blob: cd8789f1b0cd22378949b6de19dc238777cd913d [file] [log] [blame] [edit]
/*
* Copyright © 2020 Google, Inc.
*
* This is part of HarfBuzz, a text shaping library.
*
* Permission is hereby granted, without written agreement and without
* license or royalty fees, to use, copy, modify, and distribute this
* software and its documentation for any purpose, provided that the
* above copyright notice and the following two paragraphs appear in
* all copies of this software.
*
* IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE TO ANY PARTY FOR
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
* ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN
* IF THE COPYRIGHT HOLDER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*
* THE COPYRIGHT HOLDER SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
* BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
* FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS" BASIS, AND THE COPYRIGHT HOLDER HAS NO OBLIGATION TO
* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
*
* Google Author(s): Garret Rieger
*/
#include <string>
#include "hb-repacker.hh"
#include "hb-open-type.hh"
#include "graph/serialize.hh"
static void extend (const char* value,
unsigned len,
hb_serialize_context_t* c)
{
char* obj = c->allocate_size<char> (len);
memcpy (obj, value, len);
}
static void start_object(const char* tag,
unsigned len,
hb_serialize_context_t* c)
{
c->push ();
extend (tag, len, c);
}
static unsigned add_object(const char* tag,
unsigned len,
hb_serialize_context_t* c)
{
start_object (tag, len, c);
return c->pop_pack (false);
}
static void add_offset (unsigned id,
hb_serialize_context_t* c)
{
OT::Offset16* offset = c->start_embed<OT::Offset16> ();
c->extend_min (offset);
c->add_link (*offset, id);
}
static void add_24_offset (unsigned id,
hb_serialize_context_t* c)
{
OT::Offset24* offset = c->start_embed<OT::Offset24> ();
c->extend_min (offset);
c->add_link (*offset, id);
}
static void add_wide_offset (unsigned id,
hb_serialize_context_t* c)
{
OT::Offset32* offset = c->start_embed<OT::Offset32> ();
c->extend_min (offset);
c->add_link (*offset, id);
}
static void add_gsubgpos_header (unsigned lookup_list,
hb_serialize_context_t* c)
{
char header[] = {
0, 1, // major
0, 0, // minor
0, 0, // script list
0, 0, // feature list
};
start_object (header, 8, c);
add_offset (lookup_list, c);
c->pop_pack (false);
}
static unsigned add_lookup_list (const unsigned* lookups,
char count,
hb_serialize_context_t* c)
{
char lookup_count[] = {0, count};
start_object ((char *) &lookup_count, 2, c);
for (int i = 0; i < count; i++)
add_offset (lookups[i], c);
return c->pop_pack (false);
}
static void start_lookup (int8_t type,
int8_t num_subtables,
hb_serialize_context_t* c)
{
char lookup[] = {
0, (char)type, // type
0, 0, // flag
0, (char)num_subtables, // num subtables
};
start_object (lookup, 6, c);
}
static unsigned finish_lookup (hb_serialize_context_t* c)
{
char filter[] = {0, 0};
extend (filter, 2, c);
return c->pop_pack (false);
}
static unsigned add_extension (unsigned child,
uint8_t type,
hb_serialize_context_t* c)
{
char ext[] = {
0, 1,
0, (char) type,
};
start_object (ext, 4, c);
add_wide_offset (child, c);
return c->pop_pack (false);
}
// Adds coverage table fro [start, end]
static unsigned add_coverage (unsigned start, unsigned end,
hb_serialize_context_t* c)
{
if (end - start == 1)
{
uint8_t coverage[] = {
0, 1, // format
0, 2, // count
(uint8_t) ((start >> 8) & 0xFF),
(uint8_t) (start & 0xFF), // glyph[0]
(uint8_t) ((end >> 8) & 0xFF),
(uint8_t) (end & 0xFF), // glyph[1]
};
return add_object ((char*) coverage, 8, c);
}
uint8_t coverage[] = {
0, 2, // format
0, 1, // range count
(uint8_t) ((start >> 8) & 0xFF),
(uint8_t) (start & 0xFF), // start
(uint8_t) ((end >> 8) & 0xFF),
(uint8_t) (end & 0xFF), // end
0, 0,
};
return add_object ((char*) coverage, 10, c);
}
template<typename It>
static unsigned add_coverage (It it,
hb_serialize_context_t* c)
{
c->push ();
OT::Layout::Common::Coverage_serialize (c, it);
return c->pop_pack (false);
}
// Adds a class that maps glyphs from [start_glyph, end_glyph)
// to classes 1...n
static unsigned add_class_def (uint16_t start_glyph,
uint16_t end_glyph,
hb_serialize_context_t* c)
{
unsigned count = end_glyph - start_glyph;
uint8_t header[] = {
0, 1, // format
(uint8_t) ((start_glyph >> 8) & 0xFF),
(uint8_t) (start_glyph & 0xFF), // start_glyph
(uint8_t) ((count >> 8) & 0xFF),
(uint8_t) (count & 0xFF), // count
};
start_object ((char*) header, 6, c);
for (uint16_t i = 1; i <= count; i++)
{
uint8_t class_value[] = {
(uint8_t) ((i >> 8) & 0xFF),
(uint8_t) (i & 0xFF), // count
};
extend ((char*) class_value, 2, c);
}
return c->pop_pack (false);
}
static unsigned add_pair_pos_1 (unsigned* pair_sets,
char count,
unsigned coverage,
hb_serialize_context_t* c)
{
char format[] = {
0, 1
};
start_object (format, 2, c);
add_offset (coverage, c);
char value_format[] = {
0, 0,
0, 0,
0, count,
};
extend (value_format, 6, c);
for (char i = 0; i < count; i++)
add_offset (pair_sets[(unsigned) i], c);
return c->pop_pack (false);
}
static unsigned add_pair_pos_2 (unsigned starting_class,
unsigned coverage,
unsigned class_def_1, uint16_t class_def_1_count,
unsigned class_def_2, uint16_t class_def_2_count,
unsigned* device_tables,
hb_serialize_context_t* c)
{
uint8_t format[] = {
0, 2
};
start_object ((char*) format, 2, c);
add_offset (coverage, c);
unsigned num_values = 4;
uint8_t format1 = 0x01 | 0x02 | 0x08;
uint8_t format2 = 0x04;
if (device_tables) {
format2 |= 0x20;
num_values += 1;
}
uint8_t value_format[] = {
0, format1,
0, format2,
};
extend ((char*) value_format, 4, c);
add_offset (class_def_1, c);
add_offset (class_def_2, c);
uint8_t class_counts[] = {
(uint8_t) ((class_def_1_count >> 8) & 0xFF),
(uint8_t) (class_def_1_count & 0xFF),
(uint8_t) ((class_def_2_count >> 8) & 0xFF),
(uint8_t) (class_def_2_count & 0xFF),
};
extend ((char*) class_counts, 4, c);
unsigned num_bytes_per_record = class_def_2_count * num_values * 2;
uint8_t* record = (uint8_t*) calloc (1, num_bytes_per_record);
int device_index = 0;
for (uint16_t i = 0; i < class_def_1_count; i++)
{
for (uint16_t j = 0; j < class_def_2_count; j++)
{
for (int k = 0; k < 4; k++) {
uint8_t value[] = {
