| /* |
| * Copyright © 2020 Google, Inc. |
| * |
| * This is part of HarfBuzz, a text shaping library. |
| * |
| * Permission is hereby granted, without written agreement and without |
| * license or royalty fees, to use, copy, modify, and distribute this |
| * software and its documentation for any purpose, provided that the |
| * above copyright notice and the following two paragraphs appear in |
| * all copies of this software. |
| * |
| * IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR |
| * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES |
| * ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN |
| * IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH |
| * DAMAGE. |
| * |
| * THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, |
| * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND |
| * FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS |
| * ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO |
| * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. |
| * |
| * Google Author(s): Garret Rieger |
| */ |
| |
| #ifndef HB_REPACKER_HH |
| #define HB_REPACKER_HH |
| |
| #include "hb-open-type.hh" |
| #include "hb-map.hh" |
| #include "hb-vector.hh" |
| #include "graph/graph.hh" |
| #include "graph/gsubgpos-graph.hh" |
| #include "graph/serialize.hh" |
| |
| using graph::graph_t; |
| |
| /* |
| * For a detailed writeup on the overflow resolution algorithm see: |
| * docs/repacker.md |
| */ |
| |
| struct lookup_size_t |
| { |
| unsigned lookup_index; |
| size_t size; |
| unsigned num_subtables; |
| |
| static int cmp (const void* a, const void* b) |
| { |
| return cmp ((const lookup_size_t*) a, |
| (const lookup_size_t*) b); |
| } |
| |
| static int cmp (const lookup_size_t* a, const lookup_size_t* b) |
| { |
| double subtables_per_byte_a = (double) a->num_subtables / (double) a->size; |
| double subtables_per_byte_b = (double) b->num_subtables / (double) b->size; |
| if (subtables_per_byte_a == subtables_per_byte_b) { |
| return b->lookup_index - a->lookup_index; |
| } |
| |
| double cmp = subtables_per_byte_b - subtables_per_byte_a; |
| if (cmp < 0) return -1; |
| if (cmp > 0) return 1; |
| return 0; |
| } |
| }; |
| |
| static inline |
| bool _presplit_subtables_if_needed (graph::gsubgpos_graph_context_t& ext_context) |
| { |
| // For each lookup this will check the size of subtables and split them as needed |
| // so that no subtable is at risk of overflowing. (where we support splitting for |
| // that subtable type). |
| // |
| // TODO(grieger): de-dup newly added nodes as necessary. Probably just want a full de-dup |
| // pass after this processing is done. Not super necessary as splits are |
| // only done where overflow is likely, so de-dup probably will get undone |
| // later anyways. |
| |
| // The loop below can modify the contents of ext_context.lookups if new subtables are added |
| // to a lookup during a split. So save the initial set of lookup indices so the iteration doesn't |
| // risk access free'd memory if ext_context.lookups gets resized. |
| hb_set_t lookup_indices(ext_context.lookups.keys ()); |
| for (unsigned lookup_index : lookup_indices) |
| { |
| graph::Lookup* lookup = ext_context.lookups.get(lookup_index); |
| if (!lookup->split_subtables_if_needed (ext_context, lookup_index)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Analyze the lookups in a GSUB/GPOS table and decide if any should be promoted |
| * to extension lookups. |
| */ |
| static inline |
| bool _promote_extensions_if_needed (graph::gsubgpos_graph_context_t& ext_context) |
| { |
| // Simple Algorithm (v1, current): |
| // 1. Calculate how many bytes each non-extension lookup consumes. |
| // 2. Select up to 64k of those to remain as non-extension (greedy, highest subtables per byte first) |
| // 3. Promote the rest. |
| // |
| // Advanced Algorithm (v2, not implemented): |
| // 1. Perform connected component analysis using lookups as roots. |
| // 2. Compute size of each connected component. |
| // 3. Select up to 64k worth of connected components to remain as non-extensions. |
| // (greedy, highest subtables per byte first) |
| // 4. Promote the rest. |
| |
| // TODO(garretrieger): support extension demotion, then consider all lookups. Requires advanced algo. |
| // TODO(garretrieger): also support extension promotion during iterative resolution phase, then |
