| #include <ctype.h> |
| #include <netlink/attr.h> |
| #include <errno.h> |
| #include <stdbool.h> |
| #include "iw.h" |
| #include "nl80211.h" |
| |
| void mac_addr_n2a(char *mac_addr, const unsigned char *arg) |
| { |
| int i, l; |
| |
| l = 0; |
| for (i = 0; i < ETH_ALEN ; i++) { |
| if (i == 0) { |
| sprintf(mac_addr+l, "%02x", arg[i]); |
| l += 2; |
| } else { |
| sprintf(mac_addr+l, ":%02x", arg[i]); |
| l += 3; |
| } |
| } |
| } |
| |
| int mac_addr_a2n(unsigned char *mac_addr, char *arg) |
| { |
| int i; |
| |
| for (i = 0; i < ETH_ALEN ; i++) { |
| int temp; |
| char *cp = strchr(arg, ':'); |
| if (cp) { |
| *cp = 0; |
| cp++; |
| } |
| if (sscanf(arg, "%x", &temp) != 1) |
| return -1; |
| if (temp < 0 || temp > 255) |
| return -1; |
| |
| mac_addr[i] = temp; |
| if (!cp) |
| break; |
| arg = cp; |
| } |
| if (i < ETH_ALEN - 1) |
| return -1; |
| |
| return 0; |
| } |
| |
| int parse_hex_mask(char *hexmask, unsigned char **result, size_t *result_len, |
| unsigned char **mask) |
| { |
| size_t len = strlen(hexmask) / 2; |
| unsigned char *result_val; |
| unsigned char *result_mask = NULL; |
| |
| int pos = 0; |
| |
| *result_len = 0; |
| |
| result_val = calloc(len + 2, 1); |
| if (!result_val) |
| goto error; |
| *result = result_val; |
| if (mask) { |
| result_mask = calloc(DIV_ROUND_UP(len, 8) + 2, 1); |
| if (!result_mask) |
| goto error; |
| *mask = result_mask; |
| } |
| |
| while (1) { |
| char *cp = strchr(hexmask, ':'); |
| if (cp) { |
| *cp = 0; |
| cp++; |
| } |
| |
| if (result_mask && (strcmp(hexmask, "-") == 0 || |
| strcmp(hexmask, "xx") == 0 || |
| strcmp(hexmask, "--") == 0)) { |
| /* skip this byte and leave mask bit unset */ |
| } else { |
| int temp, mask_pos; |
| char *end; |
| |
| temp = strtoul(hexmask, &end, 16); |
| if (*end) |
| goto error; |
| if (temp < 0 || temp > 255) |
| goto error; |
| result_val[pos] = temp; |
| |
| mask_pos = pos / 8; |
| if (result_mask) |
| result_mask[mask_pos] |= 1 << (pos % 8); |
| } |
| |
| (*result_len)++; |
| pos++; |
| |
| if (!cp) |
| break; |
| hexmask = cp; |
| } |
| |
| return 0; |
| error: |
| free(result_val); |
| free(result_mask); |
| return -1; |
| } |
| |
| unsigned char *parse_hex(char *hex, size_t *outlen) |
| { |
| unsigned char *result; |
| |
| if (parse_hex_mask(hex, &result, outlen, NULL)) |
| return NULL; |
| return result; |
| } |
| |
| static const char *ifmodes[NL80211_IFTYPE_MAX + 1] = { |
| "unspecified", |
| "IBSS", |
| "managed", |
| "AP", |
| "AP/VLAN", |
| "WDS", |
| "monitor", |
| "mesh point", |
| "P2P-client", |
| "P2P-GO", |
| "P2P-device", |
| "outside context of a BSS", |
| "NAN", |
| }; |
| |
| static char modebuf[100]; |
| |
| const char *iftype_name(enum nl80211_iftype iftype) |
| { |
| if (iftype <= NL80211_IFTYPE_MAX && ifmodes[iftype]) |
| return ifmodes[iftype]; |
| sprintf(modebuf, "Unknown mode (%d)", iftype); |
| return modebuf; |
| } |
| |
| static const char *commands[NL80211_CMD_MAX + 1] = { |
| /* |
| * sed 's/^\tNL80211_CMD_//;t n;d;:n s%^\([^=]*\),.*%\t[NL80211_CMD_\1] = \"\L\1\",%;t;d' nl80211.h |
| */ |
| [NL80211_CMD_UNSPEC] = "unspec", |
| [NL80211_CMD_GET_WIPHY] = "get_wiphy", |
| [NL80211_CMD_SET_WIPHY] = "set_wiphy", |
| [NL80211_CMD_NEW_WIPHY] = "new_wiphy", |
| [NL80211_CMD_DEL_WIPHY] = "del_wiphy", |
| [NL80211_CMD_GET_INTERFACE] = "get_interface", |
| [NL80211_CMD_SET_INTERFACE] = "set_interface", |
| [NL80211_CMD_NEW_INTERFACE] = "new_interface", |
| [NL80211_CMD_DEL_INTERFACE] = "del_interface", |
| [NL80211_CMD_GET_KEY] = "get_key", |
| [NL80211_CMD_SET_KEY] = "set_key", |
| [NL80211_CMD_NEW_KEY] = "new_key", |
| [NL80211_CMD_DEL_KEY] = "del_key", |
| [NL80211_CMD_GET_BEACON] = "get_beacon", |
| [NL80211_CMD_SET_BEACON] = "set_beacon", |
| [NL80211_CMD_START_AP] = "start_ap", |
| [NL80211_CMD_STOP_AP] = "stop_ap", |
| [NL80211_CMD_GET_STATION] = "get_station", |
| [NL80211_CMD_SET_STATION] = "set_station", |
| [NL80211_CMD_NEW_STATION] = "new_station", |
| [NL80211_CMD_DEL_STATION] = "del_station", |
| [NL80211_CMD_GET_MPATH] = "get_mpath", |
| [NL80211_CMD_SET_MPATH] = "set_mpath", |
| [NL80211_CMD_NEW_MPATH] = "new_mpath", |
| [NL80211_CMD_DEL_MPATH] = "del_mpath", |
| [NL80211_CMD_SET_BSS] = "set_bss", |
| [NL80211_CMD_SET_REG] = "set_reg", |
| [NL80211_CMD_REQ_SET_REG] = "req_set_reg", |
| [NL80211_CMD_GET_MESH_CONFIG] = "get_mesh_config", |
| [NL80211_CMD_SET_MESH_CONFIG] = "set_mesh_config", |
| [NL80211_CMD_SET_MGMT_EXTRA_IE /* reserved; not used */] = "set_mgmt_extra_ie /* reserved; not used */", |
| [NL80211_CMD_GET_REG] = "get_reg", |
| [NL80211_CMD_GET_SCAN] = "get_scan", |
| [NL80211_CMD_TRIGGER_SCAN] = "trigger_scan", |
| [NL80211_CMD_NEW_SCAN_RESULTS] = "new_scan_results", |
| [NL80211_CMD_SCAN_ABORTED] = "scan_aborted", |
| [NL80211_CMD_REG_CHANGE] = "reg_change", |
| [NL80211_CMD_AUTHENTICATE] = "authenticate", |
| [NL80211_CMD_ASSOCIATE] = "associate", |
| [NL80211_CMD_DEAUTHENTICATE] = "deauthenticate", |
| [NL80211_CMD_DISASSOCIATE] = "disassociate", |
| [NL80211_CMD_MICHAEL_MIC_FAILURE] = "michael_mic_failure", |
| [NL80211_CMD_REG_BEACON_HINT] = "reg_beacon_hint", |
| [NL80211_CMD_JOIN_IBSS] = "join_ibss", |
| [NL80211_CMD_LEAVE_IBSS] = "leave_ibss", |
| [NL80211_CMD_TESTMODE] = "testmode", |
| [NL80211_CMD_CONNECT] = "connect", |
| [NL80211_CMD_ROAM] = "roam", |
| [NL80211_CMD_DISCONNECT] = "disconnect", |
| [NL80211_CMD_SET_WIPHY_NETNS] = "set_wiphy_netns", |
| [NL80211_CMD_GET_SURVEY] = "get_survey", |
| [NL80211_CMD_NEW_SURVEY_RESULTS] = "new_survey_results", |
| [NL80211_CMD_SET_PMKSA] = "set_pmksa", |
| [NL80211_CMD_DEL_PMKSA] = "del_pmksa", |
| [NL80211_CMD_FLUSH_PMKSA] = "flush_pmksa", |
| [NL80211_CMD_REMAIN_ON_CHANNEL] = "remain_on_channel", |
| [NL80211_CMD_CANCEL_REMAIN_ON_CHANNEL] = "cancel_remain_on_channel", |
| [NL80211_CMD_SET_TX_BITRATE_MASK] = "set_tx_bitrate_mask", |
| [NL80211_CMD_REGISTER_FRAME] = "register_frame", |
| [NL80211_CMD_FRAME] = "frame", |
| [NL80211_CMD_FRAME_TX_STATUS] = "frame_tx_status", |
| [NL80211_CMD_SET_POWER_SAVE] = "set_power_save", |
| [NL80211_CMD_GET_POWER_SAVE] = "get_power_save", |
| [NL80211_CMD_SET_CQM] = "set_cqm", |
| [NL80211_CMD_NOTIFY_CQM] = "notify_cqm", |
| [NL80211_CMD_SET_CHANNEL] = "set_channel", |
| [NL80211_CMD_SET_WDS_PEER] = "set_wds_peer", |
