blob: 60858a5a581d7a7b5c54f6181e2a195cf3e5c645 [file] [log] [blame]
#ifndef OT_GLYF_COMPOSITEGLYPH_HH
#define OT_GLYF_COMPOSITEGLYPH_HH
#include "../../hb-open-type.hh"
#include "composite-iter.hh"
namespace OT {
namespace glyf_impl {
struct CompositeGlyphRecord
{
protected:
enum composite_glyph_flag_t
{
ARG_1_AND_2_ARE_WORDS = 0x0001,
ARGS_ARE_XY_VALUES = 0x0002,
ROUND_XY_TO_GRID = 0x0004,
WE_HAVE_A_SCALE = 0x0008,
MORE_COMPONENTS = 0x0020,
WE_HAVE_AN_X_AND_Y_SCALE = 0x0040,
WE_HAVE_A_TWO_BY_TWO = 0x0080,
WE_HAVE_INSTRUCTIONS = 0x0100,
USE_MY_METRICS = 0x0200,
OVERLAP_COMPOUND = 0x0400,
SCALED_COMPONENT_OFFSET = 0x0800,
UNSCALED_COMPONENT_OFFSET = 0x1000,
#ifndef HB_NO_BEYOND_64K
GID_IS_24BIT = 0x2000
#endif
};
public:
unsigned int get_size () const
{
unsigned int size = min_size;
/* glyphIndex is 24bit instead of 16bit */
#ifndef HB_NO_BEYOND_64K
if (flags & GID_IS_24BIT) size += HBGlyphID24::static_size - HBGlyphID16::static_size;
#endif
/* arg1 and 2 are int16 */
if (flags & ARG_1_AND_2_ARE_WORDS) size += 4;
/* arg1 and 2 are int8 */
else size += 2;
/* One x 16 bit (scale) */
if (flags & WE_HAVE_A_SCALE) size += 2;
/* Two x 16 bit (xscale, yscale) */
else if (flags & WE_HAVE_AN_X_AND_Y_SCALE) size += 4;
/* Four x 16 bit (xscale, scale01, scale10, yscale) */
else if (flags & WE_HAVE_A_TWO_BY_TWO) size += 8;
return size;
}
void drop_instructions_flag () { flags = (uint16_t) flags & ~WE_HAVE_INSTRUCTIONS; }
void set_overlaps_flag ()
{
flags = (uint16_t) flags | OVERLAP_COMPOUND;
}
bool has_instructions () const { return flags & WE_HAVE_INSTRUCTIONS; }
bool has_more () const { return flags & MORE_COMPONENTS; }
bool is_use_my_metrics () const { return flags & USE_MY_METRICS; }
bool is_anchored () const { return !(flags & ARGS_ARE_XY_VALUES); }
void get_anchor_points (unsigned int &point1, unsigned int &point2) const
{
const auto *p = &StructAfter<const HBUINT8> (flags);
#ifndef HB_NO_BEYOND_64K
if (flags & GID_IS_24BIT)
p += HBGlyphID24::static_size;
else
#endif
p += HBGlyphID16::static_size;
if (flags & ARG_1_AND_2_ARE_WORDS)
{
point1 = ((const HBUINT16 *) p)[0];
point2 = ((const HBUINT16 *) p)[1];
}
else
{
point1 = p[0];
point2 = p[1];
}
}
static void transform (const float (&matrix)[4],
hb_array_t<contour_point_t> points)
{
if (matrix[0] != 1.f || matrix[1] != 0.f ||
matrix[2] != 0.f || matrix[3] != 1.f)
for (auto &point : points)
point.transform (matrix);
}
static void translate (const contour_point_t &trans,
hb_array_t<contour_point_t> points)
{
if (HB_OPTIMIZE_SIZE_VAL)
{
if (trans.x != 0.f || trans.y != 0.f)
for (auto &point : points)
point.translate (trans);
}
else
{
if (trans.x != 0.f && trans.y != 0.f)
for (auto &point : points)
point.translate (trans);
else
{
if (trans.x != 0.f)
for (auto &point : points)
point.x += trans.x;
else if (trans.y != 0.f)
for (auto &point : points)
point.y += trans.y;
}
}
}
void transform_points (hb_array_t<contour_point_t> points,
const float (&matrix)[4],
const contour_point_t &trans) const
{
if (scaled_offsets ())
{
translate (trans, points);
transform (matrix, points);
}
else
{
transform (matrix, points);
translate (trans, points);
}
}
bool get_points (contour_point_vector_t &points) const
{
float matrix[4];
contour_point_t trans;
get_transformation (matrix, trans);
if (unlikely (!points.alloc (points.length + 4))) return false; // For phantom points