| // we can use a less conservative threshold here. |
| // TODO(grieger): skip this for the 24 bit case. |
| if (!ext_context.lookups) return true; |
| |
| unsigned total_lookup_table_sizes = 0; |
| hb_vector_t<lookup_size_t> lookup_sizes; |
| lookup_sizes.alloc (ext_context.lookups.get_population (), true); |
| |
| for (unsigned lookup_index : ext_context.lookups.keys ()) |
| { |
| const auto& lookup_v = ext_context.graph.vertices_[lookup_index]; |
| total_lookup_table_sizes += lookup_v.table_size (); |
| |
| const graph::Lookup* lookup = ext_context.lookups.get(lookup_index); |
| hb_set_t visited; |
| lookup_sizes.push (lookup_size_t { |
| lookup_index, |
| ext_context.graph.find_subgraph_size (lookup_index, visited), |
| lookup->number_of_subtables (), |
| }); |
| } |
| |
| lookup_sizes.qsort (); |
| |
| size_t lookup_list_size = ext_context.graph.vertices_[ext_context.lookup_list_index].table_size (); |
| size_t l2_l3_size = lookup_list_size + total_lookup_table_sizes; // Lookup List + Lookups |
| size_t l3_l4_size = total_lookup_table_sizes; // Lookups + SubTables |
| size_t l4_plus_size = 0; // SubTables + their descendants |
| |
| // Start by assuming all lookups are using extension subtables, this size will be removed later |
| // if it's decided to not make a lookup extension. |
| for (auto p : lookup_sizes) |
| { |
| // TODO(garretrieger): this overestimates the extension subtables size because some extension subtables may be |
| // reused. However, we can't correct this until we have connected component analysis in place. |
| unsigned subtables_size = p.num_subtables * 8; |
| l3_l4_size += subtables_size; |
| l4_plus_size += subtables_size; |
| } |
| |
| bool layers_full = false; |
| for (auto p : lookup_sizes) |
| { |
| const graph::Lookup* lookup = ext_context.lookups.get(p.lookup_index); |
| if (lookup->is_extension (ext_context.table_tag)) |
| // already an extension so size is counted by the loop above. |
| continue; |
| |
| if (!layers_full) |
| { |
| size_t lookup_size = ext_context.graph.vertices_[p.lookup_index].table_size (); |
| hb_set_t visited; |
| size_t subtables_size = ext_context.graph.find_subgraph_size (p.lookup_index, visited, 1) - lookup_size; |
| size_t remaining_size = p.size - subtables_size - lookup_size; |
| |
| l3_l4_size += subtables_size; |
| l3_l4_size -= p.num_subtables * 8; |
| l4_plus_size += subtables_size + remaining_size; |
| |
| if (l2_l3_size < (1 << 16) |
| && l3_l4_size < (1 << 16) |
| && l4_plus_size < (1 << 16)) continue; // this lookup fits within all layers groups |
| |
| layers_full = true; |
| } |
| |
| if (!ext_context.lookups.get(p.lookup_index)->make_extension (ext_context, p.lookup_index)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static inline |
| bool _try_isolating_subgraphs (const hb_vector_t<graph::overflow_record_t>& overflows, |
| graph_t& sorted_graph) |
| { |
| unsigned space = 0; |
| hb_set_t roots_to_isolate; |
| |
| for (int i = overflows.length - 1; i >= 0; i--) |
| { |
| const graph::overflow_record_t& r = overflows[i]; |
| |
| unsigned root; |
| unsigned overflow_space = sorted_graph.space_for (r.parent, &root); |
| if (!overflow_space) continue; |
| if (sorted_graph.num_roots_for_space (overflow_space) <= 1) continue; |
| |
| if (!space) { |
| space = overflow_space; |
| } |
| |
| if (space == overflow_space) |
| roots_to_isolate.add(root); |
| } |
| |
| if (!roots_to_isolate) return false; |
| |
| unsigned maximum_to_move = hb_max ((sorted_graph.num_roots_for_space (space) / 2u), 1u); |
| if (roots_to_isolate.get_population () > maximum_to_move) { |
| // Only move at most half of the roots in a space at a time. |
| unsigned extra = roots_to_isolate.get_population () - maximum_to_move; |
| while (extra--) { |
| uint32_t root = HB_SET_VALUE_INVALID; |
| roots_to_isolate.previous (&root); |
| roots_to_isolate.del (root); |
| } |
| } |
| |
| DEBUG_MSG (SUBSET_REPACK, nullptr, |
| "Overflow in space %u (%u roots). Moving %u roots to space %u.", |
| space, |
| sorted_graph.num_roots_for_space (space), |
| roots_to_isolate.get_population (), |
| sorted_graph.next_space ()); |
| |
| sorted_graph.isolate_subgraph (roots_to_isolate); |
| sorted_graph.move_to_new_space (roots_to_isolate); |
| |
| return true; |
| } |
| |
| static inline |
| bool _resolve_shared_overflow(const hb_vector_t<graph::overflow_record_t>& overflows, |