(uint8_t) (i + starting_class),
(uint8_t) (i + starting_class),
};
extend ((char*) value, 2, c);
}
if (device_tables) {
add_offset (device_tables[device_index++], c);
}
}
}
free (record);
return c->pop_pack (false);
}
static unsigned add_mark_base_pos_1 (unsigned mark_coverage,
unsigned base_coverage,
unsigned mark_array,
unsigned base_array,
unsigned class_count,
hb_serialize_context_t* c)
{
uint8_t format[] = {
0, 1
};
start_object ((char*) format, 2, c);
add_offset (mark_coverage, c);
add_offset (base_coverage, c);
uint8_t count[] = {
(uint8_t) ((class_count >> 8) & 0xFF),
(uint8_t) (class_count & 0xFF),
};
extend ((char*) count, 2, c);
add_offset (mark_array, c);
add_offset (base_array, c);
return c->pop_pack (false);
}
template<int mark_count,
int class_count,
int base_count,
int table_count>
struct MarkBasePosBuffers
{
unsigned base_anchors[class_count * base_count];
unsigned mark_anchors[mark_count];
uint8_t anchor_buffers[class_count * base_count + 100];
uint8_t class_buffer[class_count * 2];
MarkBasePosBuffers(hb_serialize_context_t* c)
{
for (unsigned i = 0; i < sizeof(anchor_buffers) / 2; i++)
{
OT::HBUINT16* value = (OT::HBUINT16*) (&anchor_buffers[2*i]);
*value = i;
}
for (unsigned i = 0; i < class_count * base_count; i++)
{
base_anchors[i] = add_object ((char*) &anchor_buffers[i], 100, c);
if (i < class_count) {
class_buffer[i*2] = (uint8_t) ((i >> 8) & 0xFF);
class_buffer[i*2 + 1] = (uint8_t) (i & 0xFF);
}
}
for (unsigned i = 0; i < mark_count; i++)
{
mark_anchors[i] = add_object ((char*) &anchor_buffers[i], 4, c);
}
}
unsigned create_mark_base_pos_1 (unsigned table_index, hb_serialize_context_t* c)
{
unsigned class_per_table = class_count / table_count;
unsigned mark_per_class = mark_count / class_count;
unsigned start_class = class_per_table * table_index;
unsigned end_class = class_per_table * (table_index + 1) - 1;
// baseArray
uint8_t base_count_buffer[] = {
(uint8_t) ((base_count >> 8) & 0xFF),
(uint8_t) (base_count & 0xFF),
};
start_object ((char*) base_count_buffer, 2, c);
for (unsigned base = 0; base < base_count; base++)
{
for (unsigned klass = start_class; klass <= end_class; klass++)
{
unsigned i = base * class_count + klass;
add_offset (base_anchors[i], c);
}
}
unsigned base_array = c->pop_pack (false);
// markArray
unsigned num_marks = class_per_table * mark_per_class;
uint8_t mark_count_buffer[] = {
(uint8_t) ((num_marks >> 8) & 0xFF),
(uint8_t) (num_marks & 0xFF),
};
start_object ((char*) mark_count_buffer, 2, c);
for (unsigned mark = 0; mark < mark_count; mark++)
{
unsigned klass = mark % class_count;
if (klass < start_class || klass > end_class) continue;
klass -= start_class;
extend ((char*) &class_buffer[2 * klass], 2, c);
add_offset (mark_anchors[mark], c);
}
unsigned mark_array = c->pop_pack (false);
// markCoverage
auto it =
+ hb_range ((hb_codepoint_t) mark_count)
| hb_filter ([&] (hb_codepoint_t mark) {
unsigned klass = mark % class_count;
return klass >= class_per_table * table_index &&
klass < class_per_table * (table_index + 1);
})
;
unsigned mark_coverage = add_coverage (it, c);
// baseCoverage
unsigned base_coverage = add_coverage (10, 10 + base_count - 1, c);
return add_mark_base_pos_1 (mark_coverage,
base_coverage,
mark_array,
base_array,
class_per_table,
c);
}
};
static void run_resolve_overflow_test (const char* name,
hb_serialize_context_t& overflowing,
hb_serialize_context_t& expected,
unsigned num_iterations = 0,
bool recalculate_extensions = false,
hb_tag_t tag = HB_TAG ('G', 'S', 'U', 'B'))
{
printf (">>> Testing overflowing resolution for %s\n",
name);
graph_t graph (overflowing.object_graph ());
graph_t expected_graph (expected.object_graph ());
if (graph::will_overflow (expected_graph))
{
expected_graph.assign_spaces ();
expected_graph.sort_shortest_distance ();
}
// Check that overflow resolution succeeds
assert (overflowing.offset_overflow ());
assert (hb_resolve_graph_overflows (tag,
num_iterations,
recalculate_extensions,
graph));
// Check the graphs can be serialized.
hb_blob_t* out = graph::serialize (graph);
assert (out);
hb_blob_destroy (out);
out = graph::serialize (expected_graph);
assert (out);
hb_blob_destroy (out);
// Check the graphs are equivalent
graph.normalize ();
expected_graph.normalize ();
assert (graph == expected_graph);
}
static void add_virtual_offset (unsigned id,
hb_serialize_context_t* c)
{
c->add_virtual_link (id);
}
static void
populate_serializer_simple (hb_serialize_context_t* c)
{
c->start_serialize<char> ();
unsigned obj_1 = add_object ("ghi", 3, c);
unsigned obj_2 = add_object ("def", 3, c);
start_object ("abc", 3, c);
add_offset (obj_2, c);
add_offset (obj_1, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_with_overflow (hb_serialize_context_t* c)
{
std::string large_string(50000, 'a');
c->start_serialize<char> ();
unsigned obj_1 = add_object (large_string.c_str(), 10000, c);
unsigned obj_2 = add_object (large_string.c_str(), 20000, c);
unsigned obj_3 = add_object (large_string.c_str(), 50000, c);
start_object ("abc", 3, c);
add_offset (obj_3, c);
add_offset (obj_2, c);
add_offset (obj_1, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_with_priority_overflow (hb_serialize_context_t* c)
{
std::string large_string(50000, 'a');
c->start_serialize<char> ();
unsigned obj_e = add_object ("e", 1, c);
unsigned obj_d = add_object ("d", 1, c);
start_object (large_string.c_str (), 50000, c);
add_offset (obj_e, c);
unsigned obj_c = c->pop_pack (false);
start_object (large_string.c_str (), 20000, c);
add_offset (obj_d, c);
unsigned obj_b = c->pop_pack (false);
start_object ("a", 1, c);
add_offset (obj_b, c);
add_offset (obj_c, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_with_priority_overflow_expected (hb_serialize_context_t* c)
{
std::string large_string(50000, 'a');
c->start_serialize<char> ();
unsigned obj_e = add_object ("e", 1, c);
start_object (large_string.c_str (), 50000, c);
add_offset (obj_e, c);
unsigned obj_c = c->pop_pack (false);
unsigned obj_d = add_object ("d", 1, c);
start_object (large_string.c_str (), 20000, c);
add_offset (obj_d, c);
unsigned obj_b = c->pop_pack (false);
start_object ("a", 1, c);
add_offset (obj_b, c);
add_offset (obj_c, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_with_dedup_overflow (hb_serialize_context_t* c)