| [NL80211_CMD_FRAME_WAIT_CANCEL] = "frame_wait_cancel", |
| [NL80211_CMD_JOIN_MESH] = "join_mesh", |
| [NL80211_CMD_LEAVE_MESH] = "leave_mesh", |
| [NL80211_CMD_UNPROT_DEAUTHENTICATE] = "unprot_deauthenticate", |
| [NL80211_CMD_UNPROT_DISASSOCIATE] = "unprot_disassociate", |
| [NL80211_CMD_NEW_PEER_CANDIDATE] = "new_peer_candidate", |
| [NL80211_CMD_GET_WOWLAN] = "get_wowlan", |
| [NL80211_CMD_SET_WOWLAN] = "set_wowlan", |
| [NL80211_CMD_START_SCHED_SCAN] = "start_sched_scan", |
| [NL80211_CMD_STOP_SCHED_SCAN] = "stop_sched_scan", |
| [NL80211_CMD_SCHED_SCAN_RESULTS] = "sched_scan_results", |
| [NL80211_CMD_SCHED_SCAN_STOPPED] = "sched_scan_stopped", |
| [NL80211_CMD_SET_REKEY_OFFLOAD] = "set_rekey_offload", |
| [NL80211_CMD_PMKSA_CANDIDATE] = "pmksa_candidate", |
| [NL80211_CMD_TDLS_OPER] = "tdls_oper", |
| [NL80211_CMD_TDLS_MGMT] = "tdls_mgmt", |
| [NL80211_CMD_UNEXPECTED_FRAME] = "unexpected_frame", |
| [NL80211_CMD_PROBE_CLIENT] = "probe_client", |
| [NL80211_CMD_REGISTER_BEACONS] = "register_beacons", |
| [NL80211_CMD_UNEXPECTED_4ADDR_FRAME] = "unexpected_4addr_frame", |
| [NL80211_CMD_SET_NOACK_MAP] = "set_noack_map", |
| [NL80211_CMD_CH_SWITCH_NOTIFY] = "ch_switch_notify", |
| [NL80211_CMD_START_P2P_DEVICE] = "start_p2p_device", |
| [NL80211_CMD_STOP_P2P_DEVICE] = "stop_p2p_device", |
| [NL80211_CMD_CONN_FAILED] = "conn_failed", |
| [NL80211_CMD_SET_MCAST_RATE] = "set_mcast_rate", |
| [NL80211_CMD_SET_MAC_ACL] = "set_mac_acl", |
| [NL80211_CMD_RADAR_DETECT] = "radar_detect", |
| [NL80211_CMD_GET_PROTOCOL_FEATURES] = "get_protocol_features", |
| [NL80211_CMD_UPDATE_FT_IES] = "update_ft_ies", |
| [NL80211_CMD_FT_EVENT] = "ft_event", |
| [NL80211_CMD_CRIT_PROTOCOL_START] = "crit_protocol_start", |
| [NL80211_CMD_CRIT_PROTOCOL_STOP] = "crit_protocol_stop", |
| [NL80211_CMD_GET_COALESCE] = "get_coalesce", |
| [NL80211_CMD_SET_COALESCE] = "set_coalesce", |
| [NL80211_CMD_CHANNEL_SWITCH] = "channel_switch", |
| [NL80211_CMD_VENDOR] = "vendor", |
| [NL80211_CMD_SET_QOS_MAP] = "set_qos_map", |
| [NL80211_CMD_ADD_TX_TS] = "add_tx_ts", |
| [NL80211_CMD_DEL_TX_TS] = "del_tx_ts", |
| [NL80211_CMD_GET_MPP] = "get_mpp", |
| [NL80211_CMD_JOIN_OCB] = "join_ocb", |
| [NL80211_CMD_LEAVE_OCB] = "leave_ocb", |
| [NL80211_CMD_CH_SWITCH_STARTED_NOTIFY] = "ch_switch_started_notify", |
| [NL80211_CMD_TDLS_CHANNEL_SWITCH] = "tdls_channel_switch", |
| [NL80211_CMD_TDLS_CANCEL_CHANNEL_SWITCH] = "tdls_cancel_channel_switch", |
| [NL80211_CMD_WIPHY_REG_CHANGE] = "wiphy_reg_change", |
| [NL80211_CMD_ABORT_SCAN] = "abort_scan", |
| [NL80211_CMD_START_NAN] = "start_nan", |
| [NL80211_CMD_STOP_NAN] = "stop_nan", |
| [NL80211_CMD_ADD_NAN_FUNCTION] = "add_nan_function", |
| [NL80211_CMD_DEL_NAN_FUNCTION] = "del_nan_function", |
| [NL80211_CMD_CHANGE_NAN_CONFIG] = "change_nan_config", |
| [NL80211_CMD_NAN_MATCH] = "nan_match", |
| [NL80211_CMD_SET_MULTICAST_TO_UNICAST] = "set_multicast_to_unicast", |
| [NL80211_CMD_UPDATE_CONNECT_PARAMS] = "update_connect_params", |
| [NL80211_CMD_SET_PMK] = "set_pmk", |
| [NL80211_CMD_DEL_PMK] = "del_pmk", |
| [NL80211_CMD_PORT_AUTHORIZED] = "port_authorized", |
| [NL80211_CMD_RELOAD_REGDB] = "reload_regdb", |
| [NL80211_CMD_EXTERNAL_AUTH] = "external_auth", |
| [NL80211_CMD_STA_OPMODE_CHANGED] = "sta_opmode_changed", |
| [NL80211_CMD_CONTROL_PORT_FRAME] = "control_port_frame", |
| [NL80211_CMD_GET_FTM_RESPONDER_STATS] = "get_ftm_responder_stats", |
| [NL80211_CMD_PEER_MEASUREMENT_START] = "peer_measurement_start", |
| [NL80211_CMD_PEER_MEASUREMENT_RESULT] = "peer_measurement_result", |
| [NL80211_CMD_PEER_MEASUREMENT_COMPLETE] = "peer_measurement_complete", |
| [NL80211_CMD_NOTIFY_RADAR] = "notify_radar", |
| [NL80211_CMD_UPDATE_OWE_INFO] = "update_owe_info", |
| [NL80211_CMD_PROBE_MESH_LINK] = "probe_mesh_link", |
| [NL80211_CMD_SET_TID_CONFIG] = "set_tid_config", |
| [NL80211_CMD_UNPROT_BEACON] = "unprot_beacon", |
| [NL80211_CMD_CONTROL_PORT_FRAME_TX_STATUS] = "control_port_frame_tx_status", |
| [NL80211_CMD_SET_SAR_SPECS] = "set_sar_specs", |
| [NL80211_CMD_OBSS_COLOR_COLLISION] = "obss_color_collision", |
| [NL80211_CMD_COLOR_CHANGE_REQUEST] = "color_change_request", |
| [NL80211_CMD_COLOR_CHANGE_STARTED] = "color_change_started", |
| [NL80211_CMD_COLOR_CHANGE_ABORTED] = "color_change_aborted", |
| [NL80211_CMD_COLOR_CHANGE_COMPLETED] = "color_change_completed", |
| [NL80211_CMD_SET_FILS_AAD] = "set_fils_aad", |
| [NL80211_CMD_ASSOC_COMEBACK] = "assoc_comeback", |
| }; |
| |
| static char cmdbuf[100]; |
| |
| const char *command_name(enum nl80211_commands cmd) |
| { |
| if (cmd <= NL80211_CMD_MAX && commands[cmd]) |
| return commands[cmd]; |
| sprintf(cmdbuf, "Unknown command (%d)", cmd); |
| return cmdbuf; |
| } |
| |
| int ieee80211_channel_to_frequency(int chan, enum nl80211_band band) |
| { |
| /* see 802.11 17.3.8.3.2 and Annex J |
| * there are overlapping channel numbers in 5GHz and 2GHz bands */ |
| if (chan <= 0) |
| return 0; /* not supported */ |
| switch (band) { |
| case NL80211_BAND_2GHZ: |
| if (chan == 14) |
| return 2484; |
| else if (chan < 14) |
| return 2407 + chan * 5; |
| break; |
| case NL80211_BAND_5GHZ: |
| if (chan >= 182 && chan <= 196) |
| return 4000 + chan * 5; |
| else |
| return 5000 + chan * 5; |
| break; |
| case NL80211_BAND_6GHZ: |
| /* see 802.11ax D6.1 27.3.23.2 */ |
| if (chan == 2) |
| return 5935; |
| if (chan <= 253) |
| return 5950 + chan * 5; |
| break; |
| case NL80211_BAND_60GHZ: |
| if (chan < 7) |
| return 56160 + chan * 2160; |
| break; |
| default: |
| ; |
| } |
| return 0; /* not supported */ |
| } |
| |
| int ieee80211_frequency_to_channel(int freq) |
| { |
| /* see 802.11-2007 17.3.8.3.2 and Annex J */ |
| if (freq == 2484) |
| return 14; |
| /* see 802.11ax D6.1 27.3.23.2 and Annex E */ |
| else if (freq == 5935) |
| return 2; |
| else if (freq < 2484) |
| return (freq - 2407) / 5; |
| else if (freq >= 4910 && freq <= 4980) |
| return (freq - 4000) / 5; |
| else if (freq < 5950) |
| return (freq - 5000) / 5; |
| else if (freq <= 45000) /* DMG band lower limit */ |
| /* see 802.11ax D6.1 27.3.23.2 */ |
| return (freq - 5950) / 5; |
| else if (freq >= 58320 && freq <= 70200) |
| return (freq - 56160) / 2160; |
| else |
| return 0; |
| } |
| |
| void print_ssid_escaped(const uint8_t len, const uint8_t *data) |
