|  | /* | 
|  | * Copyright © 2021  Google, Inc. | 
|  | * | 
|  | *  This is part of HarfBuzz, a text shaping library. | 
|  | * | 
|  | * Permission is hereby granted, without written agreement and without | 
|  | * license or royalty fees, to use, copy, modify, and distribute this | 
|  | * software and its documentation for any purpose, provided that the | 
|  | * above copyright notice and the following two paragraphs appear in | 
|  | * all copies of this software. | 
|  | * | 
|  | * IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR | 
|  | * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES | 
|  | * ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN | 
|  | * IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH | 
|  | * DAMAGE. | 
|  | * | 
|  | * THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, | 
|  | * BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND | 
|  | * FITNESS FOR A PARTICULAR PURPOSE.  THE SOFTWARE PROVIDED HEREUNDER IS | 
|  | * ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO | 
|  | * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #ifndef HB_OT_VAR_COMMON_HH | 
|  | #define HB_OT_VAR_COMMON_HH | 
|  |  | 
|  | #include "hb-ot-layout-common.hh" | 
|  | #include "hb-priority-queue.hh" | 
|  | #include "hb-subset-instancer-iup.hh" | 
|  |  | 
|  |  | 
|  | namespace OT { | 
|  |  | 
|  |  | 
|  | /* https://docs.microsoft.com/en-us/typography/opentype/spec/otvarcommonformats#tuplevariationheader */ | 
|  | struct TupleVariationHeader | 
|  | { | 
|  | friend struct tuple_delta_t; | 
|  | unsigned get_size (unsigned axis_count) const | 
|  | { return min_size + get_all_tuples (axis_count).get_size (); } | 
|  |  | 
|  | unsigned get_data_size () const { return varDataSize; } | 
|  |  | 
|  | const TupleVariationHeader &get_next (unsigned axis_count) const | 
|  | { return StructAtOffset<TupleVariationHeader> (this, get_size (axis_count)); } | 
|  |  | 
|  | bool unpack_axis_tuples (unsigned axis_count, | 
|  | const hb_array_t<const F2DOT14> shared_tuples, | 
|  | const hb_map_t *axes_old_index_tag_map, | 
|  | hb_hashmap_t<hb_tag_t, Triple>& axis_tuples /* OUT */) const | 
|  | { | 
|  | const F2DOT14 *peak_tuple = nullptr; | 
|  | if (has_peak ()) | 
|  | peak_tuple = get_peak_tuple (axis_count).arrayZ; | 
|  | else | 
|  | { | 
|  | unsigned int index = get_index (); | 
|  | if (unlikely ((index + 1) * axis_count > shared_tuples.length)) | 
|  | return false; | 
|  | peak_tuple = shared_tuples.sub_array (axis_count * index, axis_count).arrayZ; | 
|  | } | 
|  |  | 
|  | const F2DOT14 *start_tuple = nullptr; | 
|  | const F2DOT14 *end_tuple = nullptr; | 
|  | bool has_interm = has_intermediate (); | 
|  |  | 
|  | if (has_interm) | 
|  | { | 
|  | start_tuple = get_start_tuple (axis_count).arrayZ; | 
|  | end_tuple = get_end_tuple (axis_count).arrayZ; | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0; i < axis_count; i++) | 
|  | { | 
|  | float peak = peak_tuple[i].to_float (); | 
|  | if (peak == 0.f) continue; | 
|  |  | 
|  | hb_tag_t *axis_tag; | 
|  | if (!axes_old_index_tag_map->has (i, &axis_tag)) | 
|  | return false; | 
|  |  | 
|  | float start, end; | 
|  | if (has_interm) | 
|  | { | 
|  | start = start_tuple[i].to_float (); | 
|  | end = end_tuple[i].to_float (); | 
|  | } | 
|  | else | 
|  | { | 
|  | start = hb_min (peak, 0.f); | 
|  | end = hb_max (peak, 0.f); | 
|  | } | 
|  | axis_tuples.set (*axis_tag, Triple ((double) start, (double) peak, (double) end)); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | double calculate_scalar (hb_array_t<const int> coords, unsigned int coord_count, | 
|  | const hb_array_t<const F2DOT14> shared_tuples, | 
|  | const hb_vector_t<hb_pair_t<int,int>> *shared_tuple_active_idx = nullptr) const | 
|  | { | 
|  | const F2DOT14 *peak_tuple; | 
|  |  | 
|  | unsigned start_idx = 0; | 
|  | unsigned end_idx = coord_count; | 
|  | unsigned step = 1; | 
|  |  | 
|  | if (has_peak ()) | 
|  | peak_tuple = get_peak_tuple (coord_count).arrayZ; | 
|  | else | 
|  | { | 
|  | unsigned int index = get_index (); | 
|  | if (unlikely ((index + 1) * coord_count > shared_tuples.length)) | 
|  | return 0.0; | 
|  | peak_tuple = shared_tuples.sub_array (coord_count * index, coord_count).arrayZ; | 
|  |  | 
|  | if (shared_tuple_active_idx) | 
|  | { | 
|  | if (unlikely (index >= shared_tuple_active_idx->length)) | 
|  | return 0.0; | 
|  | auto _ = (*shared_tuple_active_idx).arrayZ[index]; | 
|  | if (_.second != -1) | 
|  | { | 
|  | start_idx = _.first; | 
|  | end_idx = _.second + 1; | 
|  | step = _.second - _.first; | 
|  | } | 
|  | else if (_.first != -1) | 
|  | { | 
|  | start_idx = _.first; | 
|  | end_idx = start_idx + 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | const F2DOT14 *start_tuple = nullptr; | 
|  | const F2DOT14 *end_tuple = nullptr; | 
|  | bool has_interm = has_intermediate (); | 
|  | if (has_interm) | 
|  | { | 
|  | start_tuple = get_start_tuple (coord_count).arrayZ; | 
|  | end_tuple = get_end_tuple (coord_count).arrayZ; | 
|  | } | 
|  |  | 
|  | double scalar = 1.0; | 
|  | for (unsigned int i = start_idx; i < end_idx; i += step) | 
|  | { | 
|  | int peak = peak_tuple[i].to_int (); | 
|  | if (!peak) continue; | 
|  |  | 
|  | int v = coords[i]; | 
|  | if (v == peak) continue; | 
|  |  | 
|  | if (has_interm) | 
|  | { | 
|  | int start = start_tuple[i].to_int (); | 
|  | int end = end_tuple[i].to_int (); | 
|  | if (unlikely (start > peak || peak > end || | 
|  | (start < 0 && end > 0 && peak))) continue; | 
|  | if (v < start || v > end) return 0.0; | 
|  | if (v < peak) | 
|  | { if (peak != start) scalar *= (double) (v - start) / (peak - start); } | 
|  | else | 
|  | { if (peak != end) scalar *= (double) (end - v) / (end - peak); } | 
|  | } | 
|  | else if (!v || v < hb_min (0, peak) || v > hb_max (0, peak)) return 0.0; | 
|  | else | 
|  | scalar *= (double) v / peak; | 
|  | } | 
|  | return scalar; | 
|  | } | 
|  |  | 
|  | bool           has_peak () const { return tupleIndex & TuppleIndex::EmbeddedPeakTuple; } | 
|  | bool   has_intermediate () const { return tupleIndex & TuppleIndex::IntermediateRegion; } | 
|  | bool has_private_points () const { return tupleIndex & TuppleIndex::PrivatePointNumbers; } | 
|  | unsigned      get_index () const { return tupleIndex & TuppleIndex::TupleIndexMask; } | 
|  |  | 
|  | protected: | 
|  | struct TuppleIndex : HBUINT16 | 
|  | { | 
|  | enum Flags { | 
|  | EmbeddedPeakTuple   = 0x8000u, | 
|  | IntermediateRegion  = 0x4000u, | 
|  | PrivatePointNumbers = 0x2000u, | 
|  | TupleIndexMask      = 0x0FFFu | 
|  | }; | 
|  |  | 
|  | TuppleIndex& operator = (uint16_t i) { HBUINT16::operator= (i); return *this; } | 
|  | DEFINE_SIZE_STATIC (2); | 
|  | }; | 
|  |  | 
|  | hb_array_t<const F2DOT14> get_all_tuples (unsigned axis_count) const | 
|  | { return StructAfter<UnsizedArrayOf<F2DOT14>> (tupleIndex).as_array ((has_peak () + has_intermediate () * 2) * axis_count); } | 
|  | hb_array_t<const F2DOT14> get_peak_tuple (unsigned axis_count) const | 
|  | { return get_all_tuples (axis_count).sub_array (0, axis_count); } | 
|  | hb_array_t<const F2DOT14> get_start_tuple (unsigned axis_count) const | 
|  | { return get_all_tuples (axis_count).sub_array (has_peak () * axis_count, axis_count); } | 
|  | hb_array_t<const F2DOT14> get_end_tuple (unsigned axis_count) const | 
|  | { return get_all_tuples (axis_count).sub_array (has_peak () * axis_count + axis_count, axis_count); } | 
|  |  | 
|  | HBUINT16      varDataSize;    /* The size in bytes of the serialized | 
|  | * data for this tuple variation table. */ | 
|  | TuppleIndex   tupleIndex;     /* A packed field. The high 4 bits are flags (see below). | 
|  | The low 12 bits are an index into a shared tuple | 
|  | records array. */ | 
|  | /* UnsizedArrayOf<F2DOT14> peakTuple - optional */ | 
|  | /* Peak tuple record for this tuple variation table — optional, | 
|  | * determined by flags in the tupleIndex value. | 
|  | * | 
|  | * Note that this must always be included in the 'cvar' table. */ | 
|  | /* UnsizedArrayOf<F2DOT14> intermediateStartTuple - optional */ | 
|  | /* Intermediate start tuple record for this tuple variation table — optional, | 
|  | determined by flags in the tupleIndex value. */ | 
|  | /* UnsizedArrayOf<F2DOT14> intermediateEndTuple - optional */ | 
|  | /* Intermediate end tuple record for this tuple variation table — optional, | 
|  | * determined by flags in the tupleIndex value. */ | 
|  | public: | 
|  | DEFINE_SIZE_MIN (4); | 
|  | }; | 
|  |  | 
|  | struct tuple_delta_t | 
|  | { | 
|  | static constexpr bool realloc_move = true;  // Watch out when adding new members! | 
|  |  | 
|  | public: | 
|  | hb_hashmap_t<hb_tag_t, Triple> axis_tuples; | 
|  |  | 
|  | /* indices_length = point_count, indice[i] = 1 means point i is referenced */ | 
|  | hb_vector_t<bool> indices; | 