{
std::string large_string(70000, 'a');
c->start_serialize<char> ();
unsigned obj_1 = add_object ("def", 3, c);
start_object (large_string.c_str(), 60000, c);
add_offset (obj_1, c);
unsigned obj_2 = c->pop_pack (false);
start_object (large_string.c_str(), 10000, c);
add_offset (obj_2, c);
add_offset (obj_1, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_with_isolation_overflow (hb_serialize_context_t* c)
{
std::string large_string(70000, 'a');
c->start_serialize<char> ();
unsigned obj_4 = add_object ("4", 1, c);
start_object (large_string.c_str(), 60000, c);
add_offset (obj_4, c);
unsigned obj_3 = c->pop_pack (false);
start_object (large_string.c_str(), 10000, c);
add_offset (obj_4, c);
unsigned obj_2 = c->pop_pack (false);
start_object ("1", 1, c);
add_wide_offset (obj_3, c);
add_offset (obj_2, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_with_isolation_overflow_complex (hb_serialize_context_t* c)
{
std::string large_string(70000, 'a');
c->start_serialize<char> ();
unsigned obj_f = add_object ("f", 1, c);
start_object ("e", 1, c);
add_offset (obj_f, c);
unsigned obj_e = c->pop_pack (false);
start_object ("c", 1, c);
add_offset (obj_e, c);
unsigned obj_c = c->pop_pack (false);
start_object ("d", 1, c);
add_offset (obj_e, c);
unsigned obj_d = c->pop_pack (false);
start_object (large_string.c_str(), 60000, c);
add_offset (obj_d, c);
unsigned obj_h = c->pop_pack (false);
start_object (large_string.c_str(), 60000, c);
add_offset (obj_c, c);
add_offset (obj_h, c);
unsigned obj_b = c->pop_pack (false);
start_object (large_string.c_str(), 10000, c);
add_offset (obj_d, c);
unsigned obj_g = c->pop_pack (false);
start_object (large_string.c_str(), 11000, c);
add_offset (obj_d, c);
unsigned obj_i = c->pop_pack (false);
start_object ("a", 1, c);
add_wide_offset (obj_b, c);
add_offset (obj_g, c);
add_offset (obj_i, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_with_isolation_overflow_complex_expected (hb_serialize_context_t* c)
{
std::string large_string(70000, 'a');
c->start_serialize<char> ();
// space 1
unsigned obj_f_prime = add_object ("f", 1, c);
start_object ("e", 1, c);
add_offset (obj_f_prime, c);
unsigned obj_e_prime = c->pop_pack (false);
start_object ("d", 1, c);
add_offset (obj_e_prime, c);
unsigned obj_d_prime = c->pop_pack (false);
start_object (large_string.c_str(), 60000, c);
add_offset (obj_d_prime, c);
unsigned obj_h = c->pop_pack (false);
start_object ("c", 1, c);
add_offset (obj_e_prime, c);
unsigned obj_c = c->pop_pack (false);
start_object (large_string.c_str(), 60000, c);
add_offset (obj_c, c);
add_offset (obj_h, c);
unsigned obj_b = c->pop_pack (false);
// space 0
unsigned obj_f = add_object ("f", 1, c);
start_object ("e", 1, c);
add_offset (obj_f, c);
unsigned obj_e = c->pop_pack (false);
start_object ("d", 1, c);
add_offset (obj_e, c);
unsigned obj_d = c->pop_pack (false);
start_object (large_string.c_str(), 11000, c);
add_offset (obj_d, c);
unsigned obj_i = c->pop_pack (false);
start_object (large_string.c_str(), 10000, c);
add_offset (obj_d, c);
unsigned obj_g = c->pop_pack (false);
start_object ("a", 1, c);
add_wide_offset (obj_b, c);
add_offset (obj_g, c);
add_offset (obj_i, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_with_isolation_overflow_spaces (hb_serialize_context_t* c)
{
std::string large_string(70000, 'a');
c->start_serialize<char> ();
unsigned obj_d = add_object ("f", 1, c);
unsigned obj_e = add_object ("f", 1, c);
start_object (large_string.c_str(), 60000, c);
add_offset (obj_d, c);
unsigned obj_b = c->pop_pack ();
start_object (large_string.c_str(), 60000, c);
add_offset (obj_e, c);
unsigned obj_c = c->pop_pack ();
start_object ("a", 1, c);
add_wide_offset (obj_b, c);
add_wide_offset (obj_c, c);
c->pop_pack ();
c->end_serialize();
}
static void
populate_serializer_spaces (hb_serialize_context_t* c, bool with_overflow)
{
std::string large_string(70000, 'a');
c->start_serialize<char> ();
unsigned obj_i;
if (with_overflow)
obj_i = add_object ("i", 1, c);
// Space 2
unsigned obj_h = add_object ("h", 1, c);
start_object (large_string.c_str(), 30000, c);
add_offset (obj_h, c);
unsigned obj_e = c->pop_pack (false);
start_object ("b", 1, c);
add_offset (obj_e, c);
unsigned obj_b = c->pop_pack (false);
// Space 1
if (!with_overflow)
obj_i = add_object ("i", 1, c);
start_object (large_string.c_str(), 30000, c);
add_offset (obj_i, c);
unsigned obj_g = c->pop_pack (false);
start_object (large_string.c_str(), 30000, c);
add_offset (obj_i, c);
unsigned obj_f = c->pop_pack (false);
start_object ("d", 1, c);
add_offset (obj_g, c);
unsigned obj_d = c->pop_pack (false);
start_object ("c", 1, c);
add_offset (obj_f, c);
unsigned obj_c = c->pop_pack (false);
start_object ("a", 1, c);
add_wide_offset (obj_b, c);
add_wide_offset (obj_c, c);
add_wide_offset (obj_d, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_spaces_16bit_connection (hb_serialize_context_t* c)
{
std::string large_string(70000, 'a');
c->start_serialize<char> ();
unsigned obj_g = add_object ("g", 1, c);
unsigned obj_h = add_object ("h", 1, c);
start_object (large_string.c_str (), 40000, c);
add_offset (obj_g, c);
unsigned obj_e = c->pop_pack (false);
start_object (large_string.c_str (), 40000, c);
add_offset (obj_h, c);
unsigned obj_f = c->pop_pack (false);
start_object ("c", 1, c);
add_offset (obj_e, c);
unsigned obj_c = c->pop_pack (false);
start_object ("d", 1, c);
add_offset (obj_f, c);
unsigned obj_d = c->pop_pack (false);
start_object ("b", 1, c);
add_offset (obj_e, c);
add_offset (obj_h, c);
unsigned obj_b = c->pop_pack (false);
start_object ("a", 1, c);
add_offset (obj_b, c);
add_wide_offset (obj_c, c);
add_wide_offset (obj_d, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_spaces_16bit_connection_expected (hb_serialize_context_t* c)
{
std::string large_string(70000, 'a');
c->start_serialize<char> ();
unsigned obj_g_prime = add_object ("g", 1, c);
start_object (large_string.c_str (), 40000, c);
add_offset (obj_g_prime, c);
unsigned obj_e_prime = c->pop_pack (false);
start_object ("c", 1, c);
add_offset (obj_e_prime, c);
unsigned obj_c = c->pop_pack (false);
unsigned obj_h_prime = add_object ("h", 1, c);
start_object (large_string.c_str (), 40000, c);
add_offset (obj_h_prime, c);
