blob: 0cdd40600a82de71799baddb12fa4fdfcf495983 [file] [log] [blame]
// Copyright 2015 gRPC authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
syntax = "proto3";
import "src/proto/grpc/testing/payloads.proto";
import "src/proto/grpc/testing/stats.proto";
import "google/protobuf/timestamp.proto";
package grpc.testing;
enum ClientType {
// Many languages support a basic distinction between using
// sync or async client, and this allows the specification
SYNC_CLIENT = 0;
ASYNC_CLIENT = 1;
OTHER_CLIENT = 2; // used for some language-specific variants
CALLBACK_CLIENT = 3;
}
enum ServerType {
SYNC_SERVER = 0;
ASYNC_SERVER = 1;
ASYNC_GENERIC_SERVER = 2;
OTHER_SERVER = 3; // used for some language-specific variants
CALLBACK_SERVER = 4;
}
enum RpcType {
UNARY = 0;
STREAMING = 1;
STREAMING_FROM_CLIENT = 2;
STREAMING_FROM_SERVER = 3;
STREAMING_BOTH_WAYS = 4;
}
// Parameters of poisson process distribution, which is a good representation
// of activity coming in from independent identical stationary sources.
message PoissonParams {
// The rate of arrivals (a.k.a. lambda parameter of the exp distribution).
double offered_load = 1;
}
// Once an RPC finishes, immediately start a new one.
// No configuration parameters needed.
message ClosedLoopParams {}
message LoadParams {
oneof load {
ClosedLoopParams closed_loop = 1;
PoissonParams poisson = 2;
};
}
// presence of SecurityParams implies use of TLS
message SecurityParams {
bool use_test_ca = 1;
string server_host_override = 2;
string cred_type = 3;
}
message ChannelArg {
string name = 1;
oneof value {
string str_value = 2;
int32 int_value = 3;
}
}
message ClientConfig {
// List of targets to connect to. At least one target needs to be specified.
repeated string server_targets = 1;
ClientType client_type = 2;
SecurityParams security_params = 3;
// How many concurrent RPCs to start for each channel.
// For synchronous client, use a separate thread for each outstanding RPC.
int32 outstanding_rpcs_per_channel = 4;
// Number of independent client channels to create.
// i-th channel will connect to server_target[i % server_targets.size()]
int32 client_channels = 5;
// Only for async client. Number of threads to use to start/manage RPCs.
int32 async_client_threads = 7;
RpcType rpc_type = 8;
// The requested load for the entire client (aggregated over all the threads).
LoadParams load_params = 10;
PayloadConfig payload_config = 11;
HistogramParams histogram_params = 12;
// Specify the cores we should run the client on, if desired
repeated int32 core_list = 13;
int32 core_limit = 14;
// If we use an OTHER_CLIENT client_type, this string gives more detail
string other_client_api = 15;
repeated ChannelArg channel_args = 16;
// Number of threads that share each completion queue
int32 threads_per_cq = 17;
// Number of messages on a stream before it gets finished/restarted
int32 messages_per_stream = 18;
// Use coalescing API when possible.
bool use_coalesce_api = 19;
// If 0, disabled. Else, specifies the period between gathering latency
// medians in milliseconds.
int32 median_latency_collection_interval_millis = 20;
// Number of client processes. 0 indicates no restriction.
int32 client_processes = 21;
}
message ClientStatus { ClientStats stats = 1; }
// Request current stats
message Mark {
// if true, the stats will be reset after taking their snapshot.
bool reset = 1;
}
message ClientArgs {
oneof argtype {
ClientConfig setup = 1;
Mark mark = 2;
}
}
message ServerConfig {
ServerType server_type = 1;
SecurityParams security_params = 2;
// Port on which to listen. Zero means pick unused port.
int32 port = 4;
// Only for async server. Number of threads used to serve the requests.
int32 async_server_threads = 7;
// Specify the number of cores to limit server to, if desired
int32 core_limit = 8;
// payload config, used in generic server.
// Note this must NOT be used in proto (non-generic) servers. For proto servers,
// 'response sizes' must be configured from the 'response_size' field of the
// 'SimpleRequest' objects in RPC requests.