| { |
| int i; |
| |
| for (i = 0; i < len; i++) { |
| if (isprint(data[i]) && data[i] != ' ' && data[i] != '\\') |
| printf("%c", data[i]); |
| else if (data[i] == ' ' && |
| (i != 0 && i != len -1)) |
| printf(" "); |
| else |
| printf("\\x%.2x", data[i]); |
| } |
| } |
| |
| static int hex2num(char digit) |
| { |
| if (!isxdigit(digit)) |
| return -1; |
| if (isdigit(digit)) |
| return digit - '0'; |
| return tolower(digit) - 'a' + 10; |
| } |
| |
| static int hex2byte(const char *hex) |
| { |
| int d1, d2; |
| |
| d1 = hex2num(hex[0]); |
| if (d1 < 0) |
| return -1; |
| d2 = hex2num(hex[1]); |
| if (d2 < 0) |
| return -1; |
| return (d1 << 4) | d2; |
| } |
| |
| char *hex2bin(const char *hex, char *buf) |
| { |
| char *result = buf; |
| int d; |
| |
| while (hex[0]) { |
| d = hex2byte(hex); |
| if (d < 0) |
| return NULL; |
| buf[0] = d; |
| buf++; |
| hex += 2; |
| } |
| |
| return result; |
| } |
| |
| static int parse_akm_suite(const char *cipher_str) |
| { |
| |
| if (!strcmp(cipher_str, "PSK")) |
| return 0x000FAC02; |
| if (!strcmp(cipher_str, "FT/PSK")) |
| return 0x000FAC03; |
| if (!strcmp(cipher_str, "PSK/SHA-256")) |
| return 0x000FAC06; |
| return -EINVAL; |
| } |
| |
| static int parse_cipher_suite(const char *cipher_str) |
| { |
| |
| if (!strcmp(cipher_str, "TKIP")) |
| return WLAN_CIPHER_SUITE_TKIP; |
| if (!strcmp(cipher_str, "CCMP") || !strcmp(cipher_str, "CCMP-128")) |
| return WLAN_CIPHER_SUITE_CCMP; |
| if (!strcmp(cipher_str, "GCMP") || !strcmp(cipher_str, "GCMP-128")) |
| return WLAN_CIPHER_SUITE_GCMP; |
| if (!strcmp(cipher_str, "GCMP-256")) |
| return WLAN_CIPHER_SUITE_GCMP_256; |
| if (!strcmp(cipher_str, "CCMP-256")) |
| return WLAN_CIPHER_SUITE_CCMP_256; |
| return -EINVAL; |
| } |
| |
| int parse_keys(struct nl_msg *msg, char **argv[], int *argc) |
| { |
| struct nlattr *keys; |
| int i = 0; |
| bool have_default = false; |
| char *arg = **argv; |
| char keybuf[13]; |
| int pos = 0; |
| |
| if (!*argc) |
| return 1; |
| |
| if (!memcmp(&arg[pos], "psk", 3)) { |
| char psk_keybuf[32]; |
| int cipher_suite, akm_suite; |
| |
| if (*argc < 4) |
| goto explain; |
| |
| pos+=3; |
| if (arg[pos] != ':') |
| goto explain; |
| pos++; |
| |
| NLA_PUT_U32(msg, NL80211_ATTR_WPA_VERSIONS, NL80211_WPA_VERSION_2); |
| |
| if (strlen(&arg[pos]) != (sizeof(psk_keybuf) * 2) || !hex2bin(&arg[pos], psk_keybuf)) { |
| printf("Bad PSK\n"); |
| return -EINVAL; |
| } |
| |
| NLA_PUT(msg, NL80211_ATTR_PMK, 32, psk_keybuf); |
| NLA_PUT_U32(msg, NL80211_ATTR_AUTH_TYPE, NL80211_AUTHTYPE_OPEN_SYSTEM); |
| |
| *argv += 1; |
| *argc -= 1; |
| arg = **argv; |
| |
| akm_suite = parse_akm_suite(arg); |
| if (akm_suite < 0) |
| goto explain; |
| |
| NLA_PUT_U32(msg, NL80211_ATTR_AKM_SUITES, akm_suite); |
| |
| *argv += 1; |
| *argc -= 1; |
| arg = **argv; |
| |
| cipher_suite = parse_cipher_suite(arg); |
| if (cipher_suite < 0) |
| goto explain; |
| |
| NLA_PUT_U32(msg, NL80211_ATTR_CIPHER_SUITES_PAIRWISE, cipher_suite); |
| |
| *argv += 1; |
| *argc -= 1; |
| arg = **argv; |
| |
| cipher_suite = parse_cipher_suite(arg); |
| if (cipher_suite < 0) |
| goto explain; |
| |
| NLA_PUT_U32(msg, NL80211_ATTR_CIPHER_SUITE_GROUP, cipher_suite); |
| |
| *argv += 1; |
| *argc -= 1; |
| return 0; |
| } |
| |
| NLA_PUT_FLAG(msg, NL80211_ATTR_PRIVACY); |
| |
| keys = nla_nest_start(msg, NL80211_ATTR_KEYS); |
| if (!keys) |
| return -ENOBUFS; |
| |
| do { |
| int keylen; |
| struct nlattr *key = nla_nest_start(msg, ++i); |
| char *keydata; |
| |
| arg = **argv; |
| pos = 0; |
| |
| if (!key) |
| return -ENOBUFS; |
| |
| if (arg[pos] == 'd') { |
| NLA_PUT_FLAG(msg, NL80211_KEY_DEFAULT); |
| pos++; |
| if (arg[pos] == ':') |
| pos++; |
| have_default = true; |
| } |
| |
| if (!isdigit(arg[pos])) |
| goto explain; |
| NLA_PUT_U8(msg, NL80211_KEY_IDX, arg[pos++] - '0'); |
| if (arg[pos++] != ':') |
| goto explain; |
| keydata = arg + pos; |
| switch (strlen(keydata)) { |
| case 10: |
| keydata = hex2bin(keydata, keybuf); |
| /* fall through */ |
| case 5: |
| NLA_PUT_U32(msg, NL80211_KEY_CIPHER, |
| WLAN_CIPHER_SUITE_WEP40); |
| keylen = 5; |
| break; |
| case 26: |
| keydata = hex2bin(keydata, keybuf); |
| /* fall through */ |
| case 13: |
| NLA_PUT_U32(msg, NL80211_KEY_CIPHER, |
| WLAN_CIPHER_SUITE_WEP104); |
| keylen = 13; |
| break; |
| default: |
| goto explain; |
| } |
| |
| if (!keydata) |
| goto explain; |
| |
| NLA_PUT(msg, NL80211_KEY_DATA, keylen, keydata); |
| |
| *argv += 1; |
| *argc -= 1; |
| |
| /* one key should be TX key */ |
| if (!have_default && !*argc) |
| NLA_PUT_FLAG(msg, NL80211_KEY_DEFAULT); |
| |
| nla_nest_end(msg, key); |
| } while (*argc); |
| |
| nla_nest_end(msg, keys); |
| |
| return 0; |
| nla_put_failure: |
| return -ENOBUFS; |
| explain: |
| fprintf(stderr, "key must be [d:]index:data where\n" |
| " 'd:' means default (transmit) key\n" |
| " 'index:' is a single digit (0-3)\n" |
| " 'data' must be 5 or 13 ascii chars\n" |
| " or 10 or 26 hex digits\n" |
| "for example: d:2:6162636465 is the same as d:2:abcde\n" |
| "or psk:data <AKM Suite> <pairwise CIPHER> <groupwise CIPHER> where\n" |
| " 'data' is the PSK (output of wpa_passphrase and the CIPHER can be CCMP or GCMP\n" |
| "for example: psk:0123456789abcdef PSK CCMP CCMP\n" |
| "The allowed AKM suites are PSK, FT/PSK, PSK/SHA-256\n" |
| "The allowed Cipher suites are TKIP, CCMP, GCMP, GCMP-256, CCMP-256\n"); |
| return 2; |
| } |
| |
| enum nl80211_chan_width str_to_bw(const char *str) |
| { |
| static const struct { |
| const char *name; |
| unsigned int val; |
| } bwmap[] = { |
| { .name = "5", .val = NL80211_CHAN_WIDTH_5, }, |
| { .name = "10", .val = NL80211_CHAN_WIDTH_10, }, |
| { .name = "20", .val = NL80211_CHAN_WIDTH_20, }, |
| { .name = "40", .val = NL80211_CHAN_WIDTH_40, }, |
| { .name = "80", .val = NL80211_CHAN_WIDTH_80, }, |
| { .name = "80+80", .val = NL80211_CHAN_WIDTH_80P80, }, |
| { .name = "160", .val = NL80211_CHAN_WIDTH_160, }, |
| }; |
| unsigned int i; |
| |
| for (i = 0; i < ARRAY_SIZE(bwmap); i++) { |
| if (strcasecmp(bwmap[i].name, str) == 0) |
| return bwmap[i].val; |
| } |
| |
| return NL80211_CHAN_WIDTH_20_NOHT; |
| } |
| |
| static int parse_freqs(struct chandef *chandef, int argc, char **argv, |
| int *parsed) |
| { |
| uint32_t freq; |