|  |  | 
|  | hb_vector_t<double> deltas_x; | 
|  | /* empty for cvar tuples */ | 
|  | hb_vector_t<double> deltas_y; | 
|  |  | 
|  | /* compiled data: header and deltas | 
|  | * compiled point data is saved in a hashmap within tuple_variations_t cause | 
|  | * some point sets might be reused by different tuple variations */ | 
|  | hb_vector_t<char> compiled_tuple_header; | 
|  | hb_vector_t<char> compiled_deltas; | 
|  |  | 
|  | /* compiled peak coords, empty for non-gvar tuples */ | 
|  | hb_vector_t<char> compiled_peak_coords; | 
|  |  | 
|  | tuple_delta_t () = default; | 
|  | tuple_delta_t (const tuple_delta_t& o) = default; | 
|  |  | 
|  | friend void swap (tuple_delta_t& a, tuple_delta_t& b) noexcept | 
|  | { | 
|  | hb_swap (a.axis_tuples, b.axis_tuples); | 
|  | hb_swap (a.indices, b.indices); | 
|  | hb_swap (a.deltas_x, b.deltas_x); | 
|  | hb_swap (a.deltas_y, b.deltas_y); | 
|  | hb_swap (a.compiled_tuple_header, b.compiled_tuple_header); | 
|  | hb_swap (a.compiled_deltas, b.compiled_deltas); | 
|  | hb_swap (a.compiled_peak_coords, b.compiled_peak_coords); | 
|  | } | 
|  |  | 
|  | tuple_delta_t (tuple_delta_t&& o)  noexcept : tuple_delta_t () | 
|  | { hb_swap (*this, o); } | 
|  |  | 
|  | tuple_delta_t& operator = (tuple_delta_t&& o) noexcept | 
|  | { | 
|  | hb_swap (*this, o); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | void remove_axis (hb_tag_t axis_tag) | 
|  | { axis_tuples.del (axis_tag); } | 
|  |  | 
|  | bool set_tent (hb_tag_t axis_tag, Triple tent) | 
|  | { return axis_tuples.set (axis_tag, tent); } | 
|  |  | 
|  | tuple_delta_t& operator += (const tuple_delta_t& o) | 
|  | { | 
|  | unsigned num = indices.length; | 
|  | for (unsigned i = 0; i < num; i++) | 
|  | { | 
|  | if (indices.arrayZ[i]) | 
|  | { | 
|  | if (o.indices.arrayZ[i]) | 
|  | { | 
|  | deltas_x[i] += o.deltas_x[i]; | 
|  | if (deltas_y && o.deltas_y) | 
|  | deltas_y[i] += o.deltas_y[i]; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | if (!o.indices.arrayZ[i]) continue; | 
|  | indices.arrayZ[i] = true; | 
|  | deltas_x[i] = o.deltas_x[i]; | 
|  | if (deltas_y && o.deltas_y) | 
|  | deltas_y[i] = o.deltas_y[i]; | 
|  | } | 
|  | } | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | tuple_delta_t& operator *= (double scalar) | 
|  | { | 
|  | if (scalar == 1.0) | 
|  | return *this; | 
|  |  | 
|  | unsigned num = indices.length; | 
|  | if (deltas_y) | 
|  | for (unsigned i = 0; i < num; i++) | 
|  | { | 
|  | if (!indices.arrayZ[i]) continue; | 
|  | deltas_x[i] *= scalar; | 
|  | deltas_y[i] *= scalar; | 
|  | } | 
|  | else | 
|  | for (unsigned i = 0; i < num; i++) | 
|  | { | 
|  | if (!indices.arrayZ[i]) continue; | 
|  | deltas_x[i] *= scalar; | 
|  | } | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | hb_vector_t<tuple_delta_t> change_tuple_var_axis_limit (hb_tag_t axis_tag, Triple axis_limit, | 
|  | TripleDistances axis_triple_distances) const | 
|  | { | 
|  | hb_vector_t<tuple_delta_t> out; | 
|  | Triple *tent; | 
|  | if (!axis_tuples.has (axis_tag, &tent)) | 
|  | { | 
|  | out.push (*this); | 
|  | return out; | 
|  | } | 
|  |  | 
|  | if ((tent->minimum < 0.0 && tent->maximum > 0.0) || | 
|  | !(tent->minimum <= tent->middle && tent->middle <= tent->maximum)) | 
|  | return out; | 
|  |  | 
|  | if (tent->middle == 0.0) | 
|  | { | 
|  | out.push (*this); | 
|  | return out; | 
|  | } | 
|  |  | 
|  | rebase_tent_result_t solutions = rebase_tent (*tent, axis_limit, axis_triple_distances); | 
|  | for (auto &t : solutions) | 
|  | { | 
|  | tuple_delta_t new_var = *this; | 
|  | if (t.second == Triple ()) | 
|  | new_var.remove_axis (axis_tag); | 
|  | else | 
|  | new_var.set_tent (axis_tag, t.second); | 
|  |  | 
|  | new_var *= t.first; | 
|  | out.push (std::move (new_var)); | 
|  | } | 
|  |  | 
|  | return out; | 
|  | } | 
|  |  | 
|  | bool compile_peak_coords (const hb_map_t& axes_index_map, | 
|  | const hb_map_t& axes_old_index_tag_map) | 
|  | { | 
|  | unsigned axis_count = axes_index_map.get_population (); | 
|  | if (unlikely (!compiled_peak_coords.alloc (axis_count * F2DOT14::static_size))) | 
|  | return false; | 
|  |  | 
|  | unsigned orig_axis_count = axes_old_index_tag_map.get_population (); | 
|  | for (unsigned i = 0; i < orig_axis_count; i++) | 
|  | { | 
|  | if (!axes_index_map.has (i)) | 
|  | continue; | 
|  |  | 
|  | hb_tag_t axis_tag = axes_old_index_tag_map.get (i); | 
|  | Triple *coords; | 
|  | F2DOT14 peak_coord; | 
|  | if (axis_tuples.has (axis_tag, &coords)) | 
|  | peak_coord.set_float (coords->middle); | 
|  | else | 
|  | peak_coord.set_int (0); | 
|  |  | 
|  | /* push F2DOT14 value into char vector */ | 
|  | int16_t val = peak_coord.to_int (); | 
|  | compiled_peak_coords.push (static_cast<char> (val >> 8)); | 
|  | compiled_peak_coords.push (static_cast<char> (val & 0xFF)); | 
|  | } | 
|  |  | 
|  | return !compiled_peak_coords.in_error (); | 
|  | } | 
|  |  | 
|  | /* deltas should be compiled already before we compile tuple | 
|  | * variation header cause we need to fill in the size of the | 
|  | * serialized data for this tuple variation */ | 
|  | bool compile_tuple_var_header (const hb_map_t& axes_index_map, | 
|  | unsigned points_data_length, | 
|  | const hb_map_t& axes_old_index_tag_map, | 
|  | const hb_hashmap_t<const hb_vector_t<char>*, unsigned>* shared_tuples_idx_map) | 
|  | { | 
|  | /* compiled_deltas could be empty after iup delta optimization, we can skip | 
|  | * compiling this tuple and return true */ | 
|  | if (!compiled_deltas) return true; | 
|  |  | 
|  | unsigned cur_axis_count = axes_index_map.get_population (); | 
|  | /* allocate enough memory: 1 peak + 2 intermediate coords + fixed header size */ | 
|  | unsigned alloc_len = 3 * cur_axis_count * (F2DOT14::static_size) + 4; | 
|  | if (unlikely (!compiled_tuple_header.resize (alloc_len))) return false; | 
|  |  | 
|  | unsigned flag = 0; | 
|  | /* skip the first 4 header bytes: variationDataSize+tupleIndex */ | 
|  | F2DOT14* p = reinterpret_cast<F2DOT14 *> (compiled_tuple_header.begin () + 4); | 
|  | F2DOT14* end = reinterpret_cast<F2DOT14 *> (compiled_tuple_header.end ()); | 
|  | hb_array_t<F2DOT14> coords (p, end - p); | 
|  |  | 
|  | /* encode peak coords */ | 
|  | unsigned peak_count = 0; | 
|  | unsigned *shared_tuple_idx; | 
|  | if (shared_tuples_idx_map && | 
|  | shared_tuples_idx_map->has (&compiled_peak_coords, &shared_tuple_idx)) | 
|  | { | 
|  | flag = *shared_tuple_idx; | 
|  | } | 
|  | else | 
|  | { | 
|  | peak_count = encode_peak_coords(coords, flag, axes_index_map, axes_old_index_tag_map); | 
|  | if (!peak_count) return false; | 
|  | } | 
|  |  | 
|  | /* encode interim coords, it's optional so returned num could be 0 */ | 
|  | unsigned interim_count = encode_interm_coords (coords.sub_array (peak_count), flag, axes_index_map, axes_old_index_tag_map); | 
|  |  | 
|  | /* pointdata length = 0 implies "use shared points" */ | 
|  | if (points_data_length) | 
|  | flag |= TupleVariationHeader::TuppleIndex::PrivatePointNumbers; | 
|  |  | 
|  | unsigned serialized_data_size = points_data_length + compiled_deltas.length; | 
|  | TupleVariationHeader *o = reinterpret_cast<TupleVariationHeader *> (compiled_tuple_header.begin ()); | 
|  | o->varDataSize = serialized_data_size; | 
|  | o->tupleIndex = flag; | 
|  |  | 
|  | unsigned total_header_len = 4 + (peak_count + interim_count) * (F2DOT14::static_size); | 
|  | return compiled_tuple_header.resize (total_header_len); | 
|  | } | 
|  |  | 
|  | unsigned encode_peak_coords (hb_array_t<F2DOT14> peak_coords, | 
|  | unsigned& flag, | 
|  | const hb_map_t& axes_index_map, | 
|  | const hb_map_t& axes_old_index_tag_map) const | 
|  | { | 
|  | unsigned orig_axis_count = axes_old_index_tag_map.get_population (); | 
|  | auto it = peak_coords.iter (); | 
|  | unsigned count = 0; | 
|  | for (unsigned i = 0; i < orig_axis_count; i++) | 
|  | { | 
|  | if (!axes_index_map.has (i)) /* axis pinned */ | 
|  | continue; | 
|  | hb_tag_t axis_tag = axes_old_index_tag_map.get (i); | 
|  | Triple *coords; | 
|  | if (!axis_tuples.has (axis_tag, &coords)) | 
|  | (*it).set_int (0); | 
|  | else | 
|  | (*it).set_float (coords->middle); | 
|  | it++; | 
|  | count++; | 
|  | } | 
|  | flag |= TupleVariationHeader::TuppleIndex::EmbeddedPeakTuple; | 
|  | return count; | 
|  | } | 
|  |  | 
|  | /* if no need to encode intermediate coords, then just return p */ | 
|  | unsigned encode_interm_coords (hb_array_t<F2DOT14> coords, | 
|  | unsigned& flag, | 
|  | const hb_map_t& axes_index_map, | 
|  | const hb_map_t& axes_old_index_tag_map) const | 
|  | { | 
|  | unsigned orig_axis_count = axes_old_index_tag_map.get_population (); | 
|  | unsigned cur_axis_count = axes_index_map.get_population (); | 
|  |  | 
|  | auto start_coords_iter = coords.sub_array (0, cur_axis_count).iter (); | 