unsigned obj_f = c->pop_pack (false);
start_object ("d", 1, c);
add_offset (obj_f, c);
unsigned obj_d = c->pop_pack (false);
unsigned obj_g = add_object ("g", 1, c);
start_object (large_string.c_str (), 40000, c);
add_offset (obj_g, c);
unsigned obj_e = c->pop_pack (false);
unsigned obj_h = add_object ("h", 1, c);
start_object ("b", 1, c);
add_offset (obj_e, c);
add_offset (obj_h, c);
unsigned obj_b = c->pop_pack (false);
start_object ("a", 1, c);
add_offset (obj_b, c);
add_wide_offset (obj_c, c);
add_wide_offset (obj_d, c);
c->pop_pack (false);
c->end_serialize ();
}
static void
populate_serializer_short_and_wide_subgraph_root (hb_serialize_context_t* c)
{
std::string large_string(70000, 'a');
c->start_serialize<char> ();
unsigned obj_e = add_object ("e", 1, c);
start_object (large_string.c_str (), 40000, c);
add_offset (obj_e, c);
unsigned obj_c = c->pop_pack (false);
start_object (large_string.c_str (), 40000, c);
add_offset (obj_c, c);
unsigned obj_d = c->pop_pack (false);
start_object ("b", 1, c);
add_offset (obj_c, c);
add_offset (obj_e, c);
unsigned obj_b = c->pop_pack (false);
start_object ("a", 1, c);
add_offset (obj_b, c);
add_wide_offset (obj_c, c);
add_wide_offset (obj_d, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_short_and_wide_subgraph_root_expected (hb_serialize_context_t* c)
{
std::string large_string(70000, 'a');
c->start_serialize<char> ();
unsigned obj_e_prime = add_object ("e", 1, c);
start_object (large_string.c_str (), 40000, c);
add_offset (obj_e_prime, c);
unsigned obj_c_prime = c->pop_pack (false);
start_object (large_string.c_str (), 40000, c);
add_offset (obj_c_prime, c);
unsigned obj_d = c->pop_pack (false);
unsigned obj_e = add_object ("e", 1, c);
start_object (large_string.c_str (), 40000, c);
add_offset (obj_e, c);
unsigned obj_c = c->pop_pack (false);
start_object ("b", 1, c);
add_offset (obj_c, c);
add_offset (obj_e, c);
unsigned obj_b = c->pop_pack (false);
start_object ("a", 1, c);
add_offset (obj_b, c);
add_wide_offset (obj_c_prime, c);
add_wide_offset (obj_d, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_with_split_spaces (hb_serialize_context_t* c)
{
// Overflow needs to be resolved by splitting the single space
std::string large_string(70000, 'a');
c->start_serialize<char> ();
unsigned obj_f = add_object ("f", 1, c);
start_object (large_string.c_str(), 40000, c);
add_offset (obj_f, c);
unsigned obj_d = c->pop_pack (false);
start_object (large_string.c_str(), 40000, c);
add_offset (obj_f, c);
unsigned obj_e = c->pop_pack (false);
start_object ("b", 1, c);
add_offset (obj_d, c);
unsigned obj_b = c->pop_pack (false);
start_object ("c", 1, c);
add_offset (obj_e, c);
unsigned obj_c = c->pop_pack (false);
start_object ("a", 1, c);
add_wide_offset (obj_b, c);
add_wide_offset (obj_c, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_with_split_spaces_2 (hb_serialize_context_t* c)
{
// Overflow needs to be resolved by splitting the single space
std::string large_string(70000, 'a');
c->start_serialize<char> ();
unsigned obj_f = add_object ("f", 1, c);
start_object (large_string.c_str(), 40000, c);
add_offset (obj_f, c);
unsigned obj_d = c->pop_pack (false);
start_object (large_string.c_str(), 40000, c);
add_offset (obj_f, c);
unsigned obj_e = c->pop_pack (false);
start_object ("b", 1, c);
add_offset (obj_d, c);
unsigned obj_b = c->pop_pack (false);
start_object ("c", 1, c);
add_offset (obj_e, c);
unsigned obj_c = c->pop_pack (false);
start_object ("a", 1, c);
add_offset (obj_b, c);
add_wide_offset (obj_b, c);
add_wide_offset (obj_c, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_with_split_spaces_expected (hb_serialize_context_t* c)
{
// Overflow needs to be resolved by splitting the single space
std::string large_string(70000, 'a');
c->start_serialize<char> ();
unsigned obj_f_prime = add_object ("f", 1, c);
start_object (large_string.c_str(), 40000, c);
add_offset (obj_f_prime, c);
unsigned obj_d = c->pop_pack (false);
start_object ("b", 1, c);
add_offset (obj_d, c);
unsigned obj_b = c->pop_pack (false);
unsigned obj_f = add_object ("f", 1, c);
start_object (large_string.c_str(), 40000, c);
add_offset (obj_f, c);
unsigned obj_e = c->pop_pack (false);
start_object ("c", 1, c);
add_offset (obj_e, c);
unsigned obj_c = c->pop_pack (false);
start_object ("a", 1, c);
add_wide_offset (obj_b, c);
add_wide_offset (obj_c, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_with_split_spaces_expected_2 (hb_serialize_context_t* c)
{
// Overflow needs to be resolved by splitting the single space
std::string large_string(70000, 'a');
c->start_serialize<char> ();
// Space 2
unsigned obj_f_double_prime = add_object ("f", 1, c);
start_object (large_string.c_str(), 40000, c);
add_offset (obj_f_double_prime, c);
unsigned obj_d_prime = c->pop_pack (false);
start_object ("b", 1, c);
add_offset (obj_d_prime, c);
unsigned obj_b_prime = c->pop_pack (false);
// Space 1
unsigned obj_f_prime = add_object ("f", 1, c);
start_object (large_string.c_str(), 40000, c);
add_offset (obj_f_prime, c);
unsigned obj_e = c->pop_pack (false);
start_object ("c", 1, c);
add_offset (obj_e, c);
unsigned obj_c = c->pop_pack (false);
// Space 0
unsigned obj_f = add_object ("f", 1, c);
start_object (large_string.c_str(), 40000, c);
add_offset (obj_f, c);
unsigned obj_d = c->pop_pack (false);
start_object ("b", 1, c);
add_offset (obj_d, c);
unsigned obj_b = c->pop_pack (false);
// Root
start_object ("a", 1, c);
add_offset (obj_b, c);
add_wide_offset (obj_b_prime, c);
add_wide_offset (obj_c, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_complex_2 (hb_serialize_context_t* c)
{
c->start_serialize<char> ();
unsigned obj_5 = add_object ("mn", 2, c);
unsigned obj_4 = add_object ("jkl", 3, c);
start_object ("ghi", 3, c);
add_offset (obj_4, c);
unsigned obj_3 = c->pop_pack (false);
start_object ("def", 3, c);
add_offset (obj_3, c);
unsigned obj_2 = c->pop_pack (false);
start_object ("abc", 3, c);
add_offset (obj_2, c);
add_offset (obj_4, c);
add_offset (obj_5, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_complex_3 (hb_serialize_context_t* c)
{
c->start_serialize<char> ();
unsigned obj_6 = add_object ("opqrst", 6, c);
unsigned obj_5 = add_object ("mn", 2, c);
start_object ("jkl", 3, c);
add_offset (obj_6, c);
unsigned obj_4 = c->pop_pack (false);