| int overflow_index, |
| graph_t& sorted_graph) |
| { |
| const graph::overflow_record_t& r = overflows[overflow_index]; |
| |
| // Find all of the parents in overflowing links that link to this |
| // same child node. We will then try duplicating the child node and |
| // re-assigning all of these parents to the duplicate. |
| hb_set_t parents; |
| parents.add(r.parent); |
| for (int i = overflow_index - 1; i >= 0; i--) { |
| const graph::overflow_record_t& r2 = overflows[i]; |
| if (r2.child == r.child) { |
| parents.add(r2.parent); |
| } |
| } |
| |
| unsigned result = sorted_graph.duplicate(&parents, r.child); |
| if (result == (unsigned) -1 && parents.get_population() > 2) { |
| // All links to the child are overflowing, so we can't include all |
| // in the duplication. Remove one parent from the duplication. |
| // Remove the lowest index parent, which will be the closest to the child. |
| parents.del(parents.get_min()); |
| result = sorted_graph.duplicate(&parents, r.child); |
| } |
| |
| if (result == (unsigned) -1) return result; |
| |
| if (parents.get_population() > 1) { |
| // If the duplicated node has more than one parent pre-emptively raise it's priority to the maximum. |
| // This will place it close to the parents. Node's with only one parent, don't need this as normal overflow |
| // resolution will raise priority if needed. |
| // |
| // Reasoning: most of the parents to this child are likely at the same layer in the graph. Duplicating |
| // the child will theoretically allow it to be placed closer to it's parents. However, due to the shortest |
| // distance sort by default it's placement will remain in the same layer, thus it will remain in roughly the |
| // same position (and distance from parents) as the original child node. The overflow resolution will attempt |
| // to move nodes closer, but only for non-shared nodes. Since this node is shared, it will simply be given |
| // further duplication which defeats the attempt to duplicate with multiple parents. To fix this we |
| // pre-emptively raise priority now which allows the duplicated node to pack into the same layer as it's parents. |
| sorted_graph.vertices_[result].give_max_priority(); |
| } |
| |
| return result; |
| } |
| |
| static inline |
| bool _process_overflows (const hb_vector_t<graph::overflow_record_t>& overflows, |
| hb_set_t& priority_bumped_parents, |
| graph_t& sorted_graph) |
| { |
| bool resolution_attempted = false; |
| |
| // Try resolving the furthest overflows first. |
| for (int i = overflows.length - 1; i >= 0; i--) |
| { |
| const graph::overflow_record_t& r = overflows[i]; |
| const auto& child = sorted_graph.vertices_[r.child]; |
| if (child.is_shared ()) |
| { |
| // The child object is shared, we may be able to eliminate the overflow |
| // by duplicating it. |
| if (!_resolve_shared_overflow(overflows, i, sorted_graph)) continue; |
| return true; |
| } |
| |
| if (child.is_leaf () && !priority_bumped_parents.has (r.parent)) |
| { |
| // This object is too far from it's parent, attempt to move it closer. |
| // |
| // TODO(garretrieger): initially limiting this to leaf's since they can be |
| // moved closer with fewer consequences. However, this can |
| // likely can be used for non-leafs as well. |
| // TODO(garretrieger): also try lowering priority of the parent. Make it |
| // get placed further up in the ordering, closer to it's children. |
| // this is probably preferable if the total size of the parent object |
| // is < then the total size of the children (and the parent can be moved). |
| // Since in that case moving the parent will cause a smaller increase in |
| // the length of other offsets. |
| if (sorted_graph.raise_childrens_priority (r.parent)) { |
| priority_bumped_parents.add (r.parent); |
| resolution_attempted = true; |
| } |
| continue; |
| } |
| |
| // TODO(garretrieger): add additional offset resolution strategies |
| // - Promotion to extension lookups. |
| // - Table splitting. |
| } |
| |
| return resolution_attempted; |
| } |
| |
| inline bool |
| hb_resolve_graph_overflows (hb_tag_t table_tag, |
| unsigned max_rounds , |
| bool always_recalculate_extensions, |
| graph_t& sorted_graph /* IN/OUT */) |
| { |
| DEBUG_MSG (SUBSET_REPACK, nullptr, "Repacking %c%c%c%c.", HB_UNTAG(table_tag)); |
| sorted_graph.sort_shortest_distance (); |
| if (sorted_graph.in_error ()) |
| { |