|  | auto end_coords_iter = coords.sub_array (cur_axis_count).iter (); | 
|  | bool encode_needed = false; | 
|  | unsigned count = 0; | 
|  | for (unsigned i = 0; i < orig_axis_count; i++) | 
|  | { | 
|  | if (!axes_index_map.has (i)) /* axis pinned */ | 
|  | continue; | 
|  | hb_tag_t axis_tag = axes_old_index_tag_map.get (i); | 
|  | Triple *coords; | 
|  | float min_val = 0.f, val = 0.f, max_val = 0.f; | 
|  | if (axis_tuples.has (axis_tag, &coords)) | 
|  | { | 
|  | min_val = coords->minimum; | 
|  | val = coords->middle; | 
|  | max_val = coords->maximum; | 
|  | } | 
|  |  | 
|  | (*start_coords_iter).set_float (min_val); | 
|  | (*end_coords_iter).set_float (max_val); | 
|  |  | 
|  | start_coords_iter++; | 
|  | end_coords_iter++; | 
|  | count += 2; | 
|  | if (min_val != hb_min (val, 0.f) || max_val != hb_max (val, 0.f)) | 
|  | encode_needed = true; | 
|  | } | 
|  |  | 
|  | if (encode_needed) | 
|  | { | 
|  | flag |= TupleVariationHeader::TuppleIndex::IntermediateRegion; | 
|  | return count; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bool compile_deltas () | 
|  | { return compile_deltas (indices, deltas_x, deltas_y, compiled_deltas); } | 
|  |  | 
|  | static bool compile_deltas (const hb_vector_t<bool> &point_indices, | 
|  | const hb_vector_t<double> &x_deltas, | 
|  | const hb_vector_t<double> &y_deltas, | 
|  | hb_vector_t<char> &compiled_deltas /* OUT */) | 
|  | { | 
|  | hb_vector_t<int> rounded_deltas; | 
|  | if (unlikely (!rounded_deltas.alloc (point_indices.length))) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = 0; i < point_indices.length; i++) | 
|  | { | 
|  | if (!point_indices[i]) continue; | 
|  | int rounded_delta = (int) roundf (x_deltas.arrayZ[i]); | 
|  | rounded_deltas.push (rounded_delta); | 
|  | } | 
|  |  | 
|  | if (!rounded_deltas) return true; | 
|  | /* allocate enough memories 5 * num_deltas */ | 
|  | unsigned alloc_len = 5 * rounded_deltas.length; | 
|  | if (y_deltas) | 
|  | alloc_len *= 2; | 
|  |  | 
|  | if (unlikely (!compiled_deltas.resize (alloc_len))) return false; | 
|  |  | 
|  | unsigned encoded_len = compile_deltas (compiled_deltas, rounded_deltas); | 
|  |  | 
|  | if (y_deltas) | 
|  | { | 
|  | /* reuse the rounded_deltas vector, check that y_deltas have the same num of deltas as x_deltas */ | 
|  | unsigned j = 0; | 
|  | for (unsigned idx = 0; idx < point_indices.length; idx++) | 
|  | { | 
|  | if (!point_indices[idx]) continue; | 
|  | int rounded_delta = (int) roundf (y_deltas.arrayZ[idx]); | 
|  |  | 
|  | if (j >= rounded_deltas.length) return false; | 
|  |  | 
|  | rounded_deltas[j++] = rounded_delta; | 
|  | } | 
|  |  | 
|  | if (j != rounded_deltas.length) return false; | 
|  | encoded_len += compile_deltas (compiled_deltas.as_array ().sub_array (encoded_len), rounded_deltas); | 
|  | } | 
|  | return compiled_deltas.resize (encoded_len); | 
|  | } | 
|  |  | 
|  | static unsigned compile_deltas (hb_array_t<char> encoded_bytes, | 
|  | hb_array_t<const int> deltas) | 
|  | { | 
|  | return TupleValues::compile (deltas, encoded_bytes); | 
|  | } | 
|  |  | 
|  | bool calc_inferred_deltas (const contour_point_vector_t& orig_points) | 
|  | { | 
|  | unsigned point_count = orig_points.length; | 
|  | if (point_count != indices.length) | 
|  | return false; | 
|  |  | 
|  | unsigned ref_count = 0; | 
|  | hb_vector_t<unsigned> end_points; | 
|  |  | 
|  | for (unsigned i = 0; i < point_count; i++) | 
|  | { | 
|  | if (indices.arrayZ[i]) | 
|  | ref_count++; | 
|  | if (orig_points.arrayZ[i].is_end_point) | 
|  | end_points.push (i); | 
|  | } | 
|  | /* all points are referenced, nothing to do */ | 
|  | if (ref_count == point_count) | 
|  | return true; | 
|  | if (unlikely (end_points.in_error ())) return false; | 
|  |  | 
|  | hb_set_t inferred_idxes; | 
|  | unsigned start_point = 0; | 
|  | for (unsigned end_point : end_points) | 
|  | { | 
|  | /* Check the number of unreferenced points in a contour. If no unref points or no ref points, nothing to do. */ | 
|  | unsigned unref_count = 0; | 
|  | for (unsigned i = start_point; i < end_point + 1; i++) | 
|  | unref_count += indices.arrayZ[i]; | 
|  | unref_count = (end_point - start_point + 1) - unref_count; | 
|  |  | 
|  | unsigned j = start_point; | 
|  | if (unref_count == 0 || unref_count > end_point - start_point) | 
|  | goto no_more_gaps; | 
|  | for (;;) | 
|  | { | 
|  | /* Locate the next gap of unreferenced points between two referenced points prev and next. | 
|  | * Note that a gap may wrap around at left (start_point) and/or at right (end_point). | 
|  | */ | 
|  | unsigned int prev, next, i; | 
|  | for (;;) | 
|  | { | 
|  | i = j; | 
|  | j = next_index (i, start_point, end_point); | 
|  | if (indices.arrayZ[i] && !indices.arrayZ[j]) break; | 
|  | } | 
|  | prev = j = i; | 
|  | for (;;) | 
|  | { | 
|  | i = j; | 
|  | j = next_index (i, start_point, end_point); | 
|  | if (!indices.arrayZ[i] && indices.arrayZ[j]) break; | 
|  | } | 
|  | next = j; | 
|  | /* Infer deltas for all unref points in the gap between prev and next */ | 
|  | i = prev; | 
|  | for (;;) | 
|  | { | 
|  | i = next_index (i, start_point, end_point); | 
|  | if (i == next) break; | 
|  | deltas_x.arrayZ[i] = infer_delta ((double) orig_points.arrayZ[i].x, | 
|  | (double) orig_points.arrayZ[prev].x, | 
|  | (double) orig_points.arrayZ[next].x, | 
|  | deltas_x.arrayZ[prev], deltas_x.arrayZ[next]); | 
|  | deltas_y.arrayZ[i] = infer_delta ((double) orig_points.arrayZ[i].y, | 
|  | (double) orig_points.arrayZ[prev].y, | 
|  | (double) orig_points.arrayZ[next].y, | 
|  | deltas_y.arrayZ[prev], deltas_y.arrayZ[next]); | 
|  | inferred_idxes.add (i); | 
|  | if (--unref_count == 0) goto no_more_gaps; | 
|  | } | 
|  | } | 
|  | no_more_gaps: | 
|  | start_point = end_point + 1; | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0; i < point_count; i++) | 
|  | { | 
|  | /* if points are not referenced and deltas are not inferred, set to 0. | 
|  | * reference all points for gvar */ | 
|  | if ( !indices[i]) | 
|  | { | 
|  | if (!inferred_idxes.has (i)) | 
|  | { | 
|  | deltas_x.arrayZ[i] = 0.0; | 
|  | deltas_y.arrayZ[i] = 0.0; | 
|  | } | 
|  | indices[i] = true; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool optimize (const contour_point_vector_t& contour_points, | 
|  | bool is_composite, | 
|  | double tolerance = 0.5 + 1e-10) | 
|  | { | 
|  | unsigned count = contour_points.length; | 
|  | if (deltas_x.length != count || | 
|  | deltas_y.length != count) | 
|  | return false; | 
|  |  | 
|  | hb_vector_t<bool> opt_indices; | 
|  | hb_vector_t<int> rounded_x_deltas, rounded_y_deltas; | 
|  |  | 
|  | if (unlikely (!rounded_x_deltas.alloc (count) || | 
|  | !rounded_y_deltas.alloc (count))) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = 0; i < count; i++) | 
|  | { | 
|  | int rounded_x_delta = (int) roundf (deltas_x.arrayZ[i]); | 
|  | int rounded_y_delta = (int) roundf (deltas_y.arrayZ[i]); | 
|  | rounded_x_deltas.push (rounded_x_delta); | 
|  | rounded_y_deltas.push (rounded_y_delta); | 
|  | } | 
|  |  | 
|  | if (!iup_delta_optimize (contour_points, rounded_x_deltas, rounded_y_deltas, opt_indices, tolerance)) | 
|  | return false; | 
|  |  | 
|  | unsigned ref_count = 0; | 
|  | for (bool ref_flag : opt_indices) | 
|  | ref_count += ref_flag; | 
|  |  | 
|  | if (ref_count == count) return true; | 
|  |  | 
|  | hb_vector_t<double> opt_deltas_x, opt_deltas_y; | 
|  | bool is_comp_glyph_wo_deltas = (is_composite && ref_count == 0); | 
|  | if (is_comp_glyph_wo_deltas) | 
|  | { | 
|  | if (unlikely (!opt_deltas_x.resize (count) || | 
|  | !opt_deltas_y.resize (count))) | 
|  | return false; | 
|  |  | 
|  | opt_indices.arrayZ[0] = true; | 
|  | for (unsigned i = 1; i < count; i++) | 
|  | opt_indices.arrayZ[i] = false; | 
|  | } | 
|  |  | 
|  | hb_vector_t<char> opt_point_data; | 
|  | if (!compile_point_set (opt_indices, opt_point_data)) | 
|  | return false; | 
|  | hb_vector_t<char> opt_deltas_data; | 
|  | if (!compile_deltas (opt_indices, | 
|  | is_comp_glyph_wo_deltas ? opt_deltas_x : deltas_x, | 
|  | is_comp_glyph_wo_deltas ? opt_deltas_y : deltas_y, | 
|  | opt_deltas_data)) | 
|  | return false; | 
|  |  | 
|  | hb_vector_t<char> point_data; | 
|  | if (!compile_point_set (indices, point_data)) | 
|  | return false; | 
|  | hb_vector_t<char> deltas_data; | 
|  | if (!compile_deltas (indices, deltas_x, deltas_y, deltas_data)) | 
|  | return false; | 
|  |  | 
|  | if (opt_point_data.length + opt_deltas_data.length < point_data.length + deltas_data.length) | 
|  | { | 
|  | indices.fini (); | 
|  | indices = std::move (opt_indices); | 
|  |  | 
|  | if (is_comp_glyph_wo_deltas) | 
|  | { | 
|  | deltas_x.fini (); | 
|  | deltas_x = std::move (opt_deltas_x); | 
|  |  | 
|  | deltas_y.fini (); | 
|  | deltas_y = std::move (opt_deltas_y); | 
|  | } | 
|  | } | 
|  | return !indices.in_error () && !deltas_x.in_error () && !deltas_y.in_error (); | 