points.push (trans);
return true;
}
unsigned compile_with_point (const contour_point_t &point,
char *out) const
{
const HBINT8 *p = &StructAfter<const HBINT8> (flags);
#ifndef HB_NO_BEYOND_64K
if (flags & GID_IS_24BIT)
p += HBGlyphID24::static_size;
else
#endif
p += HBGlyphID16::static_size;
unsigned len = get_size ();
unsigned len_before_val = (const char *)p - (const char *)this;
if (flags & ARG_1_AND_2_ARE_WORDS)
{
// no overflow, copy value
hb_memcpy (out, this, len);
HBINT16 *o = reinterpret_cast<HBINT16 *> (out + len_before_val);
o[0] = roundf (point.x);
o[1] = roundf (point.y);
}
else
{
int new_x = roundf (point.x);
int new_y = roundf (point.y);
if (new_x <= 127 && new_x >= -128 &&
new_y <= 127 && new_y >= -128)
{
hb_memcpy (out, this, len);
HBINT8 *o = reinterpret_cast<HBINT8 *> (out + len_before_val);
o[0] = new_x;
o[1] = new_y;
}
else
{
// new point value has an int8 overflow
hb_memcpy (out, this, len_before_val);
//update flags
CompositeGlyphRecord *o = reinterpret_cast<CompositeGlyphRecord *> (out);
o->flags = flags | ARG_1_AND_2_ARE_WORDS;
out += len_before_val;
HBINT16 new_value;
new_value = new_x;
hb_memcpy (out, &new_value, HBINT16::static_size);
out += HBINT16::static_size;
new_value = new_y;
hb_memcpy (out, &new_value, HBINT16::static_size);
out += HBINT16::static_size;
hb_memcpy (out, p+2, len - len_before_val - 2);
len += 2;
}
}
return len;
}
protected:
bool scaled_offsets () const
{ return (flags & (SCALED_COMPONENT_OFFSET | UNSCALED_COMPONENT_OFFSET)) == SCALED_COMPONENT_OFFSET; }
public:
bool get_transformation (float (&matrix)[4], contour_point_t &trans) const
{
matrix[0] = matrix[3] = 1.f;
matrix[1] = matrix[2] = 0.f;
const auto *p = &StructAfter<const HBINT8> (flags);
#ifndef HB_NO_BEYOND_64K
if (flags & GID_IS_24BIT)
p += HBGlyphID24::static_size;
else
#endif
p += HBGlyphID16::static_size;
int tx, ty;
if (flags & ARG_1_AND_2_ARE_WORDS)
{
tx = *(const HBINT16 *) p;
p += HBINT16::static_size;
ty = *(const HBINT16 *) p;
p += HBINT16::static_size;
}
else
{
tx = *p++;
ty = *p++;
}
if (is_anchored ()) tx = ty = 0;
trans.init ((float) tx, (float) ty);
{
const F2DOT14 *points = (const F2DOT14 *) p;
if (flags & WE_HAVE_A_SCALE)
{
matrix[0] = matrix[3] = points[0].to_float ();
return true;
}
else if (flags & WE_HAVE_AN_X_AND_Y_SCALE)
{
matrix[0] = points[0].to_float ();
matrix[3] = points[1].to_float ();
return true;
}
else if (flags & WE_HAVE_A_TWO_BY_TWO)
{
matrix[0] = points[0].to_float ();
matrix[1] = points[1].to_float ();
matrix[2] = points[2].to_float ();
matrix[3] = points[3].to_float ();
return true;
}
}
return tx || ty;
}
hb_codepoint_t get_gid () const
{
#ifndef HB_NO_BEYOND_64K
if (flags & GID_IS_24BIT)
return StructAfter<const HBGlyphID24> (flags);
else
#endif
return StructAfter<const HBGlyphID16> (flags);
}
void set_gid (hb_codepoint_t gid)
{
#ifndef HB_NO_BEYOND_64K
if (flags & GID_IS_24BIT)
StructAfter<HBGlyphID24> (flags) = gid;
else
#endif
/* TODO assert? */
StructAfter<HBGlyphID16> (flags) = gid;
}
#ifndef HB_NO_BEYOND_64K
void lower_gid_24_to_16 ()
{
hb_codepoint_t gid = get_gid ();
if (!(flags & GID_IS_24BIT) || gid > 0xFFFFu)
return;
/* Lower the flag and move the rest of the struct down. */
unsigned size = get_size ();
char *end = (char *) this + size;
char *p = &StructAfter<char> (flags);
p += HBGlyphID24::static_size;