| char *end; |
| bool need_cf1 = false, need_cf2 = false; |
| |
| if (argc < 1) |
| return 0; |
| |
| chandef->width = str_to_bw(argv[0]); |
| |
| switch (chandef->width) { |
| case NL80211_CHAN_WIDTH_20_NOHT: |
| /* First argument was not understood, give up gracefully. */ |
| return 0; |
| case NL80211_CHAN_WIDTH_20: |
| case NL80211_CHAN_WIDTH_5: |
| case NL80211_CHAN_WIDTH_10: |
| break; |
| case NL80211_CHAN_WIDTH_80P80: |
| need_cf2 = true; |
| /* fall through */ |
| case NL80211_CHAN_WIDTH_40: |
| case NL80211_CHAN_WIDTH_80: |
| case NL80211_CHAN_WIDTH_160: |
| case NL80211_CHAN_WIDTH_320: |
| need_cf1 = true; |
| break; |
| case NL80211_CHAN_WIDTH_1: |
| case NL80211_CHAN_WIDTH_2: |
| case NL80211_CHAN_WIDTH_4: |
| case NL80211_CHAN_WIDTH_8: |
| case NL80211_CHAN_WIDTH_16: |
| /* can't happen yet */ |
| break; |
| } |
| |
| *parsed += 1; |
| |
| if (!need_cf1) |
| return 0; |
| |
| if (argc < 2) |
| return 1; |
| |
| /* center freq 1 */ |
| if (!*argv[1]) |
| return 1; |
| freq = strtoul(argv[1], &end, 10); |
| if (*end) |
| return 1; |
| *parsed += 1; |
| |
| chandef->center_freq1 = freq; |
| |
| if (!need_cf2) |
| return 0; |
| |
| if (argc < 3) |
| return 1; |
| |
| /* center freq 2 */ |
| if (!*argv[2]) |
| return 1; |
| freq = strtoul(argv[2], &end, 10); |
| if (*end) |
| return 1; |
| chandef->center_freq2 = freq; |
| |
| *parsed += 1; |
| |
| return 0; |
| } |
| |
| |
| /** |
| * parse_freqchan - Parse frequency or channel definition |
| * |
| * @chandef: chandef structure to be filled in |
| * @chan: Boolean whether to parse a channel or frequency based specifier |
| * @argc: Number of arguments |
| * @argv: Array of string arguments |
| * @parsed: Pointer to return the number of used arguments, or NULL to error |
| * out if any argument is left unused. |
| * |
| * The given chandef structure will be filled in from the command line |
| * arguments. argc/argv will be updated so that further arguments from the |
| * command line can be parsed. |
| * |
| * Note that despite the fact that the function knows how many center freqs |
| * are needed, there's an ambiguity if the next argument after this is an |
| * integer argument, since the valid channel width values are interpreted |
| * as such, rather than a following argument. This can be avoided by the |
| * user by giving "NOHT" instead. |
| * |
| * The working specifier if chan is set are: |
| * <channel> [NOHT|HT20|HT40+|HT40-|5MHz|10MHz|80MHz|160MHz] |
| * |
| * And if frequency is set: |
| * <freq> [NOHT|HT20|HT40+|HT40-|5MHz|10MHz|80MHz|160MHz] |
| * <control freq> [5|10|20|40|80|80+80|160] [<center1_freq> [<center2_freq>]] |
| * |
| * If the mode/channel width is not given the NOHT is assumed. |
| * |
| * Return: Number of used arguments, zero or negative error number otherwise |
| */ |
| int parse_freqchan(struct chandef *chandef, bool chan, int argc, char **argv, |
| int *parsed) |
| { |
| char *end; |
| static const struct chanmode chanmode[] = { |
| { .name = "HT20", |
| .width = NL80211_CHAN_WIDTH_20, |
| .freq1_diff = 0, |
| .chantype = NL80211_CHAN_HT20 }, |
| { .name = "HT40+", |
| .width = NL80211_CHAN_WIDTH_40, |
| .freq1_diff = 10, |
| .chantype = NL80211_CHAN_HT40PLUS }, |
| { .name = "HT40-", |
| .width = NL80211_CHAN_WIDTH_40, |
| .freq1_diff = -10, |
| .chantype = NL80211_CHAN_HT40MINUS }, |
| { .name = "NOHT", |
| .width = NL80211_CHAN_WIDTH_20_NOHT, |
| .freq1_diff = 0, |
| .chantype = NL80211_CHAN_NO_HT }, |
| { .name = "5MHz", |
| .width = NL80211_CHAN_WIDTH_5, |
| .freq1_diff = 0, |
| .chantype = -1 }, |
| { .name = "10MHz", |
| .width = NL80211_CHAN_WIDTH_10, |
| .freq1_diff = 0, |
| .chantype = -1 }, |
| { .name = "80MHz", |
| .width = NL80211_CHAN_WIDTH_80, |
| .freq1_diff = 0, |
| .chantype = -1 }, |
| { .name = "160MHz", |
| .width = NL80211_CHAN_WIDTH_160, |
| .freq1_diff = 0, |
| .chantype = -1 }, |
| { .name = "320MHz", |
| .width = NL80211_CHAN_WIDTH_320, |
| .freq1_diff = 0, |
| .chantype = -1 }, |
| }; |
| const struct chanmode *chanmode_selected = NULL; |
| unsigned int freq; |
| unsigned int i; |
| int _parsed = 0; |
| int res = 0; |
| |
| if (argc < 1) |
| return 1; |
| |
| if (!argv[0]) |
| goto out; |
| freq = strtoul(argv[0], &end, 10); |
| if (*end) { |
| res = 1; |
| goto out; |
| } |
| |
| _parsed += 1; |
| |
| memset(chandef, 0, sizeof(struct chandef)); |
| |
| if (chan) { |
| enum nl80211_band band; |
| |
| band = freq <= 14 ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ; |
| freq = ieee80211_channel_to_frequency(freq, band); |
| } |
| chandef->control_freq = freq; |
| /* Assume 20MHz NOHT channel for now. */ |
| chandef->center_freq1 = freq; |
| |
| /* Try to parse HT mode definitions */ |
| if (argc > 1) { |
| for (i = 0; i < ARRAY_SIZE(chanmode); i++) { |
| if (strcasecmp(chanmode[i].name, argv[1]) == 0) { |
| chanmode_selected = &chanmode[i]; |
| _parsed += 1; |
| break; |
| } |
| } |
| } |
| |
| /* channel mode given, use it and return. */ |
| if (chanmode_selected) { |
| chandef->center_freq1 = get_cf1(chanmode_selected, freq); |
| chandef->width = chanmode_selected->width; |
| goto out; |
| } |
| |
| /* This was a only a channel definition, nothing further may follow. */ |
| if (chan) |
| goto out; |
| |
| res = parse_freqs(chandef, argc - 1, argv + 1, &_parsed); |
| |
| out: |
| /* Error out if parsed is NULL. */ |
| if (!parsed && _parsed != argc) |
| return 1; |
| |
| if (parsed) |
| *parsed = _parsed; |
| |
| return res; |
| } |
| |
| int put_chandef(struct nl_msg *msg, struct chandef *chandef) |
| { |
| NLA_PUT_U32(msg, NL80211_ATTR_WIPHY_FREQ, chandef->control_freq); |
| NLA_PUT_U32(msg, NL80211_ATTR_CHANNEL_WIDTH, chandef->width); |
| |
| switch (chandef->width) { |
| case NL80211_CHAN_WIDTH_20_NOHT: |
| NLA_PUT_U32(msg, |
| NL80211_ATTR_WIPHY_CHANNEL_TYPE, |
| NL80211_CHAN_NO_HT); |
| break; |
| case NL80211_CHAN_WIDTH_20: |
| NLA_PUT_U32(msg, |
| NL80211_ATTR_WIPHY_CHANNEL_TYPE, |
| NL80211_CHAN_HT20); |
| break; |
| case NL80211_CHAN_WIDTH_40: |
| if (chandef->control_freq > chandef->center_freq1) |
| NLA_PUT_U32(msg, |
| NL80211_ATTR_WIPHY_CHANNEL_TYPE, |
| NL80211_CHAN_HT40MINUS); |
| else |
| NLA_PUT_U32(msg, |
| NL80211_ATTR_WIPHY_CHANNEL_TYPE, |
| NL80211_CHAN_HT40PLUS); |
| break; |
| default: |
| break; |
| } |
| |