|  | } | 
|  |  | 
|  | static bool compile_point_set (const hb_vector_t<bool> &point_indices, | 
|  | hb_vector_t<char>& compiled_points /* OUT */) | 
|  | { | 
|  | unsigned num_points = 0; | 
|  | for (bool i : point_indices) | 
|  | if (i) num_points++; | 
|  |  | 
|  | /* when iup optimization is enabled, num of referenced points could be 0 */ | 
|  | if (!num_points) return true; | 
|  |  | 
|  | unsigned indices_length = point_indices.length; | 
|  | /* If the points set consists of all points in the glyph, it's encoded with a | 
|  | * single zero byte */ | 
|  | if (num_points == indices_length) | 
|  | return compiled_points.resize (1); | 
|  |  | 
|  | /* allocate enough memories: 2 bytes for count + 3 bytes for each point */ | 
|  | unsigned num_bytes = 2 + 3 *num_points; | 
|  | if (unlikely (!compiled_points.resize (num_bytes, false))) | 
|  | return false; | 
|  |  | 
|  | unsigned pos = 0; | 
|  | /* binary data starts with the total number of reference points */ | 
|  | if (num_points < 0x80) | 
|  | compiled_points.arrayZ[pos++] = num_points; | 
|  | else | 
|  | { | 
|  | compiled_points.arrayZ[pos++] = ((num_points >> 8) | 0x80); | 
|  | compiled_points.arrayZ[pos++] = num_points & 0xFF; | 
|  | } | 
|  |  | 
|  | const unsigned max_run_length = 0x7F; | 
|  | unsigned i = 0; | 
|  | unsigned last_value = 0; | 
|  | unsigned num_encoded = 0; | 
|  | while (i < indices_length && num_encoded < num_points) | 
|  | { | 
|  | unsigned run_length = 0; | 
|  | unsigned header_pos = pos; | 
|  | compiled_points.arrayZ[pos++] = 0; | 
|  |  | 
|  | bool use_byte_encoding = false; | 
|  | bool new_run = true; | 
|  | while (i < indices_length && num_encoded < num_points && | 
|  | run_length <= max_run_length) | 
|  | { | 
|  | // find out next referenced point index | 
|  | while (i < indices_length && !point_indices[i]) | 
|  | i++; | 
|  |  | 
|  | if (i >= indices_length) break; | 
|  |  | 
|  | unsigned cur_value = i; | 
|  | unsigned delta = cur_value - last_value; | 
|  |  | 
|  | if (new_run) | 
|  | { | 
|  | use_byte_encoding = (delta <= 0xFF); | 
|  | new_run = false; | 
|  | } | 
|  |  | 
|  | if (use_byte_encoding && delta > 0xFF) | 
|  | break; | 
|  |  | 
|  | if (use_byte_encoding) | 
|  | compiled_points.arrayZ[pos++] = delta; | 
|  | else | 
|  | { | 
|  | compiled_points.arrayZ[pos++] = delta >> 8; | 
|  | compiled_points.arrayZ[pos++] = delta & 0xFF; | 
|  | } | 
|  | i++; | 
|  | last_value = cur_value; | 
|  | run_length++; | 
|  | num_encoded++; | 
|  | } | 
|  |  | 
|  | if (use_byte_encoding) | 
|  | compiled_points.arrayZ[header_pos] = run_length - 1; | 
|  | else | 
|  | compiled_points.arrayZ[header_pos] = (run_length - 1) | 0x80; | 
|  | } | 
|  | return compiled_points.resize (pos, false); | 
|  | } | 
|  |  | 
|  | static double infer_delta (double target_val, double prev_val, double next_val, double prev_delta, double next_delta) | 
|  | { | 
|  | if (prev_val == next_val) | 
|  | return (prev_delta == next_delta) ? prev_delta : 0.0; | 
|  | else if (target_val <= hb_min (prev_val, next_val)) | 
|  | return (prev_val < next_val) ? prev_delta : next_delta; | 
|  | else if (target_val >= hb_max (prev_val, next_val)) | 
|  | return (prev_val > next_val) ? prev_delta : next_delta; | 
|  |  | 
|  | double r = (target_val - prev_val) / (next_val - prev_val); | 
|  | return prev_delta + r * (next_delta - prev_delta); | 
|  | } | 
|  |  | 
|  | static unsigned int next_index (unsigned int i, unsigned int start, unsigned int end) | 
|  | { return (i >= end) ? start : (i + 1); } | 
|  | }; | 
|  |  | 
|  | struct TupleVariationData | 
|  | { | 
|  | bool sanitize (hb_sanitize_context_t *c) const | 
|  | { | 
|  | TRACE_SANITIZE (this); | 
|  | // here check on min_size only, TupleVariationHeader and var data will be | 
|  | // checked while accessing through iterator. | 
|  | return_trace (c->check_struct (this)); | 
|  | } | 
|  |  | 
|  | unsigned get_size (unsigned axis_count) const | 
|  | { | 
|  | unsigned total_size = min_size; | 
|  | unsigned count = tupleVarCount.get_count (); | 
|  | const TupleVariationHeader *tuple_var_header = &(get_tuple_var_header()); | 
|  | for (unsigned i = 0; i < count; i++) | 
|  | { | 
|  | total_size += tuple_var_header->get_size (axis_count) + tuple_var_header->get_data_size (); | 
|  | tuple_var_header = &tuple_var_header->get_next (axis_count); | 
|  | } | 
|  |  | 
|  | return total_size; | 
|  | } | 
|  |  | 
|  | const TupleVariationHeader &get_tuple_var_header (void) const | 
|  | { return StructAfter<TupleVariationHeader> (data); } | 
|  |  | 
|  | struct tuple_iterator_t; | 
|  | struct tuple_variations_t | 
|  | { | 
|  | hb_vector_t<tuple_delta_t> tuple_vars; | 
|  |  | 
|  | private: | 
|  | /* referenced point set->compiled point data map */ | 
|  | hb_hashmap_t<const hb_vector_t<bool>*, hb_vector_t<char>> point_data_map; | 
|  | /* referenced point set-> count map, used in finding shared points */ | 
|  | hb_hashmap_t<const hb_vector_t<bool>*, unsigned> point_set_count_map; | 
|  |  | 
|  | /* empty for non-gvar tuples. | 
|  | * shared_points_bytes is a pointer to some value in the point_data_map, | 
|  | * which will be freed during map destruction. Save it for serialization, so | 
|  | * no need to do find_shared_points () again */ | 
|  | hb_vector_t<char> *shared_points_bytes = nullptr; | 
|  |  | 
|  | /* total compiled byte size as TupleVariationData format, initialized to its | 
|  | * min_size: 4 */ | 
|  | unsigned compiled_byte_size = 4; | 
|  |  | 
|  | /* for gvar iup delta optimization: whether this is a composite glyph */ | 
|  | bool is_composite = false; | 
|  |  | 
|  | public: | 
|  | tuple_variations_t () = default; | 
|  | tuple_variations_t (const tuple_variations_t&) = delete; | 
|  | tuple_variations_t& operator=(const tuple_variations_t&) = delete; | 
|  | tuple_variations_t (tuple_variations_t&&) = default; | 
|  | tuple_variations_t& operator=(tuple_variations_t&&) = default; | 
|  | ~tuple_variations_t () = default; | 
|  |  | 
|  | explicit operator bool () const { return bool (tuple_vars); } | 
|  | unsigned get_var_count () const | 
|  | { | 
|  | unsigned count = 0; | 
|  | /* when iup delta opt is enabled, compiled_deltas could be empty and we | 
|  | * should skip this tuple */ | 
|  | for (auto& tuple: tuple_vars) | 
|  | if (tuple.compiled_deltas) count++; | 
|  |  | 
|  | if (shared_points_bytes && shared_points_bytes->length) | 
|  | count |= TupleVarCount::SharedPointNumbers; | 
|  | return count; | 
|  | } | 
|  |  | 
|  | unsigned get_compiled_byte_size () const | 
|  | { return compiled_byte_size; } | 
|  |  | 
|  | bool create_from_tuple_var_data (tuple_iterator_t iterator, | 
|  | unsigned tuple_var_count, | 
|  | unsigned point_count, | 
|  | bool is_gvar, | 
|  | const hb_map_t *axes_old_index_tag_map, | 
|  | const hb_vector_t<unsigned> &shared_indices, | 
|  | const hb_array_t<const F2DOT14> shared_tuples, | 
|  | bool is_composite_glyph) | 
|  | { | 
|  | do | 
|  | { | 
|  | const HBUINT8 *p = iterator.get_serialized_data (); | 
|  | unsigned int length = iterator.current_tuple->get_data_size (); | 
|  | if (unlikely (!iterator.var_data_bytes.check_range (p, length))) | 
|  | return false; | 
|  |  | 
|  | hb_hashmap_t<hb_tag_t, Triple> axis_tuples; | 
|  | if (!iterator.current_tuple->unpack_axis_tuples (iterator.get_axis_count (), shared_tuples, axes_old_index_tag_map, axis_tuples) | 
|  | || axis_tuples.is_empty ()) | 
|  | return false; | 
|  |  | 
|  | hb_vector_t<unsigned> private_indices; | 
|  | bool has_private_points = iterator.current_tuple->has_private_points (); | 
|  | const HBUINT8 *end = p + length; | 
|  | if (has_private_points && | 
|  | !TupleVariationData::decompile_points (p, private_indices, end)) | 
|  | return false; | 
|  |  | 
|  | const hb_vector_t<unsigned> &indices = has_private_points ? private_indices : shared_indices; | 
|  | bool apply_to_all = (indices.length == 0); | 
|  | unsigned num_deltas = apply_to_all ? point_count : indices.length; | 
|  |  | 
|  | hb_vector_t<int> deltas_x; | 
|  |  | 
|  | if (unlikely (!deltas_x.resize (num_deltas, false) || | 
|  | !TupleVariationData::decompile_deltas (p, deltas_x, end))) | 
|  | return false; | 
|  |  | 
|  | hb_vector_t<int> deltas_y; | 
|  | if (is_gvar) | 
|  | { | 
|  | if (unlikely (!deltas_y.resize (num_deltas, false) || | 
|  | !TupleVariationData::decompile_deltas (p, deltas_y, end))) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | tuple_delta_t var; | 
|  | var.axis_tuples = std::move (axis_tuples); | 
|  | if (unlikely (!var.indices.resize (point_count) || | 
|  | !var.deltas_x.resize (point_count, false))) | 
|  | return false; | 
|  |  | 
|  | if (is_gvar && unlikely (!var.deltas_y.resize (point_count, false))) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = 0; i < num_deltas; i++) | 
|  | { | 