start_object ("ghi", 3, c);
add_offset (obj_4, c);
unsigned obj_3 = c->pop_pack (false);
start_object ("def", 3, c);
add_offset (obj_3, c);
unsigned obj_2 = c->pop_pack (false);
start_object ("abc", 3, c);
add_offset (obj_2, c);
add_offset (obj_4, c);
add_offset (obj_5, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_virtual_link (hb_serialize_context_t* c)
{
c->start_serialize<char> ();
unsigned obj_d = add_object ("d", 1, c);
start_object ("b", 1, c);
add_offset (obj_d, c);
unsigned obj_b = c->pop_pack (false);
start_object ("e", 1, c);
add_virtual_offset (obj_b, c);
unsigned obj_e = c->pop_pack (false);
start_object ("c", 1, c);
add_offset (obj_e, c);
unsigned obj_c = c->pop_pack (false);
start_object ("a", 1, c);
add_offset (obj_b, c);
add_offset (obj_c, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_with_24_and_32_bit_offsets (hb_serialize_context_t* c)
{
std::string large_string(60000, 'a');
c->start_serialize<char> ();
unsigned obj_f = add_object ("f", 1, c);
unsigned obj_g = add_object ("g", 1, c);
unsigned obj_j = add_object ("j", 1, c);
unsigned obj_k = add_object ("k", 1, c);
start_object (large_string.c_str (), 40000, c);
add_offset (obj_f, c);
unsigned obj_c = c->pop_pack (false);
start_object (large_string.c_str (), 40000, c);
add_offset (obj_g, c);
unsigned obj_d = c->pop_pack (false);
start_object (large_string.c_str (), 40000, c);
add_offset (obj_j, c);
unsigned obj_h = c->pop_pack (false);
start_object (large_string.c_str (), 40000, c);
add_offset (obj_k, c);
unsigned obj_i = c->pop_pack (false);
start_object ("e", 1, c);
add_wide_offset (obj_h, c);
add_wide_offset (obj_i, c);
unsigned obj_e = c->pop_pack (false);
start_object ("b", 1, c);
add_24_offset (obj_c, c);
add_24_offset (obj_d, c);
add_24_offset (obj_e, c);
unsigned obj_b = c->pop_pack (false);
start_object ("a", 1, c);
add_24_offset (obj_b, c);
c->pop_pack (false);
c->end_serialize();
}
static void
populate_serializer_with_extension_promotion (hb_serialize_context_t* c,
int num_extensions = 0)
{
constexpr int num_lookups = 5;
constexpr int num_subtables = num_lookups * 2;
unsigned int lookups[num_lookups];
unsigned int subtables[num_subtables];
unsigned int extensions[num_subtables];
std::string large_string(60000, 'a');
c->start_serialize<char> ();
for (int i = num_subtables - 1; i >= 0; i--)
subtables[i] = add_object(large_string.c_str (), 15000, c);
for (int i = num_subtables - 1;
i >= (num_lookups - num_extensions) * 2;
i--)
{
unsigned ext_index = i - (num_lookups - num_extensions) * 2;
unsigned subtable_index = num_subtables - ext_index - 1;
extensions[i] = add_extension (subtables[subtable_index], 5, c);
}
for (int i = num_lookups - 1; i >= 0; i--)
{
bool is_ext = (i >= (num_lookups - num_extensions));
start_lookup (is_ext ? (char) 7 : (char) 5,
2,
c);
if (is_ext) {
add_offset (extensions[i * 2], c);
add_offset (extensions[i * 2 + 1], c);
} else {
add_offset (subtables[i * 2], c);
add_offset (subtables[i * 2 + 1], c);
}
lookups[i] = finish_lookup (c);
}
unsigned lookup_list = add_lookup_list (lookups, num_lookups, c);
add_gsubgpos_header (lookup_list, c);
c->end_serialize();
}
template<int num_pair_pos_1, int num_pair_set>
static void
populate_serializer_with_large_pair_pos_1 (hb_serialize_context_t* c,
bool as_extension = false)
{
std::string large_string(60000, 'a');
c->start_serialize<char> ();
constexpr int total_pair_set = num_pair_pos_1 * num_pair_set;
unsigned pair_set[total_pair_set];
unsigned coverage[num_pair_pos_1];
unsigned pair_pos_1[num_pair_pos_1];
for (int i = num_pair_pos_1 - 1; i >= 0; i--)
{
for (int j = (i + 1) * num_pair_set - 1; j >= i * num_pair_set; j--)
pair_set[j] = add_object (large_string.c_str (), 30000 + j, c);
coverage[i] = add_coverage (i * num_pair_set,
(i + 1) * num_pair_set - 1, c);
pair_pos_1[i] = add_pair_pos_1 (&pair_set[i * num_pair_set],
num_pair_set,
coverage[i],
c);
}
unsigned pair_pos_2 = add_object (large_string.c_str(), 200, c);
if (as_extension) {
pair_pos_2 = add_extension (pair_pos_2, 2, c);
for (int i = num_pair_pos_1 - 1; i >= 0; i--)
pair_pos_1[i] = add_extension (pair_pos_1[i], 2, c);
}
start_lookup (as_extension ? 9 : 2, 1 + num_pair_pos_1, c);
for (int i = 0; i < num_pair_pos_1; i++)
add_offset (pair_pos_1[i], c);
add_offset (pair_pos_2, c);
unsigned lookup = finish_lookup (c);
unsigned lookup_list = add_lookup_list (&lookup, 1, c);
add_gsubgpos_header (lookup_list, c);
c->end_serialize();
}
template<int num_pair_pos_2, int num_class_1, int num_class_2>
static void
populate_serializer_with_large_pair_pos_2 (hb_serialize_context_t* c,
bool as_extension = false,
bool with_device_tables = false,
bool extra_table = true)
{
std::string large_string(100000, 'a');
c->start_serialize<char> ();
unsigned coverage[num_pair_pos_2];
unsigned class_def_1[num_pair_pos_2];
unsigned class_def_2[num_pair_pos_2];
unsigned pair_pos_2[num_pair_pos_2];
unsigned* device_tables = (unsigned*) calloc (num_pair_pos_2 * num_class_1 * num_class_2,
sizeof(unsigned));
// Total glyphs = num_class_1 * num_pair_pos_2
for (int i = num_pair_pos_2 - 1; i >= 0; i--)
{
unsigned start_glyph = 5 + i * num_class_1;
if (num_class_2 >= num_class_1)
{
class_def_2[i] = add_class_def (11,
10 + num_class_2, c);
class_def_1[i] = add_class_def (start_glyph + 1,
start_glyph + num_class_1,
c);
} else {
class_def_1[i] = add_class_def (start_glyph + 1,
start_glyph + num_class_1,
c);
class_def_2[i] = add_class_def (11,
10 + num_class_2, c);
}
coverage[i] = add_coverage (start_glyph,
start_glyph + num_class_1 - 1,
c);
if (with_device_tables)
{
for(int j = (i + 1) * num_class_1 * num_class_2 - 1;
j >= i * num_class_1 * num_class_2;
j--)
{
uint8_t table[] = {
(uint8_t) ((j >> 8) & 0xFF),
(uint8_t) (j & 0xFF),
};
device_tables[j] = add_object ((char*) table, 2, c);
}
}
pair_pos_2[i] = add_pair_pos_2 (1 + i * num_class_1,
coverage[i],
class_def_1[i], num_class_1,
class_def_2[i], num_class_2,
with_device_tables
? &device_tables[i * num_class_1 * num_class_2]
: nullptr,
c);
}
unsigned pair_pos_1 = 0;
if (extra_table) pair_pos_1 = add_object (large_string.c_str(), 100000, c);
if (as_extension) {
for (int i = num_pair_pos_2 - 1; i >= 0; i--)
pair_pos_2[i] = add_extension (pair_pos_2[i], 2, c);
if (extra_table)