| DEBUG_MSG (SUBSET_REPACK, nullptr, "Sorted graph in error state after initial sort."); |
| return false; |
| } |
| |
| bool will_overflow = graph::will_overflow (sorted_graph); |
| if (!will_overflow) |
| return true; |
| |
| bool is_gsub_or_gpos = (table_tag == HB_OT_TAG_GPOS || table_tag == HB_OT_TAG_GSUB); |
| graph::gsubgpos_graph_context_t ext_context (table_tag, sorted_graph); |
| if (is_gsub_or_gpos && will_overflow) |
| { |
| DEBUG_MSG (SUBSET_REPACK, nullptr, "Applying GSUB/GPOS repacking specializations."); |
| if (always_recalculate_extensions) |
| { |
| DEBUG_MSG (SUBSET_REPACK, nullptr, "Splitting subtables if needed."); |
| if (!_presplit_subtables_if_needed (ext_context)) { |
| DEBUG_MSG (SUBSET_REPACK, nullptr, "Subtable splitting failed."); |
| return false; |
| } |
| |
| DEBUG_MSG (SUBSET_REPACK, nullptr, "Promoting lookups to extensions if needed."); |
| if (!_promote_extensions_if_needed (ext_context)) { |
| DEBUG_MSG (SUBSET_REPACK, nullptr, "Extensions promotion failed."); |
| return false; |
| } |
| } |
| |
| DEBUG_MSG (SUBSET_REPACK, nullptr, "Assigning spaces to 32 bit subgraphs."); |
| if (sorted_graph.assign_spaces ()) |
| sorted_graph.sort_shortest_distance (); |
| else |
| sorted_graph.sort_shortest_distance_if_needed (); |
| } |
| |
| unsigned round = 0; |
| hb_vector_t<graph::overflow_record_t> overflows; |
| // TODO(garretrieger): select a good limit for max rounds. |
| while (!sorted_graph.in_error () |
| && graph::will_overflow (sorted_graph, &overflows) |
| && round < max_rounds) { |
| DEBUG_MSG (SUBSET_REPACK, nullptr, "=== Overflow resolution round %u ===", round); |
| print_overflows (sorted_graph, overflows); |
| |
| hb_set_t priority_bumped_parents; |
| |
| if (!_try_isolating_subgraphs (overflows, sorted_graph)) |
| { |
| // Don't count space isolation towards round limit. Only increment |
| // round counter if space isolation made no changes. |
| round++; |
| if (!_process_overflows (overflows, priority_bumped_parents, sorted_graph)) |
| { |
| DEBUG_MSG (SUBSET_REPACK, nullptr, "No resolution available :("); |
| break; |
| } |
| } |
| |
| sorted_graph.sort_shortest_distance (); |
| } |
| |
| if (sorted_graph.in_error ()) |
| { |
| DEBUG_MSG (SUBSET_REPACK, nullptr, "Sorted graph in error state."); |
| return false; |
| } |
| |
| if (graph::will_overflow (sorted_graph)) |
| { |
| if (is_gsub_or_gpos && !always_recalculate_extensions) { |
| // If this a GSUB/GPOS table and we didn't try to extension promotion and table splitting then |
| // as a last ditch effort, re-run the repacker with it enabled. |
| DEBUG_MSG (SUBSET_REPACK, nullptr, "Failed to find a resolution. Re-running with extension promotion and table splitting enabled."); |
| return hb_resolve_graph_overflows (table_tag, max_rounds, true, sorted_graph); |
| } |
| |
| DEBUG_MSG (SUBSET_REPACK, nullptr, "Offset overflow resolution failed."); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Attempts to modify the topological sorting of the provided object graph to |
| * eliminate offset overflows in the links between objects of the graph. If a |
| * non-overflowing ordering is found the updated graph is serialized it into the |
| * provided serialization context. |
| * |
| * If necessary the structure of the graph may be modified in ways that do not |
| * affect the functionality of the graph. For example shared objects may be |
| * duplicated. |
| * |
| * For a detailed writeup describing how the algorithm operates see: |
| * docs/repacker.md |
| */ |
| template<typename T> |
| inline hb_blob_t* |
| hb_resolve_overflows (const T& packed, |
| hb_tag_t table_tag, |
| unsigned max_rounds = 32, |
| bool recalculate_extensions = false) { |
| graph_t sorted_graph (packed); |
| if (sorted_graph.in_error ()) |
| { |
| // Invalid graph definition. |
| return nullptr; |
| } |
| |
| if (!sorted_graph.is_fully_connected ()) |
| { |
| sorted_graph.print_orphaned_nodes (); |
| return nullptr; |
| } |
| |
| if (sorted_graph.in_error ()) |
| { |
| // Allocations failed somewhere |
| DEBUG_MSG (SUBSET_REPACK, nullptr, |
| "Graph is in error, likely due to a memory allocation error."); |
| return nullptr; |
| } |
| |
| if (!hb_resolve_graph_overflows (table_tag, max_rounds, recalculate_extensions, sorted_graph)) |
| return nullptr; |
| |
| return graph::serialize (sorted_graph); |
| } |
| |
| #endif /* HB_REPACKER_HH */ |