| if (chandef->center_freq1) |
| NLA_PUT_U32(msg, |
| NL80211_ATTR_CENTER_FREQ1, |
| chandef->center_freq1); |
| |
| if (chandef->center_freq2) |
| NLA_PUT_U32(msg, |
| NL80211_ATTR_CENTER_FREQ2, |
| chandef->center_freq2); |
| |
| return 0; |
| |
| nla_put_failure: |
| return -ENOBUFS; |
| } |
| |
| static void print_mcs_index(const __u8 *mcs) |
| { |
| int mcs_bit, prev_bit = -2, prev_cont = 0; |
| |
| for (mcs_bit = 0; mcs_bit <= 76; mcs_bit++) { |
| unsigned int mcs_octet = mcs_bit/8; |
| unsigned int MCS_RATE_BIT = 1 << mcs_bit % 8; |
| bool mcs_rate_idx_set; |
| |
| mcs_rate_idx_set = !!(mcs[mcs_octet] & MCS_RATE_BIT); |
| |
| if (!mcs_rate_idx_set) |
| continue; |
| |
| if (prev_bit != mcs_bit - 1) { |
| if (prev_bit != -2) |
| printf("%d, ", prev_bit); |
| else |
| printf(" "); |
| printf("%d", mcs_bit); |
| prev_cont = 0; |
| } else if (!prev_cont) { |
| printf("-"); |
| prev_cont = 1; |
| } |
| |
| prev_bit = mcs_bit; |
| } |
| |
| if (prev_cont) |
| printf("%d", prev_bit); |
| printf("\n"); |
| } |
| |
| /* |
| * There are only 4 possible values, we just use a case instead of computing it, |
| * but technically this can also be computed through the formula: |
| * |
| * Max AMPDU length = (2 ^ (13 + exponent)) - 1 bytes |
| */ |
| static __u32 compute_ampdu_length(__u8 exponent) |
| { |
| switch (exponent) { |
| case 0: return 8191; /* (2 ^(13 + 0)) -1 */ |
| case 1: return 16383; /* (2 ^(13 + 1)) -1 */ |
| case 2: return 32767; /* (2 ^(13 + 2)) -1 */ |
| case 3: return 65535; /* (2 ^(13 + 3)) -1 */ |
| default: return 0; |
| } |
| } |
| |
| static const char *print_ampdu_space(__u8 space) |
| { |
| switch (space) { |
| case 0: return "No restriction"; |
| case 1: return "1/4 usec"; |
| case 2: return "1/2 usec"; |
| case 3: return "1 usec"; |
| case 4: return "2 usec"; |
| case 5: return "4 usec"; |
| case 6: return "8 usec"; |
| case 7: return "16 usec"; |
| default: |
| return "BUG (spacing more than 3 bits!)"; |
| } |
| } |
| |
| void print_ampdu_length(__u8 exponent) |
| { |
| __u32 max_ampdu_length; |
| |
| max_ampdu_length = compute_ampdu_length(exponent); |
| |
| if (max_ampdu_length) { |
| printf("\t\tMaximum RX AMPDU length %d bytes (exponent: 0x0%02x)\n", |
| max_ampdu_length, exponent); |
| } else { |
| printf("\t\tMaximum RX AMPDU length: unrecognized bytes " |
| "(exponent: %d)\n", exponent); |
| } |
| } |
| |
| void print_ampdu_spacing(__u8 spacing) |
| { |
| printf("\t\tMinimum RX AMPDU time spacing: %s (0x%02x)\n", |
| print_ampdu_space(spacing), spacing); |
| } |
| |
| void print_ht_capability(__u16 cap) |
| { |
| #define PRINT_HT_CAP(_cond, _str) \ |
| do { \ |
| if (_cond) \ |
| printf("\t\t\t" _str "\n"); \ |
| } while (0) |
| |
| printf("\t\tCapabilities: 0x%02x\n", cap); |
| |
| PRINT_HT_CAP((cap & BIT(0)), "RX LDPC"); |
| PRINT_HT_CAP((cap & BIT(1)), "HT20/HT40"); |
| PRINT_HT_CAP(!(cap & BIT(1)), "HT20"); |
| |
| PRINT_HT_CAP(((cap >> 2) & 0x3) == 0, "Static SM Power Save"); |
| PRINT_HT_CAP(((cap >> 2) & 0x3) == 1, "Dynamic SM Power Save"); |
| PRINT_HT_CAP(((cap >> 2) & 0x3) == 3, "SM Power Save disabled"); |
| |
| PRINT_HT_CAP((cap & BIT(4)), "RX Greenfield"); |
| PRINT_HT_CAP((cap & BIT(5)), "RX HT20 SGI"); |
| PRINT_HT_CAP((cap & BIT(6)), "RX HT40 SGI"); |
| PRINT_HT_CAP((cap & BIT(7)), "TX STBC"); |
| |
| PRINT_HT_CAP(((cap >> 8) & 0x3) == 0, "No RX STBC"); |
| PRINT_HT_CAP(((cap >> 8) & 0x3) == 1, "RX STBC 1-stream"); |
| PRINT_HT_CAP(((cap >> 8) & 0x3) == 2, "RX STBC 2-streams"); |
| PRINT_HT_CAP(((cap >> 8) & 0x3) == 3, "RX STBC 3-streams"); |
| |
| PRINT_HT_CAP((cap & BIT(10)), "HT Delayed Block Ack"); |
| |
| PRINT_HT_CAP(!(cap & BIT(11)), "Max AMSDU length: 3839 bytes"); |
| PRINT_HT_CAP((cap & BIT(11)), "Max AMSDU length: 7935 bytes"); |
| |
| /* |
| * For beacons and probe response this would mean the BSS |
| * does or does not allow the usage of DSSS/CCK HT40. |
| * Otherwise it means the STA does or does not use |
| * DSSS/CCK HT40. |
| */ |
| PRINT_HT_CAP((cap & BIT(12)), "DSSS/CCK HT40"); |
| PRINT_HT_CAP(!(cap & BIT(12)), "No DSSS/CCK HT40"); |
| |
| /* BIT(13) is reserved */ |
| |
| PRINT_HT_CAP((cap & BIT(14)), "40 MHz Intolerant"); |
| |
| PRINT_HT_CAP((cap & BIT(15)), "L-SIG TXOP protection"); |
| #undef PRINT_HT_CAP |
| } |
| |
| void print_ht_mcs(const __u8 *mcs) |
| { |
| /* As defined in 7.3.2.57.4 Supported MCS Set field */ |
| unsigned int tx_max_num_spatial_streams, max_rx_supp_data_rate; |
| bool tx_mcs_set_defined, tx_mcs_set_equal, tx_unequal_modulation; |
| |
| max_rx_supp_data_rate = (mcs[10] | ((mcs[11] & 0x3) << 8)); |
| tx_mcs_set_defined = !!(mcs[12] & (1 << 0)); |
| tx_mcs_set_equal = !(mcs[12] & (1 << 1)); |
| tx_max_num_spatial_streams = ((mcs[12] >> 2) & 3) + 1; |
| tx_unequal_modulation = !!(mcs[12] & (1 << 4)); |
| |
| if (max_rx_supp_data_rate) |
| printf("\t\tHT Max RX data rate: %d Mbps\n", max_rx_supp_data_rate); |
| /* XXX: else see 9.6.0e.5.3 how to get this I think */ |
| |
| if (tx_mcs_set_defined) { |
| if (tx_mcs_set_equal) { |
| printf("\t\tHT TX/RX MCS rate indexes supported:"); |
| print_mcs_index(mcs); |
| } else { |
| printf("\t\tHT RX MCS rate indexes supported:"); |
| print_mcs_index(mcs); |
| |
| if (tx_unequal_modulation) |
| printf("\t\tTX unequal modulation supported\n"); |
| else |
| printf("\t\tTX unequal modulation not supported\n"); |
| |
| printf("\t\tHT TX Max spatial streams: %d\n", |
| tx_max_num_spatial_streams); |
| |
| printf("\t\tHT TX MCS rate indexes supported may differ\n"); |
| } |
| } else { |
| printf("\t\tHT RX MCS rate indexes supported:"); |
| print_mcs_index(mcs); |
| printf("\t\tHT TX MCS rate indexes are undefined\n"); |
| } |
| } |
| |
| void print_vht_info(__u32 capa, const __u8 *mcs) |
| { |
| __u16 tmp; |
| int i; |
| |
| printf("\t\tVHT Capabilities (0x%.8x):\n", capa); |
| |
| #define PRINT_VHT_CAPA(_bit, _str) \ |
| do { \ |
| if (capa & BIT(_bit)) \ |
| printf("\t\t\t" _str "\n"); \ |
| } while (0) |
| |
| printf("\t\t\tMax MPDU length: "); |
| switch (capa & 3) { |
| case 0: printf("3895\n"); break; |
| case 1: printf("7991\n"); break; |
| case 2: printf("11454\n"); break; |
| case 3: printf("(reserved)\n"); |
| } |
| printf("\t\t\tSupported Channel Width: "); |
| switch ((capa >> 2) & 3) { |
| case 0: printf("neither 160 nor 80+80\n"); break; |
