// Check the crashing thread for functions suggesting a buffer overflow or
// stack smash.
if (process_state_->requesting_thread() != -1) {
CallStack* crashing_thread =
process_state_->threads()->at(process_state_->requesting_thread());
const vector<StackFrame*>& crashing_thread_frames =
*crashing_thread->frames();
for (size_t i = 0; i < crashing_thread_frames.size(); ++i) {
if (crashing_thread_frames[i]->function_name ==
kStackCheckFailureFunction) {
return EXPLOITABILITY_HIGH;
}
if (crashing_thread_frames[i]->function_name ==
kBoundsCheckFailureFunction) {
return EXPLOITABILITY_HIGH;
}
}
}
// Getting exception data. (It should exist for all minidumps.)
MinidumpException* exception = dump_->GetException();
if (exception == NULL) {
BPLOG(INFO) << "No exception record.";
return EXPLOITABILITY_ERR_PROCESSING;
}
const MDRawExceptionStream* raw_exception_stream = exception->exception();
if (raw_exception_stream == NULL) {
BPLOG(INFO) << "No raw exception stream.";
return EXPLOITABILITY_ERR_PROCESSING;
}
// Checking for benign exceptions that caused the crash.
if (this->BenignCrashTrigger(raw_exception_stream)) {
return EXPLOITABILITY_NONE;
}
// Check if the instruction pointer is in a valid instruction region
// by finding if it maps to an executable part of memory.
uint64_t instruction_ptr = 0;
uint64_t stack_ptr = 0;
const MinidumpContext* context = exception->GetContext();
if (context == NULL) {
BPLOG(INFO) << "No exception context.";
return EXPLOITABILITY_ERR_PROCESSING;
}
// Getting the instruction pointer.
if (!context->GetInstructionPointer(&instruction_ptr)) {
BPLOG(INFO) << "Failed to retrieve instruction pointer.";
return EXPLOITABILITY_ERR_PROCESSING;
}
// Getting the stack pointer.
if (!context->GetStackPointer(&stack_ptr)) {
BPLOG(INFO) << "Failed to retrieve stack pointer.";
return EXPLOITABILITY_ERR_PROCESSING;
}
// Checking for the instruction pointer in a valid instruction region,
// a misplaced stack pointer, and an executable stack or heap.
if (!this->InstructionPointerInCode(instruction_ptr) ||
this->StackPointerOffStack(stack_ptr) ||
this->ExecutableStackOrHeap()) {
return EXPLOITABILITY_HIGH;
}
// Check for write to read only memory or invalid memory, shelling out
// to objdump is enabled.
if (enable_objdump_ && this->EndedOnIllegalWrite(instruction_ptr)) {
return EXPLOITABILITY_HIGH;
}
// There was no strong evidence suggesting exploitability, but the minidump
// does not appear totally benign either.
return EXPLOITABILITY_INTERESTING;
}
bool ExploitabilityLinux::EndedOnIllegalWrite(uint64_t instruction_ptr) {
#ifndef __linux__
BPLOG(INFO) << "MinGW does not support fork and exec. Terminating method.";
return false;
#else
// Get memory region containing instruction pointer.
MinidumpMemoryList* memory_list = dump_->GetMemoryList();
MinidumpMemoryRegion* memory_region =
memory_list ?
memory_list->GetMemoryRegionForAddress(instruction_ptr) : NULL;
if (!memory_region) {
BPLOG(INFO) << "No memory region around instruction pointer.";
return false;
}
// Get exception data to find architecture.
string architecture = "";
MinidumpException* exception = dump_->GetException();
// This should never evaluate to true, since this should not be reachable
// without checking for exception data earlier.
if (!exception) {
BPLOG(INFO) << "No exception data.";
return false;
}
const MDRawExceptionStream* raw_exception_stream = exception->exception();
const MinidumpContext* context = exception->GetContext();
// This should not evaluate to true, for the same reason mentioned above.
if (!raw_exception_stream || !context) {
BPLOG(INFO) << "No exception or architecture data.";
return false;
}
DisassemblerObjdump disassembler(context->GetContextCPU(), memory_region,
instruction_ptr);
if (!disassembler.IsValid()) {
BPLOG(INFO) << "Disassembling fault instruction failed.";
return false;
}
// Check if the operation is a write to memory.
// First, the instruction must one that can write to memory.
auto instruction = disassembler.operation();
if (!instruction.compare("mov") || !instruction.compare("inc") ||
!instruction.compare("dec") || !instruction.compare("and") ||
!instruction.compare("or") || !instruction.compare("xor") ||
!instruction.compare("not") || !instruction.compare("neg") ||
!instruction.compare("add") || !instruction.compare("sub") ||
!instruction.compare("shl") || !instruction.compare("shr")) {
uint64_t write_address = 0;
// Check that the destination is a memory address. CalculateDestAddress will
// return false if the destination is not a memory address.
if (!disassembler.CalculateDestAddress(*context, write_address)) {
return false;
}
// If the program crashed as a result of a write, the destination of
// the write must have been an address that did not permit writing.