|  | unsigned idx = apply_to_all ? i : indices[i]; | 
|  | if (idx >= point_count) continue; | 
|  | var.indices[idx] = true; | 
|  | var.deltas_x[idx] = deltas_x[i]; | 
|  | if (is_gvar) | 
|  | var.deltas_y[idx] = deltas_y[i]; | 
|  | } | 
|  | tuple_vars.push (std::move (var)); | 
|  | } while (iterator.move_to_next ()); | 
|  |  | 
|  | is_composite = is_composite_glyph; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool create_from_item_var_data (const VarData &var_data, | 
|  | const hb_vector_t<hb_hashmap_t<hb_tag_t, Triple>>& regions, | 
|  | const hb_map_t& axes_old_index_tag_map, | 
|  | unsigned& item_count, | 
|  | const hb_inc_bimap_t* inner_map = nullptr) | 
|  | { | 
|  | /* NULL offset, to keep original varidx valid, just return */ | 
|  | if (&var_data == &Null (VarData)) | 
|  | return true; | 
|  |  | 
|  | unsigned num_regions = var_data.get_region_index_count (); | 
|  | if (!tuple_vars.alloc (num_regions)) return false; | 
|  |  | 
|  | item_count = inner_map ? inner_map->get_population () : var_data.get_item_count (); | 
|  | if (!item_count) return true; | 
|  | unsigned row_size = var_data.get_row_size (); | 
|  | const HBUINT8 *delta_bytes = var_data.get_delta_bytes (); | 
|  |  | 
|  | for (unsigned r = 0; r < num_regions; r++) | 
|  | { | 
|  | /* In VarData, deltas are organized in rows, convert them into | 
|  | * column(region) based tuples, resize deltas_x first */ | 
|  | tuple_delta_t tuple; | 
|  | if (!tuple.deltas_x.resize (item_count, false) || | 
|  | !tuple.indices.resize (item_count, false)) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = 0; i < item_count; i++) | 
|  | { | 
|  | tuple.indices.arrayZ[i] = true; | 
|  | tuple.deltas_x.arrayZ[i] = var_data.get_item_delta_fast (inner_map ? inner_map->backward (i) : i, | 
|  | r, delta_bytes, row_size); | 
|  | } | 
|  |  | 
|  | unsigned region_index = var_data.get_region_index (r); | 
|  | if (region_index >= regions.length) return false; | 
|  | tuple.axis_tuples = regions.arrayZ[region_index]; | 
|  |  | 
|  | tuple_vars.push (std::move (tuple)); | 
|  | } | 
|  | return !tuple_vars.in_error (); | 
|  | } | 
|  |  | 
|  | private: | 
|  | static int _cmp_axis_tag (const void *pa, const void *pb) | 
|  | { | 
|  | const hb_tag_t *a = (const hb_tag_t*) pa; | 
|  | const hb_tag_t *b = (const hb_tag_t*) pb; | 
|  | return (int)(*a) - (int)(*b); | 
|  | } | 
|  |  | 
|  | bool change_tuple_variations_axis_limits (const hb_hashmap_t<hb_tag_t, Triple>& normalized_axes_location, | 
|  | const hb_hashmap_t<hb_tag_t, TripleDistances>& axes_triple_distances) | 
|  | { | 
|  | /* sort axis_tag/axis_limits, make result deterministic */ | 
|  | hb_vector_t<hb_tag_t> axis_tags; | 
|  | if (!axis_tags.alloc (normalized_axes_location.get_population ())) | 
|  | return false; | 
|  | for (auto t : normalized_axes_location.keys ()) | 
|  | axis_tags.push (t); | 
|  |  | 
|  | axis_tags.qsort (_cmp_axis_tag); | 
|  | for (auto axis_tag : axis_tags) | 
|  | { | 
|  | Triple *axis_limit; | 
|  | if (!normalized_axes_location.has (axis_tag, &axis_limit)) | 
|  | return false; | 
|  | TripleDistances axis_triple_distances{1.0, 1.0}; | 
|  | if (axes_triple_distances.has (axis_tag)) | 
|  | axis_triple_distances = axes_triple_distances.get (axis_tag); | 
|  |  | 
|  | hb_vector_t<tuple_delta_t> new_vars; | 
|  | for (const tuple_delta_t& var : tuple_vars) | 
|  | { | 
|  | hb_vector_t<tuple_delta_t> out = var.change_tuple_var_axis_limit (axis_tag, *axis_limit, axis_triple_distances); | 
|  | if (!out) continue; | 
|  |  | 
|  | unsigned new_len = new_vars.length + out.length; | 
|  |  | 
|  | if (unlikely (!new_vars.alloc (new_len, false))) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = 0; i < out.length; i++) | 
|  | new_vars.push (std::move (out[i])); | 
|  | } | 
|  | tuple_vars.fini (); | 
|  | tuple_vars = std::move (new_vars); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* merge tuple variations with overlapping tents, if iup delta optimization | 
|  | * is enabled, add default deltas to contour_points */ | 
|  | bool merge_tuple_variations (contour_point_vector_t* contour_points = nullptr) | 
|  | { | 
|  | hb_vector_t<tuple_delta_t> new_vars; | 
|  | hb_hashmap_t<const hb_hashmap_t<hb_tag_t, Triple>*, unsigned> m; | 
|  | unsigned i = 0; | 
|  | for (const tuple_delta_t& var : tuple_vars) | 
|  | { | 
|  | /* if all axes are pinned, drop the tuple variation */ | 
|  | if (var.axis_tuples.is_empty ()) | 
|  | { | 
|  | /* if iup_delta_optimize is enabled, add deltas to contour coords */ | 
|  | if (contour_points && !contour_points->add_deltas (var.deltas_x, | 
|  | var.deltas_y, | 
|  | var.indices)) | 
|  | return false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | unsigned *idx; | 
|  | if (m.has (&(var.axis_tuples), &idx)) | 
|  | { | 
|  | new_vars[*idx] += var; | 
|  | } | 
|  | else | 
|  | { | 
|  | new_vars.push (var); | 
|  | if (!m.set (&(var.axis_tuples), i)) | 
|  | return false; | 
|  | i++; | 
|  | } | 
|  | } | 
|  | tuple_vars.fini (); | 
|  | tuple_vars = std::move (new_vars); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* compile all point set and store byte data in a point_set->hb_bytes_t hashmap, | 
|  | * also update point_set->count map, which will be used in finding shared | 
|  | * point set*/ | 
|  | bool compile_all_point_sets () | 
|  | { | 
|  | for (const auto& tuple: tuple_vars) | 
|  | { | 
|  | const hb_vector_t<bool>* points_set = &(tuple.indices); | 
|  | if (point_data_map.has (points_set)) | 
|  | { | 
|  | unsigned *count; | 
|  | if (unlikely (!point_set_count_map.has (points_set, &count) || | 
|  | !point_set_count_map.set (points_set, (*count) + 1))) | 
|  | return false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | hb_vector_t<char> compiled_point_data; | 
|  | if (!tuple_delta_t::compile_point_set (*points_set, compiled_point_data)) | 
|  | return false; | 
|  |  | 
|  | if (!point_data_map.set (points_set, std::move (compiled_point_data)) || | 
|  | !point_set_count_map.set (points_set, 1)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* find shared points set which saves most bytes */ | 
|  | void find_shared_points () | 
|  | { | 
|  | unsigned max_saved_bytes = 0; | 
|  |  | 
|  | for (const auto& _ : point_data_map.iter_ref ()) | 
|  | { | 
|  | const hb_vector_t<bool>* points_set = _.first; | 
|  | unsigned data_length = _.second.length; | 
|  | if (!data_length) continue; | 
|  | unsigned *count; | 
|  | if (unlikely (!point_set_count_map.has (points_set, &count) || | 
|  | *count <= 1)) | 
|  | { | 
|  | shared_points_bytes = nullptr; | 
|  | return; | 
|  | } | 
|  |  | 
|  | unsigned saved_bytes = data_length * ((*count) -1); | 
|  | if (saved_bytes > max_saved_bytes) | 
|  | { | 
|  | max_saved_bytes = saved_bytes; | 
|  | shared_points_bytes = &(_.second); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool calc_inferred_deltas (const contour_point_vector_t& contour_points) | 
|  | { | 
|  | for (tuple_delta_t& var : tuple_vars) | 
|  | if (!var.calc_inferred_deltas (contour_points)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool iup_optimize (const contour_point_vector_t& contour_points) | 
|  | { | 
|  | for (tuple_delta_t& var : tuple_vars) | 
|  | { | 
|  | if (!var.optimize (contour_points, is_composite)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | public: | 
|  | bool instantiate (const hb_hashmap_t<hb_tag_t, Triple>& normalized_axes_location, | 
|  | const hb_hashmap_t<hb_tag_t, TripleDistances>& axes_triple_distances, | 
|  | contour_point_vector_t* contour_points = nullptr, | 
|  | bool optimize = false) | 
|  | { | 
|  | if (!tuple_vars) return true; | 
|  | if (!change_tuple_variations_axis_limits (normalized_axes_location, axes_triple_distances)) | 
|  | return false; | 
|  | /* compute inferred deltas only for gvar */ | 
|  | if (contour_points) | 
|  | if (!calc_inferred_deltas (*contour_points)) | 
|  | return false; | 
|  |  | 
|  | /* if iup delta opt is on, contour_points can't be null */ | 
|  | if (optimize && !contour_points) | 
|  | return false; | 
|  |  | 
|  | if (!merge_tuple_variations (optimize ? contour_points : nullptr)) | 
|  | return false; | 
|  |  | 
|  | if (optimize && !iup_optimize (*contour_points)) return false; | 
|  | return !tuple_vars.in_error (); | 
|  | } | 
|  |  | 
|  | bool compile_bytes (const hb_map_t& axes_index_map, | 
|  | const hb_map_t& axes_old_index_tag_map, | 
|  | bool use_shared_points, | 
|  | const hb_hashmap_t<const hb_vector_t<char>*, unsigned>* shared_tuples_idx_map = nullptr) | 
|  | { | 
|  | // compile points set and store data in hashmap | 
|  | if (!compile_all_point_sets ()) | 
|  | return false; | 
|  |  | 
|  | if (use_shared_points) | 
|  | { | 
|  | find_shared_points (); | 
|  | if (shared_points_bytes) | 
|  | compiled_byte_size += shared_points_bytes->length; | 
|  | } | 