flags = flags & ~GID_IS_24BIT;
set_gid (gid);
memmove (p - HBGlyphID24::static_size + HBGlyphID16::static_size, p, end - p);
}
#endif
protected:
HBUINT16 flags;
HBUINT24 pad;
public:
DEFINE_SIZE_MIN (4);
};
using composite_iter_t = composite_iter_tmpl<CompositeGlyphRecord>;
struct CompositeGlyph
{
const GlyphHeader &header;
hb_bytes_t bytes;
CompositeGlyph (const GlyphHeader &header_, hb_bytes_t bytes_) :
header (header_), bytes (bytes_) {}
composite_iter_t iter () const
{ return composite_iter_t (bytes, &StructAfter<CompositeGlyphRecord, GlyphHeader> (header)); }
unsigned int instructions_length (hb_bytes_t bytes) const
{
unsigned int start = bytes.length;
unsigned int end = bytes.length;
const CompositeGlyphRecord *last = nullptr;
for (auto &item : iter ())
last = &item;
if (unlikely (!last)) return 0;
if (last->has_instructions ())
start = (char *) last - &bytes + last->get_size ();
if (unlikely (start > end)) return 0;
return end - start;
}
/* Trimming for composites not implemented.
* If removing hints it falls out of that. */
const hb_bytes_t trim_padding () const { return bytes; }
void drop_hints ()
{
for (const auto &_ : iter ())
const_cast<CompositeGlyphRecord &> (_).drop_instructions_flag ();
}
/* Chop instructions off the end */
void drop_hints_bytes (hb_bytes_t &dest_start) const
{ dest_start = bytes.sub_array (0, bytes.length - instructions_length (bytes)); }
void set_overlaps_flag ()
{
CompositeGlyphRecord& glyph_chain = const_cast<CompositeGlyphRecord &> (
StructAfter<CompositeGlyphRecord, GlyphHeader> (header));
if (!bytes.check_range(&glyph_chain, CompositeGlyphRecord::min_size))
return;
glyph_chain.set_overlaps_flag ();
}
bool compile_bytes_with_deltas (const hb_bytes_t &source_bytes,
const contour_point_vector_t &points_with_deltas,
hb_bytes_t &dest_bytes /* OUT */)
{
if (source_bytes.length <= GlyphHeader::static_size ||
header.numberOfContours != -1)
{
dest_bytes = hb_bytes_t ();
return true;
}
unsigned source_len = source_bytes.length - GlyphHeader::static_size;
/* try to allocate more memories than source glyph bytes
* in case that there might be an overflow for int8 value
* and we would need to use int16 instead */
char *o = (char *) hb_calloc (source_len * 2, sizeof (char));
if (unlikely (!o)) return false;
const CompositeGlyphRecord *c = reinterpret_cast<const CompositeGlyphRecord *> (source_bytes.arrayZ + GlyphHeader::static_size);
auto it = composite_iter_t (hb_bytes_t ((const char *)c, source_len), c);
char *p = o;
unsigned i = 0, source_comp_len = 0;
for (const auto &component : it)
{
/* last 4 points in points_with_deltas are phantom points and should not be included */
if (i >= points_with_deltas.length - 4) {
hb_free (o);
return false;
}
unsigned comp_len = component.get_size ();
if (component.is_anchored ())
{
hb_memcpy (p, &component, comp_len);
p += comp_len;
}
else
{
unsigned new_len = component.compile_with_point (points_with_deltas[i], p);
p += new_len;
}
i++;
source_comp_len += comp_len;
}
//copy instructions if any
if (source_len > source_comp_len)
{
unsigned instr_len = source_len - source_comp_len;
hb_memcpy (p, (const char *)c + source_comp_len, instr_len);
p += instr_len;
}
unsigned len = p - o;
dest_bytes = hb_bytes_t (o, len);
return true;
}
};
} /* namespace glyf_impl */
} /* namespace OT */
#endif /* OT_GLYF_COMPOSITEGLYPH_HH */