// However, if the address is under 4k, due to program protections,
// the crash does not suggest exploitability for writes with such a
// low target address.
return write_address > 4096;
} else {
return false;
}
#endif // __linux__
}
bool ExploitabilityLinux::StackPointerOffStack(uint64_t stack_ptr) {
MinidumpLinuxMapsList* linux_maps_list = dump_->GetLinuxMapsList();
// Inconclusive if there are no mappings available.
if (!linux_maps_list) {
return false;
}
const MinidumpLinuxMaps* linux_maps =
linux_maps_list->GetLinuxMapsForAddress(stack_ptr);
// Checks if the stack pointer maps to a valid mapping and if the mapping
// is not the stack. If the mapping has no name, it is inconclusive whether
// it is off the stack.
return !linux_maps || (linux_maps->GetPathname().compare("") &&
linux_maps->GetPathname().compare(
0, strlen(kStackPrefix), kStackPrefix));
}
bool ExploitabilityLinux::ExecutableStackOrHeap() {
MinidumpLinuxMapsList* linux_maps_list = dump_->GetLinuxMapsList();
if (linux_maps_list) {
for (size_t i = 0; i < linux_maps_list->get_maps_count(); i++) {
const MinidumpLinuxMaps* linux_maps =
linux_maps_list->GetLinuxMapsAtIndex(i);
// Check for executable stack or heap for each mapping.
if (linux_maps && (!linux_maps->GetPathname().compare(
0, strlen(kStackPrefix), kStackPrefix) ||
!linux_maps->GetPathname().compare(
0, strlen(kHeapPrefix), kHeapPrefix)) &&
linux_maps->IsExecutable()) {
return true;
}
}
}
return false;
}
bool ExploitabilityLinux::InstructionPointerInCode(uint64_t instruction_ptr) {
// Get Linux memory mapping from /proc/self/maps. Checking whether the
// region the instruction pointer is in has executable permission can tell
// whether it is in a valid code region. If there is no mapping for the
// instruction pointer, it is indicative that the instruction pointer is
// not within a module, which implies that it is outside a valid area.
MinidumpLinuxMapsList* linux_maps_list = dump_->GetLinuxMapsList();
const MinidumpLinuxMaps* linux_maps =
linux_maps_list ?
linux_maps_list->GetLinuxMapsForAddress(instruction_ptr) : NULL;
return linux_maps ? linux_maps->IsExecutable() : false;
}
bool ExploitabilityLinux::BenignCrashTrigger(
const MDRawExceptionStream* raw_exception_stream) {
// Check the cause of crash.
// If the exception of the crash is a benign exception,
// it is probably not exploitable.
switch (raw_exception_stream->exception_record.exception_code) {
case MD_EXCEPTION_CODE_LIN_SIGHUP:
case MD_EXCEPTION_CODE_LIN_SIGINT:
case MD_EXCEPTION_CODE_LIN_SIGQUIT:
case MD_EXCEPTION_CODE_LIN_SIGTRAP:
case MD_EXCEPTION_CODE_LIN_SIGABRT:
case MD_EXCEPTION_CODE_LIN_SIGFPE:
case MD_EXCEPTION_CODE_LIN_SIGKILL:
case MD_EXCEPTION_CODE_LIN_SIGUSR1:
case MD_EXCEPTION_CODE_LIN_SIGUSR2:
case MD_EXCEPTION_CODE_LIN_SIGPIPE:
case MD_EXCEPTION_CODE_LIN_SIGALRM:
case MD_EXCEPTION_CODE_LIN_SIGTERM:
case MD_EXCEPTION_CODE_LIN_SIGCHLD:
case MD_EXCEPTION_CODE_LIN_SIGCONT:
case MD_EXCEPTION_CODE_LIN_SIGSTOP:
case MD_EXCEPTION_CODE_LIN_SIGTSTP:
case MD_EXCEPTION_CODE_LIN_SIGTTIN:
case MD_EXCEPTION_CODE_LIN_SIGTTOU:
case MD_EXCEPTION_CODE_LIN_SIGURG:
case MD_EXCEPTION_CODE_LIN_SIGXCPU:
case MD_EXCEPTION_CODE_LIN_SIGXFSZ:
case MD_EXCEPTION_CODE_LIN_SIGVTALRM:
case MD_EXCEPTION_CODE_LIN_SIGPROF:
case MD_EXCEPTION_CODE_LIN_SIGWINCH:
case MD_EXCEPTION_CODE_LIN_SIGIO:
case MD_EXCEPTION_CODE_LIN_SIGPWR:
case MD_EXCEPTION_CODE_LIN_SIGSYS:
case MD_EXCEPTION_CODE_LIN_DUMP_REQUESTED:
return true;
default:
return false;
}
}
} // namespace google_breakpad