|  | // compile delta and tuple var header for each tuple variation | 
|  | for (auto& tuple: tuple_vars) | 
|  | { | 
|  | const hb_vector_t<bool>* points_set = &(tuple.indices); | 
|  | hb_vector_t<char> *points_data; | 
|  | if (unlikely (!point_data_map.has (points_set, &points_data))) | 
|  | return false; | 
|  |  | 
|  | /* when iup optimization is enabled, num of referenced points could be 0 | 
|  | * and thus the compiled points bytes is empty, we should skip compiling | 
|  | * this tuple */ | 
|  | if (!points_data->length) | 
|  | continue; | 
|  | if (!tuple.compile_deltas ()) | 
|  | return false; | 
|  |  | 
|  | unsigned points_data_length = (points_data != shared_points_bytes) ? points_data->length : 0; | 
|  | if (!tuple.compile_tuple_var_header (axes_index_map, points_data_length, axes_old_index_tag_map, | 
|  | shared_tuples_idx_map)) | 
|  | return false; | 
|  | compiled_byte_size += tuple.compiled_tuple_header.length + points_data_length + tuple.compiled_deltas.length; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool serialize_var_headers (hb_serialize_context_t *c, unsigned& total_header_len) const | 
|  | { | 
|  | TRACE_SERIALIZE (this); | 
|  | for (const auto& tuple: tuple_vars) | 
|  | { | 
|  | tuple.compiled_tuple_header.as_array ().copy (c); | 
|  | if (c->in_error ()) return_trace (false); | 
|  | total_header_len += tuple.compiled_tuple_header.length; | 
|  | } | 
|  | return_trace (true); | 
|  | } | 
|  |  | 
|  | bool serialize_var_data (hb_serialize_context_t *c, bool is_gvar) const | 
|  | { | 
|  | TRACE_SERIALIZE (this); | 
|  | if (is_gvar && shared_points_bytes) | 
|  | { | 
|  | hb_bytes_t s (shared_points_bytes->arrayZ, shared_points_bytes->length); | 
|  | s.copy (c); | 
|  | } | 
|  |  | 
|  | for (const auto& tuple: tuple_vars) | 
|  | { | 
|  | const hb_vector_t<bool>* points_set = &(tuple.indices); | 
|  | hb_vector_t<char> *point_data; | 
|  | if (!point_data_map.has (points_set, &point_data)) | 
|  | return_trace (false); | 
|  |  | 
|  | if (!is_gvar || point_data != shared_points_bytes) | 
|  | { | 
|  | hb_bytes_t s (point_data->arrayZ, point_data->length); | 
|  | s.copy (c); | 
|  | } | 
|  |  | 
|  | tuple.compiled_deltas.as_array ().copy (c); | 
|  | if (c->in_error ()) return_trace (false); | 
|  | } | 
|  |  | 
|  | /* padding for gvar */ | 
|  | if (is_gvar && (compiled_byte_size % 2)) | 
|  | { | 
|  | HBUINT8 pad; | 
|  | pad = 0; | 
|  | if (!c->embed (pad)) return_trace (false); | 
|  | } | 
|  | return_trace (true); | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct tuple_iterator_t | 
|  | { | 
|  | unsigned get_axis_count () const { return axis_count; } | 
|  |  | 
|  | void init (hb_bytes_t var_data_bytes_, unsigned int axis_count_, const void *table_base_) | 
|  | { | 
|  | var_data_bytes = var_data_bytes_; | 
|  | var_data = var_data_bytes_.as<TupleVariationData> (); | 
|  | index = 0; | 
|  | axis_count = axis_count_; | 
|  | current_tuple = &var_data->get_tuple_var_header (); | 
|  | data_offset = 0; | 
|  | table_base = table_base_; | 
|  | } | 
|  |  | 
|  | bool get_shared_indices (hb_vector_t<unsigned int> &shared_indices /* OUT */) | 
|  | { | 
|  | if (var_data->has_shared_point_numbers ()) | 
|  | { | 
|  | const HBUINT8 *base = &(table_base+var_data->data); | 
|  | const HBUINT8 *p = base; | 
|  | if (!decompile_points (p, shared_indices, (const HBUINT8 *) (var_data_bytes.arrayZ + var_data_bytes.length))) return false; | 
|  | data_offset = p - base; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool is_valid () const | 
|  | { | 
|  | return (index < var_data->tupleVarCount.get_count ()) && | 
|  | var_data_bytes.check_range (current_tuple, TupleVariationHeader::min_size) && | 
|  | var_data_bytes.check_range (current_tuple, hb_max (current_tuple->get_data_size (), | 
|  | current_tuple->get_size (axis_count))); | 
|  | } | 
|  |  | 
|  | bool move_to_next () | 
|  | { | 
|  | data_offset += current_tuple->get_data_size (); | 
|  | current_tuple = ¤t_tuple->get_next (axis_count); | 
|  | index++; | 
|  | return is_valid (); | 
|  | } | 
|  |  | 
|  | const HBUINT8 *get_serialized_data () const | 
|  | { return &(table_base+var_data->data) + data_offset; } | 
|  |  | 
|  | private: | 
|  | const TupleVariationData *var_data; | 
|  | unsigned int index; | 
|  | unsigned int axis_count; | 
|  | unsigned int data_offset; | 
|  | const void *table_base; | 
|  |  | 
|  | public: | 
|  | hb_bytes_t var_data_bytes; | 
|  | const TupleVariationHeader *current_tuple; | 
|  | }; | 
|  |  | 
|  | static bool get_tuple_iterator (hb_bytes_t var_data_bytes, unsigned axis_count, | 
|  | const void *table_base, | 
|  | hb_vector_t<unsigned int> &shared_indices /* OUT */, | 
|  | tuple_iterator_t *iterator /* OUT */) | 
|  | { | 
|  | iterator->init (var_data_bytes, axis_count, table_base); | 
|  | if (!iterator->get_shared_indices (shared_indices)) | 
|  | return false; | 
|  | return iterator->is_valid (); | 
|  | } | 
|  |  | 
|  | bool has_shared_point_numbers () const { return tupleVarCount.has_shared_point_numbers (); } | 
|  |  | 
|  | static bool decompile_points (const HBUINT8 *&p /* IN/OUT */, | 
|  | hb_vector_t<unsigned int> &points /* OUT */, | 
|  | const HBUINT8 *end) | 
|  | { | 
|  | enum packed_point_flag_t | 
|  | { | 
|  | POINTS_ARE_WORDS     = 0x80, | 
|  | POINT_RUN_COUNT_MASK = 0x7F | 
|  | }; | 
|  |  | 
|  | if (unlikely (p + 1 > end)) return false; | 
|  |  | 
|  | unsigned count = *p++; | 
|  | if (count & POINTS_ARE_WORDS) | 
|  | { | 
|  | if (unlikely (p + 1 > end)) return false; | 
|  | count = ((count & POINT_RUN_COUNT_MASK) << 8) | *p++; | 
|  | } | 
|  | if (unlikely (!points.resize (count, false))) return false; | 
|  |  | 
|  | unsigned n = 0; | 
|  | unsigned i = 0; | 
|  | while (i < count) | 
|  | { | 
|  | if (unlikely (p + 1 > end)) return false; | 
|  | unsigned control = *p++; | 
|  | unsigned run_count = (control & POINT_RUN_COUNT_MASK) + 1; | 
|  | unsigned stop = i + run_count; | 
|  | if (unlikely (stop > count)) return false; | 
|  | if (control & POINTS_ARE_WORDS) | 
|  | { | 
|  | if (unlikely (p + run_count * HBUINT16::static_size > end)) return false; | 
|  | for (; i < stop; i++) | 
|  | { | 
|  | n += *(const HBUINT16 *)p; | 
|  | points.arrayZ[i] = n; | 
|  | p += HBUINT16::static_size; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | if (unlikely (p + run_count > end)) return false; | 
|  | for (; i < stop; i++) | 
|  | { | 
|  | n += *p++; | 
|  | points.arrayZ[i] = n; | 
|  | } | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | static bool decompile_deltas (const HBUINT8 *&p /* IN/OUT */, | 
|  | hb_vector_t<T> &deltas /* IN/OUT */, | 
|  | const HBUINT8 *end, | 
|  | bool consume_all = false) | 
|  | { | 
|  | return TupleValues::decompile (p, deltas, end, consume_all); | 
|  | } | 
|  |  | 
|  | bool has_data () const { return tupleVarCount; } | 
|  |  | 
|  | bool decompile_tuple_variations (unsigned point_count, | 
|  | bool is_gvar, | 
|  | tuple_iterator_t iterator, | 
|  | const hb_map_t *axes_old_index_tag_map, | 
|  | const hb_vector_t<unsigned> &shared_indices, | 
|  | const hb_array_t<const F2DOT14> shared_tuples, | 
|  | tuple_variations_t& tuple_variations, /* OUT */ | 
|  | bool is_composite_glyph = false) const | 
|  | { | 
|  | return tuple_variations.create_from_tuple_var_data (iterator, tupleVarCount, | 
|  | point_count, is_gvar, | 
|  | axes_old_index_tag_map, | 
|  | shared_indices, | 
|  | shared_tuples, | 
|  | is_composite_glyph); | 
|  | } | 
|  |  | 
|  | bool serialize (hb_serialize_context_t *c, | 
|  | bool is_gvar, | 
|  | const tuple_variations_t& tuple_variations) const | 
|  | { | 
|  | TRACE_SERIALIZE (this); | 
|  | /* empty tuple variations, just return and skip serialization. */ | 
|  | if (!tuple_variations) return_trace (true); | 
|  |  | 
|  | auto *out = c->start_embed (this); | 
|  | if (unlikely (!c->extend_min (out))) return_trace (false); | 
|  |  | 
|  | if (!c->check_assign (out->tupleVarCount, tuple_variations.get_var_count (), | 
|  | HB_SERIALIZE_ERROR_INT_OVERFLOW)) return_trace (false); | 
|  |  | 
|  | unsigned total_header_len = 0; | 
|  |  | 
|  | if (!tuple_variations.serialize_var_headers (c, total_header_len)) | 
|  | return_trace (false); | 
|  |  | 
|  | unsigned data_offset = min_size + total_header_len; | 
|  | if (!is_gvar) data_offset += 4; | 
|  | if (!c->check_assign (out->data, data_offset, HB_SERIALIZE_ERROR_INT_OVERFLOW)) return_trace (false); | 
|  |  | 
|  | return tuple_variations.serialize_var_data (c, is_gvar); | 
|  | } | 
|  |  | 
|  | protected: | 
|  | struct TupleVarCount : HBUINT16 | 
|  | { | 
|  | friend struct tuple_variations_t; | 
|  | bool has_shared_point_numbers () const { return ((*this) & SharedPointNumbers); } | 
|  | unsigned int get_count () const { return (*this) & CountMask; } | 