| case 1: printf("160 MHz\n"); break; |
| case 2: printf("160 MHz, 80+80 MHz\n"); break; |
| case 3: printf("(reserved)\n"); |
| } |
| PRINT_VHT_CAPA(4, "RX LDPC"); |
| PRINT_VHT_CAPA(5, "short GI (80 MHz)"); |
| PRINT_VHT_CAPA(6, "short GI (160/80+80 MHz)"); |
| PRINT_VHT_CAPA(7, "TX STBC"); |
| /* RX STBC */ |
| PRINT_VHT_CAPA(11, "SU Beamformer"); |
| PRINT_VHT_CAPA(12, "SU Beamformee"); |
| /* compressed steering */ |
| /* # of sounding dimensions */ |
| PRINT_VHT_CAPA(19, "MU Beamformer"); |
| PRINT_VHT_CAPA(20, "MU Beamformee"); |
| PRINT_VHT_CAPA(21, "VHT TXOP PS"); |
| PRINT_VHT_CAPA(22, "+HTC-VHT"); |
| /* max A-MPDU */ |
| /* VHT link adaptation */ |
| PRINT_VHT_CAPA(28, "RX antenna pattern consistency"); |
| PRINT_VHT_CAPA(29, "TX antenna pattern consistency"); |
| |
| printf("\t\tVHT RX MCS set:\n"); |
| tmp = mcs[0] | (mcs[1] << 8); |
| for (i = 1; i <= 8; i++) { |
| printf("\t\t\t%d streams: ", i); |
| switch ((tmp >> ((i-1)*2) ) & 3) { |
| case 0: printf("MCS 0-7\n"); break; |
| case 1: printf("MCS 0-8\n"); break; |
| case 2: printf("MCS 0-9\n"); break; |
| case 3: printf("not supported\n"); break; |
| } |
| } |
| tmp = mcs[2] | (mcs[3] << 8); |
| printf("\t\tVHT RX highest supported: %d Mbps\n", tmp & 0x1fff); |
| |
| printf("\t\tVHT TX MCS set:\n"); |
| tmp = mcs[4] | (mcs[5] << 8); |
| for (i = 1; i <= 8; i++) { |
| printf("\t\t\t%d streams: ", i); |
| switch ((tmp >> ((i-1)*2) ) & 3) { |
| case 0: printf("MCS 0-7\n"); break; |
| case 1: printf("MCS 0-8\n"); break; |
| case 2: printf("MCS 0-9\n"); break; |
| case 3: printf("not supported\n"); break; |
| } |
| } |
| tmp = mcs[6] | (mcs[7] << 8); |
| printf("\t\tVHT TX highest supported: %d Mbps\n", tmp & 0x1fff); |
| } |
| |
| static void __print_he_capa(const __u16 *mac_cap, |
| const __u16 *phy_cap, |
| const __u16 *mcs_set, size_t mcs_len, |
| const __u8 *ppet, int ppet_len, |
| bool indent) |
| { |
| size_t mcs_used; |
| int i; |
| const char *pre = indent ? "\t" : ""; |
| |
| #define PRINT_HE_CAP(_var, _idx, _bit, _str) \ |
| do { \ |
| if (_var[_idx] & BIT(_bit)) \ |
| printf("%s\t\t\t" _str "\n", pre); \ |
| } while (0) |
| |
| #define PRINT_HE_CAP_MASK(_var, _idx, _shift, _mask, _str) \ |
| do { \ |
| if ((_var[_idx] >> _shift) & _mask) \ |
| printf("%s\t\t\t" _str ": %d\n", pre, (_var[_idx] >> _shift) & _mask); \ |
| } while (0) |
| |
| #define PRINT_HE_MAC_CAP(...) PRINT_HE_CAP(mac_cap, __VA_ARGS__) |
| #define PRINT_HE_MAC_CAP_MASK(...) PRINT_HE_CAP_MASK(mac_cap, __VA_ARGS__) |
| #define PRINT_HE_PHY_CAP(...) PRINT_HE_CAP(phy_cap, __VA_ARGS__) |
| #define PRINT_HE_PHY_CAP0(_idx, _bit, ...) PRINT_HE_CAP(phy_cap, _idx, _bit + 8, __VA_ARGS__) |
| #define PRINT_HE_PHY_CAP_MASK(...) PRINT_HE_CAP_MASK(phy_cap, __VA_ARGS__) |
| |
| printf("%s\t\tHE MAC Capabilities (0x", pre); |
| for (i = 0; i < 3; i++) |
| printf("%04x", mac_cap[i]); |
| printf("):\n"); |
| |
| PRINT_HE_MAC_CAP(0, 0, "+HTC HE Supported"); |
| PRINT_HE_MAC_CAP(0, 1, "TWT Requester"); |
| PRINT_HE_MAC_CAP(0, 2, "TWT Responder"); |
| PRINT_HE_MAC_CAP_MASK(0, 3, 0x3, "Dynamic BA Fragementation Level"); |
| PRINT_HE_MAC_CAP_MASK(0, 5, 0x7, "Maximum number of MSDUS Fragments"); |
| PRINT_HE_MAC_CAP_MASK(0, 8, 0x3, "Minimum Payload size of 128 bytes"); |
| PRINT_HE_MAC_CAP_MASK(0, 10, 0x3, "Trigger Frame MAC Padding Duration"); |
| PRINT_HE_MAC_CAP_MASK(0, 12, 0x7, "Multi-TID Aggregation Support"); |
| |
| PRINT_HE_MAC_CAP(1, 1, "All Ack"); |
| PRINT_HE_MAC_CAP(1, 2, "TRS"); |
| PRINT_HE_MAC_CAP(1, 3, "BSR"); |
| PRINT_HE_MAC_CAP(1, 4, "Broadcast TWT"); |
| PRINT_HE_MAC_CAP(1, 5, "32-bit BA Bitmap"); |
| PRINT_HE_MAC_CAP(1, 6, "MU Cascading"); |
| PRINT_HE_MAC_CAP(1, 7, "Ack-Enabled Aggregation"); |
| PRINT_HE_MAC_CAP(1, 9, "OM Control"); |
| PRINT_HE_MAC_CAP(1, 10, "OFDMA RA"); |
| PRINT_HE_MAC_CAP_MASK(1, 11, 0x3, "Maximum A-MPDU Length Exponent"); |
| PRINT_HE_MAC_CAP(1, 13, "A-MSDU Fragmentation"); |
| PRINT_HE_MAC_CAP(1, 14, "Flexible TWT Scheduling"); |
| PRINT_HE_MAC_CAP(1, 15, "RX Control Frame to MultiBSS"); |
| |
| PRINT_HE_MAC_CAP(2, 0, "BSRP BQRP A-MPDU Aggregation"); |
| PRINT_HE_MAC_CAP(2, 1, "QTP"); |
| PRINT_HE_MAC_CAP(2, 2, "BQR"); |
| PRINT_HE_MAC_CAP(2, 3, "SRP Responder Role"); |
| PRINT_HE_MAC_CAP(2, 4, "NDP Feedback Report"); |
| PRINT_HE_MAC_CAP(2, 5, "OPS"); |
| PRINT_HE_MAC_CAP(2, 6, "A-MSDU in A-MPDU"); |
| PRINT_HE_MAC_CAP_MASK(2, 7, 7, "Multi-TID Aggregation TX"); |
| PRINT_HE_MAC_CAP(2, 10, "HE Subchannel Selective Transmission"); |
| PRINT_HE_MAC_CAP(2, 11, "UL 2x996-Tone RU"); |
| PRINT_HE_MAC_CAP(2, 12, "OM Control UL MU Data Disable RX"); |
| |
| printf("%s\t\tHE PHY Capabilities: (0x", pre); |
| for (i = 0; i < 11; i++) |
| printf("%02x", ((__u8 *)phy_cap)[i + 1]); |
| printf("):\n"); |
| |
| PRINT_HE_PHY_CAP0(0, 1, "HE40/2.4GHz"); |
| PRINT_HE_PHY_CAP0(0, 2, "HE40/HE80/5GHz"); |
| PRINT_HE_PHY_CAP0(0, 3, "HE160/5GHz"); |
| PRINT_HE_PHY_CAP0(0, 4, "HE160/HE80+80/5GHz"); |
| PRINT_HE_PHY_CAP0(0, 5, "242 tone RUs/2.4GHz"); |
| PRINT_HE_PHY_CAP0(0, 6, "242 tone RUs/5GHz"); |
| |
| PRINT_HE_PHY_CAP_MASK(1, 0, 0xf, "Punctured Preamble RX"); |
| PRINT_HE_PHY_CAP_MASK(1, 4, 0x1, "Device Class"); |
| PRINT_HE_PHY_CAP(1, 5, "LDPC Coding in Payload"); |
| PRINT_HE_PHY_CAP(1, 6, "HE SU PPDU with 1x HE-LTF and 0.8us GI"); |
| PRINT_HE_PHY_CAP_MASK(1, 7, 0x3, "Midamble Rx Max NSTS"); |
| PRINT_HE_PHY_CAP(1, 9, "NDP with 4x HE-LTF and 3.2us GI"); |
| PRINT_HE_PHY_CAP(1, 10, "STBC Tx <= 80MHz"); |
| PRINT_HE_PHY_CAP(1, 11, "STBC Rx <= 80MHz"); |
| PRINT_HE_PHY_CAP(1, 12, "Doppler Tx"); |
| PRINT_HE_PHY_CAP(1, 13, "Doppler Rx"); |
| PRINT_HE_PHY_CAP(1, 14, "Full Bandwidth UL MU-MIMO"); |
| PRINT_HE_PHY_CAP(1, 15, "Partial Bandwidth UL MU-MIMO"); |
| |
| PRINT_HE_PHY_CAP_MASK(2, 0, 0x3, "DCM Max Constellation"); |
| PRINT_HE_PHY_CAP_MASK(2, 2, 0x1, "DCM Max NSS Tx"); |
| PRINT_HE_PHY_CAP_MASK(2, 3, 0x3, "DCM Max Constellation Rx"); |
| PRINT_HE_PHY_CAP_MASK(2, 5, 0x1, "DCM Max NSS Rx"); |
| PRINT_HE_PHY_CAP(2, 6, "Rx HE MU PPDU from Non-AP STA"); |
| PRINT_HE_PHY_CAP(2, 7, "SU Beamformer"); |
| PRINT_HE_PHY_CAP(2, 8, "SU Beamformee"); |
| PRINT_HE_PHY_CAP(2, 9, "MU Beamformer"); |
| PRINT_HE_PHY_CAP_MASK(2, 10, 0x7, "Beamformee STS <= 80Mhz"); |
| PRINT_HE_PHY_CAP_MASK(2, 13, 0x7, "Beamformee STS > 80Mhz"); |