pair_pos_1 = add_extension (pair_pos_1, 2, c);
}
start_lookup (as_extension ? 9 : 2, 1 + num_pair_pos_2, c);
if (extra_table)
add_offset (pair_pos_1, c);
for (int i = 0; i < num_pair_pos_2; i++)
add_offset (pair_pos_2[i], c);
unsigned lookup = finish_lookup (c);
unsigned lookup_list = add_lookup_list (&lookup, 1, c);
add_gsubgpos_header (lookup_list, c);
c->end_serialize();
free (device_tables);
}
template<int mark_count,
int class_count,
int base_count,
int table_count>
static void
populate_serializer_with_large_mark_base_pos_1 (hb_serialize_context_t* c)
{
c->start_serialize<char> ();
MarkBasePosBuffers<mark_count, class_count, base_count, table_count> buffers (c);
unsigned mark_base_pos[table_count];
for (unsigned i = 0; i < table_count; i++)
mark_base_pos[i] = buffers.create_mark_base_pos_1 (i, c);
for (int i = 0; i < table_count; i++)
mark_base_pos[i] = add_extension (mark_base_pos[i], 4, c);
start_lookup (9, table_count, c);
for (int i = 0; i < table_count; i++)
add_offset (mark_base_pos[i], c);
unsigned lookup = finish_lookup (c);
unsigned lookup_list = add_lookup_list (&lookup, 1, c);
add_gsubgpos_header (lookup_list, c);
c->end_serialize();
}
static void test_sort_shortest ()
{
size_t buffer_size = 100;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_complex_2 (&c);
graph_t graph (c.object_graph ());
graph.sort_shortest_distance ();
assert(strncmp (graph.object (4).head, "abc", 3) == 0);
assert(graph.object (4).real_links.length == 3);
assert(graph.object (4).real_links[0].objidx == 2);
assert(graph.object (4).real_links[1].objidx == 0);
assert(graph.object (4).real_links[2].objidx == 3);
assert(strncmp (graph.object (3).head, "mn", 2) == 0);
assert(graph.object (3).real_links.length == 0);
assert(strncmp (graph.object (2).head, "def", 3) == 0);
assert(graph.object (2).real_links.length == 1);
assert(graph.object (2).real_links[0].objidx == 1);
assert(strncmp (graph.object (1).head, "ghi", 3) == 0);
assert(graph.object (1).real_links.length == 1);
assert(graph.object (1).real_links[0].objidx == 0);
assert(strncmp (graph.object (0).head, "jkl", 3) == 0);
assert(graph.object (0).real_links.length == 0);
free (buffer);
}
static void test_duplicate_leaf ()
{
size_t buffer_size = 100;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_complex_2 (&c);
graph_t graph (c.object_graph ());
graph.duplicate (4, 1);
assert(strncmp (graph.object (5).head, "abc", 3) == 0);
assert(graph.object (5).real_links.length == 3);
assert(graph.object (5).real_links[0].objidx == 3);
assert(graph.object (5).real_links[1].objidx == 4);
assert(graph.object (5).real_links[2].objidx == 0);
assert(strncmp (graph.object (4).head, "jkl", 3) == 0);
assert(graph.object (4).real_links.length == 0);
assert(strncmp (graph.object (3).head, "def", 3) == 0);
assert(graph.object (3).real_links.length == 1);
assert(graph.object (3).real_links[0].objidx == 2);
assert(strncmp (graph.object (2).head, "ghi", 3) == 0);
assert(graph.object (2).real_links.length == 1);
assert(graph.object (2).real_links[0].objidx == 1);
assert(strncmp (graph.object (1).head, "jkl", 3) == 0);
assert(graph.object (1).real_links.length == 0);
assert(strncmp (graph.object (0).head, "mn", 2) == 0);
assert(graph.object (0).real_links.length == 0);
free (buffer);
}
static void test_duplicate_interior ()
{
size_t buffer_size = 100;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_complex_3 (&c);
graph_t graph (c.object_graph ());
graph.duplicate (3, 2);
assert(strncmp (graph.object (6).head, "abc", 3) == 0);
assert(graph.object (6).real_links.length == 3);
assert(graph.object (6).real_links[0].objidx == 4);
assert(graph.object (6).real_links[1].objidx == 2);
assert(graph.object (6).real_links[2].objidx == 1);
assert(strncmp (graph.object (5).head, "jkl", 3) == 0);
assert(graph.object (5).real_links.length == 1);
assert(graph.object (5).real_links[0].objidx == 0);
assert(strncmp (graph.object (4).head, "def", 3) == 0);
assert(graph.object (4).real_links.length == 1);
assert(graph.object (4).real_links[0].objidx == 3);
assert(strncmp (graph.object (3).head, "ghi", 3) == 0);
assert(graph.object (3).real_links.length == 1);
assert(graph.object (3).real_links[0].objidx == 5);
assert(strncmp (graph.object (2).head, "jkl", 3) == 0);
assert(graph.object (2).real_links.length == 1);
assert(graph.object (2).real_links[0].objidx == 0);
assert(strncmp (graph.object (1).head, "mn", 2) == 0);
assert(graph.object (1).real_links.length == 0);
assert(strncmp (graph.object (0).head, "opqrst", 6) == 0);
assert(graph.object (0).real_links.length == 0);
free (buffer);
}
static void
test_serialize ()
{
size_t buffer_size = 100;
void* buffer_1 = malloc (buffer_size);
hb_serialize_context_t c1 (buffer_1, buffer_size);
populate_serializer_simple (&c1);
hb_bytes_t expected = c1.copy_bytes ();
graph_t graph (c1.object_graph ());
hb_blob_t* out = graph::serialize (graph);
free (buffer_1);
hb_bytes_t actual = out->as_bytes ();
assert (actual == expected);
expected.fini ();
hb_blob_destroy (out);
}
static void test_will_overflow_1 ()
{
size_t buffer_size = 100;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_complex_2 (&c);
graph_t graph (c.object_graph ());
assert (!graph::will_overflow (graph, nullptr));
free (buffer);
}
static void test_will_overflow_2 ()
{
size_t buffer_size = 160000;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_with_overflow (&c);
graph_t graph (c.object_graph ());
assert (graph::will_overflow (graph, nullptr));
free (buffer);
}
static void test_will_overflow_3 ()
{
size_t buffer_size = 160000;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_with_dedup_overflow (&c);
graph_t graph (c.object_graph ());
assert (graph::will_overflow (graph, nullptr));
free (buffer);
}
static void test_resolve_overflows_via_sort ()
{
size_t buffer_size = 160000;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_with_overflow (&c);
graph_t graph (c.object_graph ());
hb_blob_t* out = hb_resolve_overflows (c.object_graph (), HB_TAG_NONE);
assert (out);
hb_bytes_t result = out->as_bytes ();
assert (result.length == (80000 + 3 + 3 * 2));
free (buffer);
hb_blob_destroy (out);
}
static void test_resolve_overflows_via_duplication ()
{
size_t buffer_size = 160000;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_with_dedup_overflow (&c);
