| # Copyright 2015 gRPC authors. |
| # |
| # Licensed under the Apache License, Version 2.0 (the "License"); |
| # you may not use this file except in compliance with the License. |
| # You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| |
| from __future__ import print_function |
| |
| import argparse |
| import json |
| import uuid |
| |
| from apiclient import discovery |
| from apiclient.errors import HttpError |
| import httplib2 |
| from oauth2client.client import GoogleCredentials |
| |
| # 30 days in milliseconds |
| _EXPIRATION_MS = 30 * 24 * 60 * 60 * 1000 |
| NUM_RETRIES = 3 |
| |
| |
| def create_big_query(): |
| """Authenticates with cloud platform and gets a BiqQuery service object""" |
| creds = GoogleCredentials.get_application_default() |
| return discovery.build( |
| "bigquery", "v2", credentials=creds, cache_discovery=False |
| ) |
| |
| |
| def create_dataset(biq_query, project_id, dataset_id): |
| is_success = True |
| body = { |
| "datasetReference": {"projectId": project_id, "datasetId": dataset_id} |
| } |
| |
| try: |
| dataset_req = biq_query.datasets().insert( |
| projectId=project_id, body=body |
| ) |
| dataset_req.execute(num_retries=NUM_RETRIES) |
| except HttpError as http_error: |
| if http_error.resp.status == 409: |
| print("Warning: The dataset %s already exists" % dataset_id) |
| else: |
| # Note: For more debugging info, print "http_error.content" |
| print( |
| "Error in creating dataset: %s. Err: %s" |
| % (dataset_id, http_error) |
| ) |
| is_success = False |
| return is_success |
| |
| |
| def create_table( |
| big_query, project_id, dataset_id, table_id, table_schema, description |
| ): |
| fields = [ |
| { |
| "name": field_name, |
| "type": field_type, |
| "description": field_description, |
| } |
| for (field_name, field_type, field_description) in table_schema |
| ] |
| return create_table2( |
| big_query, project_id, dataset_id, table_id, fields, description |
| ) |
| |
| |
| def create_partitioned_table( |
| big_query, |
| project_id, |
| dataset_id, |
| table_id, |
| table_schema, |
| description, |
| partition_type="DAY", |
| expiration_ms=_EXPIRATION_MS, |
| ): |
| """Creates a partitioned table. By default, a date-paritioned table is created with |
| each partition lasting 30 days after it was last modified. |
| """ |
| fields = [ |
| { |
| "name": field_name, |
| "type": field_type, |
| "description": field_description, |
| } |
| for (field_name, field_type, field_description) in table_schema |
| ] |
| return create_table2( |
| big_query, |
| project_id, |
| dataset_id, |
| table_id, |
| fields, |
| description, |
| partition_type, |
| expiration_ms, |
| ) |
| |
| |
| def create_table2( |
| big_query, |
| project_id, |
| dataset_id, |
| table_id, |
| fields_schema, |
| description, |
| partition_type=None, |
| expiration_ms=None, |
| ): |
| is_success = True |
| |
| body = { |
| "description": description, |
| "schema": {"fields": fields_schema}, |
| "tableReference": { |
| "datasetId": dataset_id, |
| "projectId": project_id, |
| "tableId": table_id, |
| }, |
| } |
| |
| if partition_type and expiration_ms: |
| body["timePartitioning"] = { |
| "type": partition_type, |
| "expirationMs": expiration_ms, |
| } |
| |
| try: |
| table_req = big_query.tables().insert( |
| projectId=project_id, datasetId=dataset_id, body=body |
| ) |
| res = table_req.execute(num_retries=NUM_RETRIES) |
| print('Successfully created %s "%s"' % (res["kind"], res["id"])) |
| except HttpError as http_error: |
| if http_error.resp.status == 409: |
| print("Warning: Table %s already exists" % table_id) |
| else: |
| print( |
| "Error in creating table: %s. Err: %s" % (table_id, http_error) |
| ) |
| is_success = False |
| return is_success |
| |
| |
| def patch_table(big_query, project_id, dataset_id, table_id, fields_schema): |
| is_success = True |
| |
| body = { |
| "schema": {"fields": fields_schema}, |
| "tableReference": { |
| "datasetId": dataset_id, |
| "projectId": project_id, |
| "tableId": table_id, |
| }, |
| } |
| |
| try: |
| table_req = big_query.tables().patch( |
| projectId=project_id, |
| datasetId=dataset_id, |
| tableId=table_id, |
| body=body, |
| ) |
| res = table_req.execute(num_retries=NUM_RETRIES) |
| print('Successfully patched %s "%s"' % (res["kind"], res["id"])) |
| except HttpError as http_error: |
| print("Error in creating table: %s. Err: %s" % (table_id, http_error)) |
| is_success = False |
| return is_success |
| |
| |
| def insert_rows(big_query, project_id, dataset_id, table_id, rows_list): |
| is_success = True |
| body = {"rows": rows_list} |
| try: |
| insert_req = big_query.tabledata().insertAll( |
| projectId=project_id, |
| datasetId=dataset_id, |
| tableId=table_id, |
| body=body, |
| ) |
| res = insert_req.execute(num_retries=NUM_RETRIES) |
| if res.get("insertErrors", None): |
| print("Error inserting rows! Response: %s" % res) |
| is_success = False |
| except HttpError as http_error: |
| print("Error inserting rows to the table %s" % table_id) |
| print("Error message: %s" % http_error) |
| is_success = False |
| |
| return is_success |
| |
| |
| def sync_query_job(big_query, project_id, query, timeout=5000): |
| query_data = {"query": query, "timeoutMs": timeout} |
| query_job = None |
| try: |
| query_job = ( |
| big_query.jobs() |
| .query(projectId=project_id, body=query_data) |
| .execute(num_retries=NUM_RETRIES) |
| ) |
| except HttpError as http_error: |
| print("Query execute job failed with error: %s" % http_error) |
| print(http_error.content) |
| return query_job |
| |
| # List of (column name, column type, description) tuples |
| |
| |
| def make_row(unique_row_id, row_values_dict): |
| """row_values_dict is a dictionary of column name and column value.""" |
| return {"insertId": unique_row_id, "json": row_values_dict} |