| |
| PRINT_HE_PHY_CAP_MASK(3, 0, 0x7, "Sounding Dimensions <= 80Mhz"); |
| PRINT_HE_PHY_CAP_MASK(3, 3, 0x7, "Sounding Dimensions > 80Mhz"); |
| PRINT_HE_PHY_CAP(3, 6, "Ng = 16 SU Feedback"); |
| PRINT_HE_PHY_CAP(3, 7, "Ng = 16 MU Feedback"); |
| PRINT_HE_PHY_CAP(3, 8, "Codebook Size SU Feedback"); |
| PRINT_HE_PHY_CAP(3, 9, "Codebook Size MU Feedback"); |
| PRINT_HE_PHY_CAP(3, 10, "Triggered SU Beamforming Feedback"); |
| PRINT_HE_PHY_CAP(3, 11, "Triggered MU Beamforming Feedback"); |
| PRINT_HE_PHY_CAP(3, 12, "Triggered CQI Feedback"); |
| PRINT_HE_PHY_CAP(3, 13, "Partial Bandwidth Extended Range"); |
| PRINT_HE_PHY_CAP(3, 14, "Partial Bandwidth DL MU-MIMO"); |
| PRINT_HE_PHY_CAP(3, 15, "PPE Threshold Present"); |
| |
| PRINT_HE_PHY_CAP(4, 0, "SRP-based SR"); |
| PRINT_HE_PHY_CAP(4, 1, "Power Boost Factor ar"); |
| PRINT_HE_PHY_CAP(4, 2, "HE SU PPDU & HE PPDU 4x HE-LTF 0.8us GI"); |
| PRINT_HE_PHY_CAP_MASK(4, 3, 0x7, "Max NC"); |
| PRINT_HE_PHY_CAP(4, 6, "STBC Tx > 80MHz"); |
| PRINT_HE_PHY_CAP(4, 7, "STBC Rx > 80MHz"); |
| PRINT_HE_PHY_CAP(4, 8, "HE ER SU PPDU 4x HE-LTF 0.8us GI"); |
| PRINT_HE_PHY_CAP(4, 9, "20MHz in 40MHz HE PPDU 2.4GHz"); |
| PRINT_HE_PHY_CAP(4, 10, "20MHz in 160/80+80MHz HE PPDU"); |
| PRINT_HE_PHY_CAP(4, 11, "80MHz in 160/80+80MHz HE PPDU"); |
| PRINT_HE_PHY_CAP(4, 12, "HE ER SU PPDU 1x HE-LTF 0.8us GI"); |
| PRINT_HE_PHY_CAP(4, 13, "Midamble Rx 2x & 1x HE-LTF"); |
| PRINT_HE_PHY_CAP_MASK(4, 14, 0x3, "DCM Max BW"); |
| |
| PRINT_HE_PHY_CAP(5, 0, "Longer Than 16HE SIG-B OFDM Symbols"); |
| PRINT_HE_PHY_CAP(5, 1, "Non-Triggered CQI Feedback"); |
| PRINT_HE_PHY_CAP(5, 2, "TX 1024-QAM"); |
| PRINT_HE_PHY_CAP(5, 3, "RX 1024-QAM"); |
| PRINT_HE_PHY_CAP(5, 4, "RX Full BW SU Using HE MU PPDU with Compression SIGB"); |
| PRINT_HE_PHY_CAP(5, 5, "RX Full BW SU Using HE MU PPDU with Non-Compression SIGB"); |
| |
| mcs_used = 0; |
| for (i = 0; i < 3; i++) { |
| __u8 phy_cap_support[] = { BIT(1) | BIT(2), BIT(3), BIT(4) }; |
| char *bw[] = { "<= 80", "160", "80+80" }; |
| int j; |
| |
| if ((phy_cap[0] & (phy_cap_support[i] << 8)) == 0) |
| continue; |
| |
| /* Supports more, but overflow? Abort. */ |
| if ((i * 2 + 2) * sizeof(mcs_set[0]) >= mcs_len) |
| return; |
| |
| for (j = 0; j < 2; j++) { |
| int k; |
| printf("%s\t\tHE %s MCS and NSS set %s MHz\n", pre, j ? "TX" : "RX", bw[i]); |
| for (k = 0; k < 8; k++) { |
| __u16 mcs = mcs_set[(i * 2) + j]; |
| mcs >>= k * 2; |
| mcs &= 0x3; |
| printf("%s\t\t\t%d streams: ", pre, k + 1); |
| if (mcs == 3) |
| printf("not supported\n"); |
| else |
| printf("MCS 0-%d\n", 7 + (mcs * 2)); |
| } |
| |
| } |
| mcs_used += 2 * sizeof(mcs_set[0]); |
| } |
| |
| /* Caller didn't provide ppet; infer it, if there's trailing space. */ |
| if (!ppet) { |
| ppet = (const void *)((const __u8 *)mcs_set + mcs_used); |
| if (mcs_used < mcs_len) |
| ppet_len = mcs_len - mcs_used; |
| else |
| ppet_len = 0; |
| } |
| |
| if (ppet_len && (phy_cap[3] & BIT(15))) { |
| printf("%s\t\tPPE Threshold ", pre); |
| for (i = 0; i < ppet_len; i++) |
| if (ppet[i]) |
| printf("0x%02x ", ppet[i]); |
| printf("\n"); |
| } |
| } |
| |
| void print_iftype_list(const char *name, const char *pfx, struct nlattr *attr) |
| { |
| struct nlattr *ift; |
| int rem; |
| |
| printf("%s:\n", name); |
| nla_for_each_nested(ift, attr, rem) |
| printf("%s * %s\n", pfx, iftype_name(nla_type(ift))); |
| } |
| |
| void print_iftype_line(struct nlattr *attr) |
| { |
| struct nlattr *ift; |
| bool first = true; |
| int rem; |
| |
| nla_for_each_nested(ift, attr, rem) { |
| if (first) |
| first = false; |
| else |
| printf(", "); |
| printf("%s", iftype_name(nla_type(ift))); |
| } |
| } |
| |
| void print_he_info(struct nlattr *nl_iftype) |
| { |
| struct nlattr *tb[NL80211_BAND_IFTYPE_ATTR_MAX + 1]; |
| __u16 mac_cap[3] = { 0 }; |
| __u16 phy_cap[6] = { 0 }; |
| __u16 mcs_set[6] = { 0 }; |
| __u8 ppet[25] = { 0 }; |
| size_t len; |
| int mcs_len = 0, ppet_len = 0; |
| |
| nla_parse(tb, NL80211_BAND_IFTYPE_ATTR_MAX, |
| nla_data(nl_iftype), nla_len(nl_iftype), NULL); |
| |
| if (!tb[NL80211_BAND_IFTYPE_ATTR_IFTYPES]) |
| return; |
| |
| printf("\t\tHE Iftypes: "); |
| print_iftype_line(tb[NL80211_BAND_IFTYPE_ATTR_IFTYPES]); |
| printf("\n"); |
| |
| if (tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_MAC]) { |
| len = nla_len(tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_MAC]); |
| if (len > sizeof(mac_cap)) |
| len = sizeof(mac_cap); |
| memcpy(mac_cap, |
| nla_data(tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_MAC]), |
| len); |
| } |
| |
| if (tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_PHY]) { |
| len = nla_len(tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_PHY]); |
| |
| if (len > sizeof(phy_cap) - 1) |
| len = sizeof(phy_cap) - 1; |
| memcpy(&((__u8 *)phy_cap)[1], |
| nla_data(tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_PHY]), |
| len); |
| } |
| |
| if (tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_MCS_SET]) { |
| len = nla_len(tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_MCS_SET]); |
| if (len > sizeof(mcs_set)) |
| len = sizeof(mcs_set); |
| memcpy(mcs_set, |
| nla_data(tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_MCS_SET]), |
| len); |
| mcs_len = len; |
| } |
| |
| if (tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_PPE]) { |
| len = nla_len(tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_PPE]); |
| if (len > sizeof(ppet)) |
| len = sizeof(ppet); |
| memcpy(ppet, |
| nla_data(tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_PPE]), |
| len); |
| ppet_len = len; |
| } |
| |
| __print_he_capa(mac_cap, phy_cap, mcs_set, mcs_len, ppet, ppet_len, |
| true); |
| } |
| |
| static void __print_eht_capa(int band, |
| const __u8 *mac_cap, |
| const __u32 *phy_cap, |
| const __u8 *mcs_set, size_t mcs_len, |
| const __u8 *ppet, size_t ppet_len, |
| const __u16 *he_phy_cap, |
| bool indent) |
| { |
| unsigned int i; |
| const char *pre = indent ? "\t" : ""; |
| const char *mcs[] = { "0-7", "8-9", "10-11", "12-13"}; |
| |
| #define PRINT_EHT_CAP(_var, _idx, _bit, _str) \ |
| do { \ |
| if (_var[_idx] & BIT(_bit)) \ |
| printf("%s\t\t\t" _str "\n", pre); \ |
| } while (0) |
| |
| #define PRINT_EHT_CAP_MASK(_var, _idx, _shift, _mask, _str) \ |