|  | TupleVarCount& operator = (uint16_t i) { HBUINT16::operator= (i); return *this; } | 
|  | explicit operator bool () const { return get_count (); } | 
|  |  | 
|  | protected: | 
|  | enum Flags | 
|  | { | 
|  | SharedPointNumbers= 0x8000u, | 
|  | CountMask         = 0x0FFFu | 
|  | }; | 
|  | public: | 
|  | DEFINE_SIZE_STATIC (2); | 
|  | }; | 
|  |  | 
|  | TupleVarCount tupleVarCount;  /* A packed field. The high 4 bits are flags, and the | 
|  | * low 12 bits are the number of tuple variation tables | 
|  | * for this glyph. The number of tuple variation tables | 
|  | * can be any number between 1 and 4095. */ | 
|  | Offset16To<HBUINT8> | 
|  | data;           /* Offset from the start of the base table | 
|  | * to the serialized data. */ | 
|  | /* TupleVariationHeader tupleVariationHeaders[] *//* Array of tuple variation headers. */ | 
|  | public: | 
|  | DEFINE_SIZE_MIN (4); | 
|  | }; | 
|  |  | 
|  | using tuple_variations_t = TupleVariationData::tuple_variations_t; | 
|  | struct item_variations_t | 
|  | { | 
|  | using region_t = const hb_hashmap_t<hb_tag_t, Triple>*; | 
|  | private: | 
|  | /* each subtable is decompiled into a tuple_variations_t, in which all tuples | 
|  | * have the same num of deltas (rows) */ | 
|  | hb_vector_t<tuple_variations_t> vars; | 
|  |  | 
|  | /* num of retained rows for each subtable, there're 2 cases when var_data is empty: | 
|  | * 1. retained item_count is zero | 
|  | * 2. regions is empty and item_count is non-zero. | 
|  | * when converting to tuples, both will be dropped because the tuple is empty, | 
|  | * however, we need to retain 2. as all-zero rows to keep original varidx | 
|  | * valid, so we need a way to remember the num of rows for each subtable */ | 
|  | hb_vector_t<unsigned> var_data_num_rows; | 
|  |  | 
|  | /* original region list, decompiled from item varstore, used when rebuilding | 
|  | * region list after instantiation */ | 
|  | hb_vector_t<hb_hashmap_t<hb_tag_t, Triple>> orig_region_list; | 
|  |  | 
|  | /* region list: vector of Regions, maintain the original order for the regions | 
|  | * that existed before instantiate (), append the new regions at the end. | 
|  | * Regions are stored in each tuple already, save pointers only. | 
|  | * When converting back to item varstore, unused regions will be pruned */ | 
|  | hb_vector_t<region_t> region_list; | 
|  |  | 
|  | /* region -> idx map after instantiation and pruning unused regions */ | 
|  | hb_hashmap_t<region_t, unsigned> region_map; | 
|  |  | 
|  | /* all delta rows after instantiation */ | 
|  | hb_vector_t<hb_vector_t<int>> delta_rows; | 
|  | /* final optimized vector of encoding objects used to assemble the varstore */ | 
|  | hb_vector_t<delta_row_encoding_t> encodings; | 
|  |  | 
|  | /* old varidxes -> new var_idxes map */ | 
|  | hb_map_t varidx_map; | 
|  |  | 
|  | /* has long words */ | 
|  | bool has_long = false; | 
|  |  | 
|  | public: | 
|  | bool has_long_word () const | 
|  | { return has_long; } | 
|  |  | 
|  | const hb_vector_t<region_t>& get_region_list () const | 
|  | { return region_list; } | 
|  |  | 
|  | const hb_vector_t<delta_row_encoding_t>& get_vardata_encodings () const | 
|  | { return encodings; } | 
|  |  | 
|  | const hb_map_t& get_varidx_map () const | 
|  | { return varidx_map; } | 
|  |  | 
|  | bool instantiate (const ItemVariationStore& varStore, | 
|  | const hb_subset_plan_t *plan, | 
|  | bool optimize=true, | 
|  | bool use_no_variation_idx=true, | 
|  | const hb_array_t <const hb_inc_bimap_t> inner_maps = hb_array_t<const hb_inc_bimap_t> ()) | 
|  | { | 
|  | if (!create_from_item_varstore (varStore, plan->axes_old_index_tag_map, inner_maps)) | 
|  | return false; | 
|  | if (!instantiate_tuple_vars (plan->axes_location, plan->axes_triple_distances)) | 
|  | return false; | 
|  | return as_item_varstore (optimize, use_no_variation_idx); | 
|  | } | 
|  |  | 
|  | /* keep below APIs public only for unit test: test-item-varstore */ | 
|  | bool create_from_item_varstore (const ItemVariationStore& varStore, | 
|  | const hb_map_t& axes_old_index_tag_map, | 
|  | const hb_array_t <const hb_inc_bimap_t> inner_maps = hb_array_t<const hb_inc_bimap_t> ()) | 
|  | { | 
|  | const VarRegionList& regionList = varStore.get_region_list (); | 
|  | if (!regionList.get_var_regions (axes_old_index_tag_map, orig_region_list)) | 
|  | return false; | 
|  |  | 
|  | unsigned num_var_data = varStore.get_sub_table_count (); | 
|  | if (inner_maps && inner_maps.length != num_var_data) return false; | 
|  | if (!vars.alloc (num_var_data) || | 
|  | !var_data_num_rows.alloc (num_var_data)) return false; | 
|  |  | 
|  | for (unsigned i = 0; i < num_var_data; i++) | 
|  | { | 
|  | if (inner_maps && !inner_maps.arrayZ[i].get_population ()) | 
|  | continue; | 
|  | tuple_variations_t var_data_tuples; | 
|  | unsigned item_count = 0; | 
|  | if (!var_data_tuples.create_from_item_var_data (varStore.get_sub_table (i), | 
|  | orig_region_list, | 
|  | axes_old_index_tag_map, | 
|  | item_count, | 
|  | inner_maps ? &(inner_maps.arrayZ[i]) : nullptr)) | 
|  | return false; | 
|  |  | 
|  | var_data_num_rows.push (item_count); | 
|  | vars.push (std::move (var_data_tuples)); | 
|  | } | 
|  | return !vars.in_error () && !var_data_num_rows.in_error () && vars.length == var_data_num_rows.length; | 
|  | } | 
|  |  | 
|  | bool instantiate_tuple_vars (const hb_hashmap_t<hb_tag_t, Triple>& normalized_axes_location, | 
|  | const hb_hashmap_t<hb_tag_t, TripleDistances>& axes_triple_distances) | 
|  | { | 
|  | for (tuple_variations_t& tuple_vars : vars) | 
|  | if (!tuple_vars.instantiate (normalized_axes_location, axes_triple_distances)) | 
|  | return false; | 
|  |  | 
|  | if (!build_region_list ()) return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool build_region_list () | 
|  | { | 
|  | /* scan all tuples and collect all unique regions, prune unused regions */ | 
|  | hb_hashmap_t<region_t, unsigned> all_regions; | 
|  | hb_hashmap_t<region_t, unsigned> used_regions; | 
|  |  | 
|  | /* use a vector when inserting new regions, make result deterministic */ | 
|  | hb_vector_t<region_t> all_unique_regions; | 
|  | for (const tuple_variations_t& sub_table : vars) | 
|  | { | 
|  | for (const tuple_delta_t& tuple : sub_table.tuple_vars) | 
|  | { | 
|  | region_t r = &(tuple.axis_tuples); | 
|  | if (!used_regions.has (r)) | 
|  | { | 
|  | bool all_zeros = true; | 
|  | for (float d : tuple.deltas_x) | 
|  | { | 
|  | int delta = (int) roundf (d); | 
|  | if (delta != 0) | 
|  | { | 
|  | all_zeros = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!all_zeros) | 
|  | { | 
|  | if (!used_regions.set (r, 1)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | if (all_regions.has (r)) | 
|  | continue; | 
|  | if (!all_regions.set (r, 1)) | 
|  | return false; | 
|  | all_unique_regions.push (r); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!all_regions || !all_unique_regions) return false; | 
|  | if (!region_list.alloc (all_regions.get_population ())) | 
|  | return false; | 
|  |  | 
|  | unsigned idx = 0; | 
|  | /* append the original regions that pre-existed */ | 
|  | for (const auto& r : orig_region_list) | 
|  | { | 
|  | if (!all_regions.has (&r) || !used_regions.has (&r)) | 
|  | continue; | 
|  |  | 
|  | region_list.push (&r); | 
|  | if (!region_map.set (&r, idx)) | 
|  | return false; | 
|  | all_regions.del (&r); | 
|  | idx++; | 
|  | } | 
|  |  | 
|  | /* append the new regions at the end */ | 
|  | for (const auto& r: all_unique_regions) | 
|  | { | 
|  | if (!all_regions.has (r) || !used_regions.has (r)) | 
|  | continue; | 
|  | region_list.push (r); | 
|  | if (!region_map.set (r, idx)) | 
|  | return false; | 
|  | all_regions.del (r); | 
|  | idx++; | 
|  | } | 
|  | return (!region_list.in_error ()) && (!region_map.in_error ()); | 
|  | } | 
|  |  | 
|  | /* main algorithm ported from fonttools VarStore_optimize() method, optimize | 
|  | * varstore by default */ | 
|  |  | 
|  | struct combined_gain_idx_tuple_t | 
|  | { | 
|  | int gain; | 
|  | unsigned idx_1; | 
|  | unsigned idx_2; | 
|  |  | 
|  | combined_gain_idx_tuple_t () = default; | 
|  | combined_gain_idx_tuple_t (int gain_, unsigned i, unsigned j) | 
|  | :gain (gain_), idx_1 (i), idx_2 (j) {} | 
|  |  | 
|  | bool operator < (const combined_gain_idx_tuple_t& o) | 
|  | { | 
|  | if (gain != o.gain) | 
|  | return gain < o.gain; | 
|  |  | 
|  | if (idx_1 != o.idx_1) | 
|  | return idx_1 < o.idx_1; | 
|  |  | 
|  | return idx_2 < o.idx_2; | 
|  | } | 
|  |  | 
|  | bool operator <= (const combined_gain_idx_tuple_t& o) | 
|  | { | 
|  | if (*this < o) return true; | 
|  | return gain == o.gain && idx_1 == o.idx_1 && idx_2 == o.idx_2; | 
|  | } | 
|  | }; | 
|  |  | 
|  | bool as_item_varstore (bool optimize=true, bool use_no_variation_idx=true) | 
|  | { | 
|  | if (!region_list) return false; | 
|  | unsigned num_cols = region_list.length; | 
