blob: 0d1ebc6b40810cbd836da9083256817c6e1281b8 [file] [log] [blame]
// Copyright 2010 Google LLC
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google LLC nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// fast_source_line_resolver.cc: FastSourceLineResolver is a concrete class that
// implements SourceLineResolverInterface. Both FastSourceLineResolver and
// BasicSourceLineResolver inherit from SourceLineResolverBase class to reduce
// code redundancy.
//
// See fast_source_line_resolver.h and fast_source_line_resolver_types.h
// for more documentation.
//
// Author: Siyang Xie ([email protected])
#include "google_breakpad/processor/fast_source_line_resolver.h"
#include "processor/fast_source_line_resolver_types.h"
#include <cassert>
#include <map>
#include <string>
#include <utility>
#include "common/scoped_ptr.h"
#include "common/using_std_string.h"
#include "processor/logging.h"
#include "processor/module_factory.h"
#include "processor/simple_serializer-inl.h"
using std::deque;
using std::unique_ptr;
namespace google_breakpad {
FastSourceLineResolver::FastSourceLineResolver()
: SourceLineResolverBase(new FastModuleFactory) { }
bool FastSourceLineResolver::ShouldDeleteMemoryBufferAfterLoadModule() {
return false;
}
void FastSourceLineResolver::Module::LookupAddress(
StackFrame* frame,
std::deque<std::unique_ptr<StackFrame>>* inlined_frames) const {
MemAddr address = frame->instruction - frame->module->base_address();
// First, look for a FUNC record that covers address. Use
// RetrieveNearestRange instead of RetrieveRange so that, if there
// is no such function, we can use the next function to bound the
// extent of the PUBLIC symbol we find, below. This does mean we
// need to check that address indeed falls within the function we
// find; do the range comparison in an overflow-friendly way.
scoped_ptr<Function> func(new Function);
const Function* func_ptr = 0;
scoped_ptr<PublicSymbol> public_symbol(new PublicSymbol);
const PublicSymbol* public_symbol_ptr = 0;
MemAddr function_base;
MemAddr function_size;
MemAddr public_address;
if (functions_.RetrieveNearestRange(address, func_ptr,
&function_base, &function_size) &&
address >= function_base && address - function_base < function_size) {
func->CopyFrom(func_ptr);
frame->function_name = func->name;
frame->function_base = frame->module->base_address() + function_base;
frame->is_multiple = func->is_multiple;
scoped_ptr<Line> line(new Line);
const Line* line_ptr = 0;
MemAddr line_base;
if (func->lines.RetrieveRange(address, line_ptr, &line_base, NULL)) {
line->CopyFrom(line_ptr);
FileMap::iterator it = files_.find(line->source_file_id);
if (it != files_.end()) {
frame->source_file_name =
files_.find(line->source_file_id).GetValuePtr();
}
frame->source_line = line->line;
frame->source_line_base = frame->module->base_address() + line_base;
}
// Check if this is inlined function call.
if (inlined_frames) {
ConstructInlineFrames(frame, address, func->inlines, inlined_frames);
}
} else if (public_symbols_.Retrieve(address,
public_symbol_ptr, &public_address) &&
(!func_ptr || public_address > function_base)) {
public_symbol->CopyFrom(public_symbol_ptr);
frame->function_name = public_symbol->name;
frame->function_base = frame->module->base_address() + public_address;
frame->is_multiple = public_symbol->is_multiple;
}
}
void FastSourceLineResolver::Module::ConstructInlineFrames(
StackFrame* frame,
MemAddr address,
const StaticContainedRangeMap<MemAddr, char>& inline_map,
std::deque<std::unique_ptr<StackFrame>>* inlined_frames) const {
std::vector<const char*> inline_ptrs;
if (!inline_map.RetrieveRanges(address, inline_ptrs)) {
return;
}
for (const char* inline_ptr : inline_ptrs) {
scoped_ptr<Inline> in(new Inline);
in->CopyFrom(inline_ptr);
unique_ptr<StackFrame> new_frame =
unique_ptr<StackFrame>(new StackFrame(*frame));
auto origin_iter = inline_origins_.find(in->origin_id);
if (origin_iter != inline_origins_.end()) {
scoped_ptr<InlineOrigin> origin(new InlineOrigin);
origin->CopyFrom(origin_iter.GetValuePtr());
new_frame->function_name = origin->name;
} else {
new_frame->function_name = "<name omitted>";
}
// Store call site file and line in current frame, which will be updated
// later.
new_frame->source_line = in->call_site_line;
if (in->has_call_site_file_id) {
auto file_iter = files_.find(in->call_site_file_id);
if (file_iter != files_.end()) {
new_frame->source_file_name = file_iter.GetValuePtr();
}
}
// Use the starting adress of the inlined range as inlined function base.
new_frame->function_base = new_frame->module->base_address();
for (const auto& range : in->inline_ranges) {
if (address >= range.first && address < range.first + range.second) {
new_frame->function_base += range.first;
break;
}
}
new_frame->trust = StackFrame::FRAME_TRUST_INLINE;
// The inlines vector has an order from innermost entry to outermost entry.