graph_t graph (c.object_graph ());
hb_blob_t* out = hb_resolve_overflows (c.object_graph (), HB_TAG_NONE);
assert (out);
hb_bytes_t result = out->as_bytes ();
assert (result.length == (10000 + 2 * 2 + 60000 + 2 + 3 * 2));
free (buffer);
hb_blob_destroy (out);
}
static void test_resolve_overflows_via_space_assignment ()
{
size_t buffer_size = 160000;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_spaces (&c, true);
void* expected_buffer = malloc (buffer_size);
hb_serialize_context_t e (expected_buffer, buffer_size);
populate_serializer_spaces (&e, false);
run_resolve_overflow_test ("test_resolve_overflows_via_space_assignment",
c,
e);
free (buffer);
free (expected_buffer);
}
static void test_resolve_overflows_via_isolation ()
{
size_t buffer_size = 160000;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_with_isolation_overflow (&c);
graph_t graph (c.object_graph ());
assert (c.offset_overflow ());
hb_blob_t* out = hb_resolve_overflows (c.object_graph (), HB_TAG ('G', 'S', 'U', 'B'), 0);
assert (out);
hb_bytes_t result = out->as_bytes ();
assert (result.length == (1 + 10000 + 60000 + 1 + 1
+ 4 + 3 * 2));
free (buffer);
hb_blob_destroy (out);
}
static void test_resolve_overflows_via_isolation_with_recursive_duplication ()
{
size_t buffer_size = 160000;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_with_isolation_overflow_complex (&c);
void* expected_buffer = malloc (buffer_size);
hb_serialize_context_t e (expected_buffer, buffer_size);
populate_serializer_with_isolation_overflow_complex_expected (&e);
run_resolve_overflow_test ("test_resolve_overflows_via_isolation_with_recursive_duplication",
c,
e);
free (buffer);
free (expected_buffer);
}
static void test_resolve_overflows_via_isolating_16bit_space ()
{
size_t buffer_size = 160000;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_spaces_16bit_connection (&c);
void* expected_buffer = malloc (buffer_size);
hb_serialize_context_t e (expected_buffer, buffer_size);
populate_serializer_spaces_16bit_connection_expected (&e);
run_resolve_overflow_test ("test_resolve_overflows_via_isolating_16bit_space",
c,
e);
free (buffer);
free (expected_buffer);
}
static void test_resolve_overflows_via_isolating_16bit_space_2 ()
{
size_t buffer_size = 160000;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_short_and_wide_subgraph_root (&c);
void* expected_buffer = malloc (buffer_size);
hb_serialize_context_t e (expected_buffer, buffer_size);
populate_serializer_short_and_wide_subgraph_root_expected (&e);
run_resolve_overflow_test ("test_resolve_overflows_via_isolating_16bit_space_2",
c,
e);
free (buffer);
free (expected_buffer);
}
static void test_resolve_overflows_via_isolation_spaces ()
{
size_t buffer_size = 160000;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_with_isolation_overflow_spaces (&c);
graph_t graph (c.object_graph ());
assert (c.offset_overflow ());
hb_blob_t* out = hb_resolve_overflows (c.object_graph (), HB_TAG ('G', 'S', 'U', 'B'), 0);
assert (out);
hb_bytes_t result = out->as_bytes ();
unsigned expected_length = 3 + 2 * 60000; // objects
expected_length += 2 * 4 + 2 * 2; // links
assert (result.length == expected_length);
free (buffer);
hb_blob_destroy (out);
}
static void test_resolve_mixed_overflows_via_isolation_spaces ()
{
size_t buffer_size = 200000;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_with_24_and_32_bit_offsets (&c);
graph_t graph (c.object_graph ());
assert (c.offset_overflow ());
hb_blob_t* out = hb_resolve_overflows (c.object_graph (), HB_TAG ('G', 'S', 'U', 'B'), 0);
assert (out);
hb_bytes_t result = out->as_bytes ();
unsigned expected_length =
// Objects
7 +
4 * 40000;
expected_length +=
// Links
2 * 4 + // 32
4 * 3 + // 24
4 * 2; // 16
assert (result.length == expected_length);
free (buffer);
hb_blob_destroy (out);
}
static void test_resolve_with_extension_promotion ()
{
size_t buffer_size = 200000;
void* buffer = malloc (buffer_size);
assert (buffer);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_with_extension_promotion (&c);
void* expected_buffer = malloc (buffer_size);
assert (expected_buffer);
hb_serialize_context_t e (expected_buffer, buffer_size);
populate_serializer_with_extension_promotion (&e, 3);
run_resolve_overflow_test ("test_resolve_with_extension_promotion",
c,
e,
20,
true);
free (buffer);
free (expected_buffer);
}
static void test_resolve_with_basic_pair_pos_1_split ()
{
size_t buffer_size = 200000;
void* buffer = malloc (buffer_size);
assert (buffer);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_with_large_pair_pos_1 <1, 4>(&c);
void* expected_buffer = malloc (buffer_size);
assert (expected_buffer);
hb_serialize_context_t e (expected_buffer, buffer_size);
populate_serializer_with_large_pair_pos_1 <2, 2>(&e, true);
run_resolve_overflow_test ("test_resolve_with_basic_pair_pos_1_split",
c,
e,
20,
true,
HB_TAG('G', 'P', 'O', 'S'));
free (buffer);
free (expected_buffer);
}
static void test_resolve_with_extension_pair_pos_1_split ()
{
size_t buffer_size = 200000;
void* buffer = malloc (buffer_size);
assert (buffer);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_with_large_pair_pos_1 <1, 4>(&c, true);
void* expected_buffer = malloc (buffer_size);
assert (expected_buffer);
hb_serialize_context_t e (expected_buffer, buffer_size);
populate_serializer_with_large_pair_pos_1 <2, 2>(&e, true);
run_resolve_overflow_test ("test_resolve_with_extension_pair_pos_1_split",
c,
e,
20,
true,
HB_TAG('G', 'P', 'O', 'S'));
free (buffer);
free (expected_buffer);
}
static void test_resolve_with_basic_pair_pos_2_split ()
{
size_t buffer_size = 300000;
void* buffer = malloc (buffer_size);
assert (buffer);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_with_large_pair_pos_2 <1, 4, 3000>(&c);
void* expected_buffer = malloc (buffer_size);
assert (expected_buffer);
hb_serialize_context_t e (expected_buffer, buffer_size);
populate_serializer_with_large_pair_pos_2 <2, 2, 3000>(&e, true);
run_resolve_overflow_test ("test_resolve_with_basic_pair_pos_2_split",
c,
e,
20,
true,
HB_TAG('G', 'P', 'O', 'S'));
free (buffer);
free (expected_buffer);
}
static void test_resolve_with_close_to_limit_pair_pos_2_split ()
{
size_t buffer_size = 300000;
void* buffer = malloc (buffer_size);