PayloadConfig payload_config = 9;
// Specify the cores we should run the server on, if desired
repeated int32 core_list = 10;
// If we use an OTHER_SERVER client_type, this string gives more detail
string other_server_api = 11;
// Number of threads that share each completion queue
int32 threads_per_cq = 12;
// c++-only options (for now) --------------------------------
// Buffer pool size (no buffer pool specified if unset)
int32 resource_quota_size = 1001;
repeated ChannelArg channel_args = 1002;
// Number of server processes. 0 indicates no restriction.
int32 server_processes = 21;
}
message ServerArgs {
oneof argtype {
ServerConfig setup = 1;
Mark mark = 2;
}
}
message ServerStatus {
ServerStats stats = 1;
// the port bound by the server
int32 port = 2;
// Number of cores available to the server
int32 cores = 3;
}
message CoreRequest {
}
message CoreResponse {
// Number of cores available on the server
int32 cores = 1;
}
message Void {
}
// A single performance scenario: input to qps_json_driver
message Scenario {
// Human readable name for this scenario
string name = 1;
// Client configuration
ClientConfig client_config = 2;
// Number of clients to start for the test
int32 num_clients = 3;
// Server configuration
ServerConfig server_config = 4;
// Number of servers to start for the test
int32 num_servers = 5;
// Warmup period, in seconds
int32 warmup_seconds = 6;
// Benchmark time, in seconds
int32 benchmark_seconds = 7;
// Number of workers to spawn locally (usually zero)
int32 spawn_local_worker_count = 8;
}
// A set of scenarios to be run with qps_json_driver
message Scenarios {
repeated Scenario scenarios = 1;
}
// Basic summary that can be computed from ClientStats and ServerStats
// once the scenario has finished.
message ScenarioResultSummary
{
// Total number of operations per second over all clients. What is counted as 1 'operation' depends on the benchmark scenarios:
// For unary benchmarks, an operation is processing of a single unary RPC.
// For streaming benchmarks, an operation is processing of a single ping pong of request and response.
double qps = 1;
// QPS per server core.
double qps_per_server_core = 2;
// The total server cpu load based on system time across all server processes, expressed as percentage of a single cpu core.
// For example, 85 implies 85% of a cpu core, 125 implies 125% of a cpu core. Since we are accumulating the cpu load across all the server
// processes, the value could > 100 when there are multiple servers or a single server using multiple threads and cores.
// Same explanation for the total client cpu load below.
double server_system_time = 3;
// The total server cpu load based on user time across all server processes, expressed as percentage of a single cpu core. (85 => 85%, 125 => 125%)
double server_user_time = 4;
// The total client cpu load based on system time across all client processes, expressed as percentage of a single cpu core. (85 => 85%, 125 => 125%)
double client_system_time = 5;
// The total client cpu load based on user time across all client processes, expressed as percentage of a single cpu core. (85 => 85%, 125 => 125%)
double client_user_time = 6;
// X% latency percentiles (in nanoseconds)
double latency_50 = 7;
double latency_90 = 8;
double latency_95 = 9;
double latency_99 = 10;
double latency_999 = 11;
// server cpu usage percentage
double server_cpu_usage = 12;
// Number of requests that succeeded/failed
double successful_requests_per_second = 13;
double failed_requests_per_second = 14;
// Number of polls called inside completion queue per request
double client_polls_per_request = 15;
double server_polls_per_request = 16;
// Queries per CPU-sec over all servers or clients
double server_queries_per_cpu_sec = 17;
double client_queries_per_cpu_sec = 18;
// Start and end time for the test scenario
google.protobuf.Timestamp start_time = 19;
google.protobuf.Timestamp end_time =20;
}
// Results of a single benchmark scenario.
message ScenarioResult {
// Inputs used to run the scenario.
Scenario scenario = 1;
// Histograms from all clients merged into one histogram.
HistogramData latencies = 2;
// Client stats for each client
repeated ClientStats client_stats = 3;
// Server stats for each server
repeated ServerStats server_stats = 4;
// Number of cores available to each server
repeated int32 server_cores = 5;
// An after-the-fact computed summary
ScenarioResultSummary summary = 6;
// Information on success or failure of each worker
repeated bool client_success = 7;
repeated bool server_success = 8;
// Number of failed requests (one row per status code seen)
repeated RequestResultCount request_results = 9;
}