|  | /* pre-alloc a 2D vector for all sub_table's VarData rows */ | 
|  | unsigned total_rows = 0; | 
|  | for (unsigned major = 0; major < var_data_num_rows.length; major++) | 
|  | total_rows += var_data_num_rows[major]; | 
|  |  | 
|  | if (!delta_rows.resize (total_rows)) return false; | 
|  | /* init all rows to [0]*num_cols */ | 
|  | for (unsigned i = 0; i < total_rows; i++) | 
|  | if (!(delta_rows[i].resize (num_cols))) return false; | 
|  |  | 
|  | /* old VarIdxes -> full encoding_row mapping */ | 
|  | hb_hashmap_t<unsigned, const hb_vector_t<int>*> front_mapping; | 
|  | unsigned start_row = 0; | 
|  | hb_vector_t<delta_row_encoding_t> encoding_objs; | 
|  | hb_hashmap_t<hb_vector_t<uint8_t>, unsigned> chars_idx_map; | 
|  |  | 
|  | /* delta_rows map, used for filtering out duplicate rows */ | 
|  | hb_hashmap_t<const hb_vector_t<int>*, unsigned> delta_rows_map; | 
|  | for (unsigned major = 0; major < vars.length; major++) | 
|  | { | 
|  | /* deltas are stored in tuples(column based), convert them back into items | 
|  | * (row based) delta */ | 
|  | const tuple_variations_t& tuples = vars[major]; | 
|  | unsigned num_rows = var_data_num_rows[major]; | 
|  | for (const tuple_delta_t& tuple: tuples.tuple_vars) | 
|  | { | 
|  | if (tuple.deltas_x.length != num_rows) | 
|  | return false; | 
|  |  | 
|  | /* skip unused regions */ | 
|  | unsigned *col_idx; | 
|  | if (!region_map.has (&(tuple.axis_tuples), &col_idx)) | 
|  | continue; | 
|  |  | 
|  | for (unsigned i = 0; i < num_rows; i++) | 
|  | { | 
|  | int rounded_delta = roundf (tuple.deltas_x[i]); | 
|  | delta_rows[start_row + i][*col_idx] += rounded_delta; | 
|  | if ((!has_long) && (rounded_delta < -65536 || rounded_delta > 65535)) | 
|  | has_long = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!optimize) | 
|  | { | 
|  | /* assemble a delta_row_encoding_t for this subtable, skip optimization so | 
|  | * chars is not initialized, we only need delta rows for serialization */ | 
|  | delta_row_encoding_t obj; | 
|  | for (unsigned r = start_row; r < start_row + num_rows; r++) | 
|  | obj.add_row (&(delta_rows.arrayZ[r])); | 
|  |  | 
|  | encodings.push (std::move (obj)); | 
|  | start_row += num_rows; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | for (unsigned minor = 0; minor < num_rows; minor++) | 
|  | { | 
|  | const hb_vector_t<int>& row = delta_rows[start_row + minor]; | 
|  | if (use_no_variation_idx) | 
|  | { | 
|  | bool all_zeros = true; | 
|  | for (int delta : row) | 
|  | { | 
|  | if (delta != 0) | 
|  | { | 
|  | all_zeros = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (all_zeros) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!front_mapping.set ((major<<16) + minor, &row)) | 
|  | return false; | 
|  |  | 
|  | hb_vector_t<uint8_t> chars = delta_row_encoding_t::get_row_chars (row); | 
|  | if (!chars) return false; | 
|  |  | 
|  | if (delta_rows_map.has (&row)) | 
|  | continue; | 
|  |  | 
|  | delta_rows_map.set (&row, 1); | 
|  | unsigned *obj_idx; | 
|  | if (chars_idx_map.has (chars, &obj_idx)) | 
|  | { | 
|  | delta_row_encoding_t& obj = encoding_objs[*obj_idx]; | 
|  | if (!obj.add_row (&row)) | 
|  | return false; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (!chars_idx_map.set (chars, encoding_objs.length)) | 
|  | return false; | 
|  | delta_row_encoding_t obj (std::move (chars), &row); | 
|  | encoding_objs.push (std::move (obj)); | 
|  | } | 
|  | } | 
|  |  | 
|  | start_row += num_rows; | 
|  | } | 
|  |  | 
|  | /* return directly if no optimization, maintain original VariationIndex so | 
|  | * varidx_map would be empty */ | 
|  | if (!optimize) return !encodings.in_error (); | 
|  |  | 
|  | /* sort encoding_objs */ | 
|  | encoding_objs.qsort (); | 
|  |  | 
|  | /* main algorithm: repeatedly pick 2 best encodings to combine, and combine | 
|  | * them */ | 
|  | hb_priority_queue_t<combined_gain_idx_tuple_t> queue; | 
|  | unsigned num_todos = encoding_objs.length; | 
|  | for (unsigned i = 0; i < num_todos; i++) | 
|  | { | 
|  | for (unsigned j = i + 1; j < num_todos; j++) | 
|  | { | 
|  | int combining_gain = encoding_objs.arrayZ[i].gain_from_merging (encoding_objs.arrayZ[j]); | 
|  | if (combining_gain > 0) | 
|  | queue.insert (combined_gain_idx_tuple_t (-combining_gain, i, j), 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | hb_set_t removed_todo_idxes; | 
|  | while (queue) | 
|  | { | 
|  | auto t = queue.pop_minimum ().first; | 
|  | unsigned i = t.idx_1; | 
|  | unsigned j = t.idx_2; | 
|  |  | 
|  | if (removed_todo_idxes.has (i) || removed_todo_idxes.has (j)) | 
|  | continue; | 
|  |  | 
|  | delta_row_encoding_t& encoding = encoding_objs.arrayZ[i]; | 
|  | delta_row_encoding_t& other_encoding = encoding_objs.arrayZ[j]; | 
|  |  | 
|  | removed_todo_idxes.add (i); | 
|  | removed_todo_idxes.add (j); | 
|  |  | 
|  | hb_vector_t<uint8_t> combined_chars; | 
|  | if (!combined_chars.alloc (encoding.chars.length)) | 
|  | return false; | 
|  |  | 
|  | for (unsigned idx = 0; idx < encoding.chars.length; idx++) | 
|  | { | 
|  | uint8_t v = hb_max (encoding.chars.arrayZ[idx], other_encoding.chars.arrayZ[idx]); | 
|  | combined_chars.push (v); | 
|  | } | 
|  |  | 
|  | delta_row_encoding_t combined_encoding_obj (std::move (combined_chars)); | 
|  | for (const auto& row : hb_concat (encoding.items, other_encoding.items)) | 
|  | combined_encoding_obj.add_row (row); | 
|  |  | 
|  | for (unsigned idx = 0; idx < encoding_objs.length; idx++) | 
|  | { | 
|  | if (removed_todo_idxes.has (idx)) continue; | 
|  |  | 
|  | const delta_row_encoding_t& obj = encoding_objs.arrayZ[idx]; | 
|  | if (obj.chars == combined_chars) | 
|  | { | 
|  | for (const auto& row : obj.items) | 
|  | combined_encoding_obj.add_row (row); | 
|  |  | 
|  | removed_todo_idxes.add (idx); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | int combined_gain = combined_encoding_obj.gain_from_merging (obj); | 
|  | if (combined_gain > 0) | 
|  | queue.insert (combined_gain_idx_tuple_t (-combined_gain, idx, encoding_objs.length), 0); | 
|  | } | 
|  |  | 
|  | encoding_objs.push (std::move (combined_encoding_obj)); | 
|  | } | 
|  |  | 
|  | int num_final_encodings = (int) encoding_objs.length - (int) removed_todo_idxes.get_population (); | 
|  | if (num_final_encodings <= 0) return false; | 
|  |  | 
|  | if (!encodings.alloc (num_final_encodings)) return false; | 
|  | for (unsigned i = 0; i < encoding_objs.length; i++) | 
|  | { | 
|  | if (removed_todo_idxes.has (i)) continue; | 
|  | encodings.push (std::move (encoding_objs.arrayZ[i])); | 
|  | } | 
|  |  | 
|  | /* sort again based on width, make result deterministic */ | 
|  | encodings.qsort (delta_row_encoding_t::cmp_width); | 
|  |  | 
|  | return compile_varidx_map (front_mapping); | 
|  | } | 
|  |  | 
|  | private: | 
|  | /* compile varidx_map for one VarData subtable (index specified by major) */ | 
|  | bool compile_varidx_map (const hb_hashmap_t<unsigned, const hb_vector_t<int>*>& front_mapping) | 
|  | { | 
|  | /* full encoding_row -> new VarIdxes mapping */ | 
|  | hb_hashmap_t<const hb_vector_t<int>*, unsigned> back_mapping; | 
|  |  | 
|  | for (unsigned major = 0; major < encodings.length; major++) | 
|  | { | 
|  | delta_row_encoding_t& encoding = encodings[major]; | 
|  | /* just sanity check, this shouldn't happen */ | 
|  | if (encoding.is_empty ()) | 
|  | return false; | 
|  |  | 
|  | unsigned num_rows = encoding.items.length; | 
|  |  | 
|  | /* sort rows, make result deterministic */ | 
|  | encoding.items.qsort (_cmp_row); | 
|  |  | 
|  | /* compile old to new var_idxes mapping */ | 
|  | for (unsigned minor = 0; minor < num_rows; minor++) | 
|  | { | 
|  | unsigned new_varidx = (major << 16) + minor; | 
|  | back_mapping.set (encoding.items.arrayZ[minor], new_varidx); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (auto _ : front_mapping.iter ()) | 
|  | { | 
|  | unsigned old_varidx = _.first; | 
|  | unsigned *new_varidx; | 
|  | if (back_mapping.has (_.second, &new_varidx)) | 
|  | varidx_map.set (old_varidx, *new_varidx); | 
|  | else | 
|  | varidx_map.set (old_varidx, HB_OT_LAYOUT_NO_VARIATIONS_INDEX); | 
|  | } | 
|  | return !varidx_map.in_error (); | 
|  | } | 
|  |  | 
|  | static int _cmp_row (const void *pa, const void *pb) | 
|  | { | 
|  | /* compare pointers of vectors(const hb_vector_t<int>*) that represent a row */ | 
|  | const hb_vector_t<int>** a = (const hb_vector_t<int>**) pa; | 
|  | const hb_vector_t<int>** b = (const hb_vector_t<int>**) pb; | 
|  |  | 
|  | for (unsigned i = 0; i < (*b)->length; i++) | 
|  | { | 
|  | int va = (*a)->arrayZ[i]; | 
|  | int vb = (*b)->arrayZ[i]; | 
|  | if (va != vb) | 
|  | return va < vb ? -1 : 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | }; | 
|  |  | 
|  |  | 
|  | } /* namespace OT */ | 
|  |  | 
|  |  | 
|  | #endif /* HB_OT_VAR_COMMON_HH */ |