// By push_back, we will have inlined_frames with the same order.
inlined_frames->push_back(std::move(new_frame));
}
// Update the source file and source line for each inlined frame.
if (!inlined_frames->empty()) {
string parent_frame_source_file_name = frame->source_file_name;
int parent_frame_source_line = frame->source_line;
frame->source_file_name = inlined_frames->back()->source_file_name;
frame->source_line = inlined_frames->back()->source_line;
for (unique_ptr<StackFrame>& inlined_frame : *inlined_frames) {
std::swap(inlined_frame->source_file_name, parent_frame_source_file_name);
std::swap(inlined_frame->source_line, parent_frame_source_line);
}
}
}
// WFI: WindowsFrameInfo.
// Returns a WFI object reading from a raw memory chunk of data
WindowsFrameInfo FastSourceLineResolver::CopyWFI(const char* raw) {
const WindowsFrameInfo::StackInfoTypes type =
static_cast<const WindowsFrameInfo::StackInfoTypes>(
*reinterpret_cast<const int32_t*>(raw));
// The first 8 bytes of int data are unused.
// They correspond to "StackInfoTypes type_;" and "int valid;"
// data member of WFI.
const uint32_t* para_uint32 = reinterpret_cast<const uint32_t*>(
raw + 2 * sizeof(int32_t));
uint32_t prolog_size = para_uint32[0];;
uint32_t epilog_size = para_uint32[1];
uint32_t parameter_size = para_uint32[2];
uint32_t saved_register_size = para_uint32[3];
uint32_t local_size = para_uint32[4];
uint32_t max_stack_size = para_uint32[5];
const char* boolean = reinterpret_cast<const char*>(para_uint32 + 6);
bool allocates_base_pointer = (*boolean != 0);
string program_string = boolean + 1;
return WindowsFrameInfo(type,
prolog_size,
epilog_size,
parameter_size,
saved_register_size,
local_size,
max_stack_size,
allocates_base_pointer,
program_string);
}
// Loads a map from the given buffer in char* type.
// Does NOT take ownership of mem_buffer.
// In addition, treat mem_buffer as const char*.
bool FastSourceLineResolver::Module::LoadMapFromMemory(
char* memory_buffer,
size_t memory_buffer_size) {
if (!memory_buffer) return false;
// Read the "is_corrupt" flag.
const char* mem_buffer = memory_buffer;
mem_buffer = SimpleSerializer<bool>::Read(mem_buffer, &is_corrupt_);
const uint32_t* map_sizes = reinterpret_cast<const uint32_t*>(mem_buffer);
unsigned int header_size = kNumberMaps_ * sizeof(unsigned int);
// offsets[]: an array of offset addresses (with respect to mem_buffer),
// for each "Static***Map" component of Module.
// "Static***Map": static version of std::map or map wrapper, i.e., StaticMap,
// StaticAddressMap, StaticContainedRangeMap, and StaticRangeMap.
unsigned int offsets[kNumberMaps_];
offsets[0] = header_size;
for (int i = 1; i < kNumberMaps_; ++i) {
offsets[i] = offsets[i - 1] + map_sizes[i - 1];
}
unsigned int expected_size = sizeof(bool) + offsets[kNumberMaps_ - 1] +
map_sizes[kNumberMaps_ - 1] + 1;
if (expected_size != memory_buffer_size &&
// Allow for having an extra null terminator.
expected_size != memory_buffer_size - 1) {
// This could either be a random corruption or the serialization format was
// changed without updating the version in kSerializedBreakpadFileExtension.