assert (buffer);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_with_large_pair_pos_2 <1, 1596, 10>(&c, true, false, false);
void* expected_buffer = malloc (buffer_size);
assert (expected_buffer);
hb_serialize_context_t e (expected_buffer, buffer_size);
populate_serializer_with_large_pair_pos_2 <2, 798, 10>(&e, true, false, false);
run_resolve_overflow_test ("test_resolve_with_close_to_limit_pair_pos_2_split",
c,
e,
20,
true,
HB_TAG('G', 'P', 'O', 'S'));
free (buffer);
free (expected_buffer);
}
static void test_resolve_with_pair_pos_2_split_with_device_tables ()
{
size_t buffer_size = 300000;
void* buffer = malloc (buffer_size);
assert (buffer);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_with_large_pair_pos_2 <1, 4, 2000>(&c, false, true);
void* expected_buffer = malloc (buffer_size);
assert (expected_buffer);
hb_serialize_context_t e (expected_buffer, buffer_size);
populate_serializer_with_large_pair_pos_2 <2, 2, 2000>(&e, true, true);
run_resolve_overflow_test ("test_resolve_with_pair_pos_2_split_with_device_tables",
c,
e,
20,
true,
HB_TAG('G', 'P', 'O', 'S'));
free (buffer);
free (expected_buffer);
}
static void test_resolve_with_basic_mark_base_pos_1_split ()
{
size_t buffer_size = 200000;
void* buffer = malloc (buffer_size);
assert (buffer);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_with_large_mark_base_pos_1 <40, 10, 110, 1>(&c);
void* expected_buffer = malloc (buffer_size);
assert (expected_buffer);
hb_serialize_context_t e (expected_buffer, buffer_size);
populate_serializer_with_large_mark_base_pos_1 <40, 10, 110, 2>(&e);
run_resolve_overflow_test ("test_resolve_with_basic_mark_base_pos_1_split",
c,
e,
20,
true,
HB_TAG('G', 'P', 'O', 'S'));
free (buffer);
free (expected_buffer);
}
static void test_resolve_overflows_via_splitting_spaces ()
{
size_t buffer_size = 160000;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_with_split_spaces (&c);
void* expected_buffer = malloc (buffer_size);
hb_serialize_context_t e (expected_buffer, buffer_size);
populate_serializer_with_split_spaces_expected (&e);
run_resolve_overflow_test ("test_resolve_overflows_via_splitting_spaces",
c,
e,
1);
free (buffer);
free (expected_buffer);
}
static void test_resolve_overflows_via_splitting_spaces_2 ()
{
size_t buffer_size = 160000;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_with_split_spaces_2 (&c);
void* expected_buffer = malloc (buffer_size);
hb_serialize_context_t e (expected_buffer, buffer_size);
populate_serializer_with_split_spaces_expected_2 (&e);
run_resolve_overflow_test ("test_resolve_overflows_via_splitting_spaces_2",
c,
e,
1);
free (buffer);
free (expected_buffer);
}
static void test_resolve_overflows_via_priority ()
{
size_t buffer_size = 160000;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_with_priority_overflow (&c);
void* expected_buffer = malloc (buffer_size);
hb_serialize_context_t e (expected_buffer, buffer_size);
populate_serializer_with_priority_overflow_expected (&e);
run_resolve_overflow_test ("test_resolve_overflows_via_priority",
c,
e,
3);
free (buffer);
free (expected_buffer);
}
static void test_virtual_link ()
{
size_t buffer_size = 100;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
populate_serializer_virtual_link (&c);
hb_blob_t* out = hb_resolve_overflows (c.object_graph (), HB_TAG_NONE);
assert (out);
hb_bytes_t result = out->as_bytes ();
assert (result.length == 5 + 4 * 2);
assert (result[0] == 'a');
assert (result[5] == 'c');
assert (result[8] == 'e');
assert (result[9] == 'b');
assert (result[12] == 'd');
free (buffer);
hb_blob_destroy (out);
}
static void
test_shared_node_with_virtual_links ()
{
size_t buffer_size = 100;
void* buffer = malloc (buffer_size);
hb_serialize_context_t c (buffer, buffer_size);
c.start_serialize<char> ();
unsigned obj_b = add_object ("b", 1, &c);
unsigned obj_c = add_object ("c", 1, &c);
start_object ("d", 1, &c);
add_virtual_offset (obj_b, &c);
unsigned obj_d_1 = c.pop_pack ();
start_object ("d", 1, &c);
add_virtual_offset (obj_c, &c);
unsigned obj_d_2 = c.pop_pack ();
assert (obj_d_1 == obj_d_2);
start_object ("a", 1, &c);
add_offset (obj_b, &c);
add_offset (obj_c, &c);
add_offset (obj_d_1, &c);
add_offset (obj_d_2, &c);
c.pop_pack ();
c.end_serialize ();
assert(c.object_graph() [obj_d_1]->virtual_links.length == 2);
assert(c.object_graph() [obj_d_1]->virtual_links[0].objidx == obj_b);
assert(c.object_graph() [obj_d_1]->virtual_links[1].objidx == obj_c);
free(buffer);
}
// TODO(garretrieger): update will_overflow tests to check the overflows array.
// TODO(garretrieger): add tests for priority raising.
int
main (int argc, char **argv)
{
test_serialize ();
test_sort_shortest ();
test_will_overflow_1 ();
test_will_overflow_2 ();
test_will_overflow_3 ();
test_resolve_overflows_via_sort ();
test_resolve_overflows_via_duplication ();
test_resolve_overflows_via_priority ();
test_resolve_overflows_via_space_assignment ();
test_resolve_overflows_via_isolation ();
test_resolve_overflows_via_isolation_with_recursive_duplication ();
test_resolve_overflows_via_isolation_spaces ();
test_resolve_overflows_via_isolating_16bit_space ();
test_resolve_overflows_via_isolating_16bit_space_2 ();
test_resolve_overflows_via_splitting_spaces ();
test_resolve_overflows_via_splitting_spaces_2 ();
test_resolve_mixed_overflows_via_isolation_spaces ();
test_duplicate_leaf ();
test_duplicate_interior ();
test_virtual_link ();
test_shared_node_with_virtual_links ();
test_resolve_with_extension_promotion ();
test_resolve_with_basic_pair_pos_1_split ();
test_resolve_with_extension_pair_pos_1_split ();
test_resolve_with_basic_pair_pos_2_split ();
test_resolve_with_pair_pos_2_split_with_device_tables ();
test_resolve_with_close_to_limit_pair_pos_2_split ();
test_resolve_with_basic_mark_base_pos_1_split ();
// TODO(grieger): have run overflow tests compare graph equality not final packed binary.
// TODO(grieger): split test where multiple subtables in one lookup are split to test link ordering.
// TODO(grieger): split test where coverage table in subtable that is being split is shared.
// TODO(grieger): test with extensions already mixed in as well.
// TODO(grieger): test two layer ext promotion setup.
// TODO(grieger): test sorting by subtables per byte in ext. promotion.
}