BPLOG(ERROR) << "Memory buffer is either corrupt or an unsupported version"
<< ", expected size: " << expected_size
<< ", actual size: " << memory_buffer_size;
return false;
}
BPLOG(INFO) << "Memory buffer size looks good, size: " << memory_buffer_size;
// Use pointers to construct Static*Map data members in Module:
int map_id = 0;
files_ = StaticMap<int, char>(mem_buffer + offsets[map_id++]);
functions_ =
StaticRangeMap<MemAddr, Function>(mem_buffer + offsets[map_id++]);
public_symbols_ =
StaticAddressMap<MemAddr, PublicSymbol>(mem_buffer + offsets[map_id++]);
for (int i = 0; i < WindowsFrameInfo::STACK_INFO_LAST; ++i) {
windows_frame_info_[i] =
StaticContainedRangeMap<MemAddr, char>(mem_buffer + offsets[map_id++]);
}
cfi_initial_rules_ =
StaticRangeMap<MemAddr, char>(mem_buffer + offsets[map_id++]);
cfi_delta_rules_ = StaticMap<MemAddr, char>(mem_buffer + offsets[map_id++]);
inline_origins_ = StaticMap<int, char>(mem_buffer + offsets[map_id++]);
return true;
}
WindowsFrameInfo* FastSourceLineResolver::Module::FindWindowsFrameInfo(
const StackFrame* frame) const {
MemAddr address = frame->instruction - frame->module->base_address();
scoped_ptr<WindowsFrameInfo> result(new WindowsFrameInfo());
// We only know about WindowsFrameInfo::STACK_INFO_FRAME_DATA and
// WindowsFrameInfo::STACK_INFO_FPO. Prefer them in this order.
// WindowsFrameInfo::STACK_INFO_FRAME_DATA is the newer type that
// includes its own program string.
// WindowsFrameInfo::STACK_INFO_FPO is the older type
// corresponding to the FPO_DATA struct. See stackwalker_x86.cc.
const char* frame_info_ptr;
if ((windows_frame_info_[WindowsFrameInfo::STACK_INFO_FRAME_DATA]
.RetrieveRange(address, frame_info_ptr))
|| (windows_frame_info_[WindowsFrameInfo::STACK_INFO_FPO]
.RetrieveRange(address, frame_info_ptr))) {
result->CopyFrom(CopyWFI(frame_info_ptr));
return result.release();
}
// Even without a relevant STACK line, many functions contain
// information about how much space their parameters consume on the
// stack. Use RetrieveNearestRange instead of RetrieveRange, so that
// we can use the function to bound the extent of the PUBLIC symbol,
// below. However, this does mean we need to check that ADDRESS
// falls within the retrieved function's range; do the range
// comparison in an overflow-friendly way.
scoped_ptr<Function> function(new Function);
const Function* function_ptr = 0;
MemAddr function_base, function_size;
if (functions_.RetrieveNearestRange(address, function_ptr,
&function_base, &function_size) &&
address >= function_base && address - function_base < function_size) {
function->CopyFrom(function_ptr);
result->parameter_size = function->parameter_size;
result->valid |= WindowsFrameInfo::VALID_PARAMETER_SIZE;
return result.release();
}
// PUBLIC symbols might have a parameter size. Use the function we
// found above to limit the range the public symbol covers.
scoped_ptr<PublicSymbol> public_symbol(new PublicSymbol);
const PublicSymbol* public_symbol_ptr = 0;
MemAddr public_address;
if (public_symbols_.Retrieve(address, public_symbol_ptr, &public_address) &&
(!function_ptr || public_address > function_base)) {
public_symbol->CopyFrom(public_symbol_ptr);
result->parameter_size = public_symbol->parameter_size;
}
return NULL;
}
CFIFrameInfo* FastSourceLineResolver::Module::FindCFIFrameInfo(
const StackFrame* frame) const {
MemAddr address = frame->instruction - frame->module->base_address();
MemAddr initial_base, initial_size;
const char* initial_rules = NULL;
// Find the initial rule whose range covers this address. That
// provides an initial set of register recovery rules. Then, walk
// forward from the initial rule's starting address to frame's
// instruction address, applying delta rules.
if (!cfi_initial_rules_.RetrieveRange(address, initial_rules,
&initial_base, &initial_size)) {
return NULL;
}
// Create a frame info structure, and populate it with the rules from
// the STACK CFI INIT record.
scoped_ptr<CFIFrameInfo> rules(new CFIFrameInfo());
if (!ParseCFIRuleSet(initial_rules, rules.get()))
return NULL;
// Find the first delta rule that falls within the initial rule's range.
StaticMap<MemAddr, char>::iterator delta =
cfi_delta_rules_.lower_bound(initial_base);
// Apply delta rules up to and including the frame's address.
while (delta != cfi_delta_rules_.end() && delta.GetKey() <= address) {
ParseCFIRuleSet(delta.GetValuePtr(), rules.get());
delta++;
}
return rules.release();
}
} // namespace google_breakpad