| do { \ |
| if ((_var[_idx] >> _shift) & _mask) \ |
| printf("%s\t\t\t" _str ": %d\n", pre, (_var[_idx] >> _shift) & _mask); \ |
| } while (0) |
| |
| #define PRINT_EHT_MAC_CAP(...) PRINT_EHT_CAP(mac_cap, __VA_ARGS__) |
| #define PRINT_EHT_PHY_CAP(...) PRINT_EHT_CAP(phy_cap, __VA_ARGS__) |
| #define PRINT_EHT_PHY_CAP_MASK(...) PRINT_EHT_CAP_MASK(phy_cap, __VA_ARGS__) |
| |
| printf("%s\t\tEHT MAC Capabilities (0x", pre); |
| for (i = 0; i < 2; i++) |
| printf("%02x", mac_cap[i]); |
| printf("):\n"); |
| |
| PRINT_EHT_MAC_CAP(0, 0, "NSEP priority access Supported"); |
| PRINT_EHT_MAC_CAP(0, 1, "EHT OM Control Supported"); |
| PRINT_EHT_MAC_CAP(0, 2, "Triggered TXOP Sharing Supported"); |
| PRINT_EHT_MAC_CAP(0, 3, "ARR Supported"); |
| |
| printf("%s\t\tEHT PHY Capabilities: (0x", pre); |
| for (i = 0; i < 8; i++) |
| printf("%02x", ((__u8 *)phy_cap)[i]); |
| printf("):\n"); |
| |
| PRINT_EHT_PHY_CAP(0, 1, "320MHz in 6GHz Supported"); |
| PRINT_EHT_PHY_CAP(0, 2, "242-tone RU in BW wider than 20MHz Supported"); |
| PRINT_EHT_PHY_CAP(0, 3, "NDP With EHT-LTF And 3.2 µs GI"); |
| PRINT_EHT_PHY_CAP(0, 4, "Partial Bandwidth UL MU-MIMO"); |
| PRINT_EHT_PHY_CAP(0, 5, "SU Beamformer"); |
| PRINT_EHT_PHY_CAP(0, 6, "SU Beamformee"); |
| PRINT_EHT_PHY_CAP_MASK(0, 7, 0x7, "Beamformee SS (80MHz)"); |
| PRINT_EHT_PHY_CAP_MASK(0, 10, 0x7, "Beamformee SS (160MHz)"); |
| PRINT_EHT_PHY_CAP_MASK(0, 13, 0x7, "Beamformee SS (320MHz)"); |
| |
| PRINT_EHT_PHY_CAP_MASK(0, 16, 0x7, "Number Of Sounding Dimensions (80MHz)"); |
| PRINT_EHT_PHY_CAP_MASK(0, 19, 0x7, "Number Of Sounding Dimensions (160MHz)"); |
| PRINT_EHT_PHY_CAP_MASK(0, 22, 0x7, "Number Of Sounding Dimensions (320MHz)"); |
| PRINT_EHT_PHY_CAP(0, 25, "Ng = 16 SU Feedback"); |
| PRINT_EHT_PHY_CAP(0, 26, "Ng = 16 MU Feedback"); |
| PRINT_EHT_PHY_CAP(0, 27, "Codebook size (4, 2) SU Feedback"); |
| PRINT_EHT_PHY_CAP(0, 28, "Codebook size (7, 5) MU Feedback"); |
| PRINT_EHT_PHY_CAP(0, 29, "Triggered SU Beamforming Feedback"); |
| PRINT_EHT_PHY_CAP(0, 30, "Triggered MU Beamforming Partial BW Feedback"); |
| PRINT_EHT_PHY_CAP(0, 31, "Triggered CQI Feedback"); |
| |
| PRINT_EHT_PHY_CAP(1, 0, "Partial Bandwidth DL MU-MIMO"); |
| PRINT_EHT_PHY_CAP(1, 1, "PSR-Based SR Support"); |
| PRINT_EHT_PHY_CAP(1, 2, "Power Boost Factor Support"); |
| PRINT_EHT_PHY_CAP(1, 3, "EHT MU PPDU With 4 EHT-LTF And 0.8 µs GI"); |
| PRINT_EHT_PHY_CAP_MASK(1, 4, 0xf, "Max Nc"); |
| PRINT_EHT_PHY_CAP(1, 8, "Non-Triggered CQI Feedback"); |
| |
| PRINT_EHT_PHY_CAP(1, 9, "Tx 1024-QAM And 4096-QAM < 242-tone RU"); |
| PRINT_EHT_PHY_CAP(1, 10, "Rx 1024-QAM And 4096-QAM < 242-tone RU"); |
| PRINT_EHT_PHY_CAP(1, 11, "PPE Thresholds Present"); |
| PRINT_EHT_PHY_CAP_MASK(1, 12, 0x3, "Common Nominal Packet Padding"); |
| PRINT_EHT_PHY_CAP_MASK(1, 14, 0x1f, "Maximum Number Of Supported EHT-LTFs"); |
| PRINT_EHT_PHY_CAP_MASK(1, 19, 0xf, "Support of MCS 15"); |
| PRINT_EHT_PHY_CAP(1, 23, "Support Of EHT DUP In 6 GHz"); |
| PRINT_EHT_PHY_CAP(1, 24, "Support For 20MHz Rx NDP With Wider Bandwidth"); |
| PRINT_EHT_PHY_CAP(1, 25, "Non-OFDMA UL MU-MIMO (80MHz)"); |
| PRINT_EHT_PHY_CAP(1, 26, "Non-OFDMA UL MU-MIMO (160MHz)"); |
| PRINT_EHT_PHY_CAP(1, 27, "Non-OFDMA UL MU-MIMO (320MHz)"); |
| PRINT_EHT_PHY_CAP(1, 28, "MU Beamformer (80MHz)"); |
| PRINT_EHT_PHY_CAP(1, 29, "MU Beamformer (160MHz)"); |
| PRINT_EHT_PHY_CAP(1, 30, "MU Beamformer (320MHz)"); |
| |
| printf("%s\t\tEHT MCS/NSS: (0x", pre); |
| for (i = 0; i < mcs_len; i++) |
| printf("%02x", ((__u8 *)mcs_set)[i]); |
| printf("):\n"); |
| |
| if (!(he_phy_cap[0] & ((BIT(2) | BIT(3) | BIT(4)) << 8))){ |
| for (i = 0; i < 4; i++) |
| printf("%s\t\tEHT bw=20 MHz, max NSS for MCS %s: Rx=%u, Tx=%u\n", |
| pre, mcs[i], |
| mcs_set[i] & 0xf, mcs_set[i] >> 4); |
| } |
| |
| mcs_set += 4; |
| if (he_phy_cap[0] & (BIT(2) << 8)) { |
| for (i = 0; i < 3; i++) |
| printf("%s\t\tEHT bw <= 80 MHz, max NSS for MCS %s: Rx=%u, Tx=%u\n", |
| pre, mcs[i + 1], |
| mcs_set[i] & 0xf, mcs_set[i] >> 4); |
| |
| } |
| |
| mcs_set += 3; |
| if (he_phy_cap[0] & (BIT(3) << 8)) { |
| for (i = 0; i < 3; i++) |
| printf("%s\t\tEHT bw=160 MHz, max NSS for MCS %s: Rx=%u, Tx=%u\n", |
| pre, mcs[i + 1], |
| mcs_set[i] & 0xf, mcs_set[i] >> 4); |
| |
| } |
| |
| mcs_set += 3; |
| if (band == NL80211_BAND_6GHZ && (phy_cap[0] & BIT(1))) { |
| for (i = 0; i < 3; i++) |
| printf("%s\t\tEHT bw=320 MHz, max NSS for MCS %s: Rx=%u, Tx=%u\n", |
| pre, mcs[i + 1], |
| mcs_set[i] & 0xf, mcs_set[i] >> 4); |
| |
| } |
| |
| if (ppet && ppet_len && (phy_cap[1] & BIT(11))) { |
| printf("%s\t\tEHT PPE Thresholds ", pre); |
| for (i = 0; i < ppet_len; i++) |
| if (ppet[i]) |
| printf("0x%02x ", ppet[i]); |
| printf("\n"); |
| } |
| } |
| |
| void print_eht_info(struct nlattr *nl_iftype, int band) |
| { |
| struct nlattr *tb[NL80211_BAND_IFTYPE_ATTR_MAX + 1]; |
| __u8 mac_cap[2] = { 0 }; |
| __u32 phy_cap[2] = { 0 }; |
| __u8 mcs_set[13] = { 0 }; |
| __u8 ppet[31] = { 0 }; |
| __u16 he_phy_cap[6] = { 0 }; |
| size_t len, mcs_len = 0, ppet_len = 0; |
| |
| nla_parse(tb, NL80211_BAND_IFTYPE_ATTR_MAX, |
| nla_data(nl_iftype), nla_len(nl_iftype), NULL); |
| |
| if (!tb[NL80211_BAND_IFTYPE_ATTR_IFTYPES]) |
| return; |
| |
| printf("\t\tEHT Iftypes: "); |
| print_iftype_line(tb[NL80211_BAND_IFTYPE_ATTR_IFTYPES]); |
| printf("\n"); |
| |
| if (tb[NL80211_BAND_IFTYPE_ATTR_EHT_CAP_MAC]) { |
| len = nla_len(tb[NL80211_BAND_IFTYPE_ATTR_EHT_CAP_MAC]); |
| if (len > sizeof(mac_cap)) |
| len = sizeof(mac_cap); |
| memcpy(mac_cap, |
| nla_data(tb[NL80211_BAND_IFTYPE_ATTR_EHT_CAP_MAC]), |
| len); |
| } |
| |
| if (tb[NL80211_BAND_IFTYPE_ATTR_EHT_CAP_PHY]) { |
| len = nla_len(tb[NL80211_BAND_IFTYPE_ATTR_EHT_CAP_PHY]); |
| |
| if (len > sizeof(phy_cap)) |
| len = sizeof(phy_cap); |
| |
| memcpy(phy_cap, |
| nla_data(tb[NL80211_BAND_IFTYPE_ATTR_EHT_CAP_PHY]), |
| len); |
| } |
| |
| if (tb[NL80211_BAND_IFTYPE_ATTR_EHT_CAP_MCS_SET]) { |
| len = nla_len(tb[NL80211_BAND_IFTYPE_ATTR_EHT_CAP_MCS_SET]); |
| if (len > sizeof(mcs_set)) |
| len = sizeof(mcs_set); |
| memcpy(mcs_set, |
| nla_data(tb[NL80211_BAND_IFTYPE_ATTR_EHT_CAP_MCS_SET]), |
| len); |
| |
| // Assume that all parts of the MCS set are present |
| mcs_len = sizeof(mcs_set); |
| } |
| |
| if (tb[NL80211_BAND_IFTYPE_ATTR_EHT_CAP_PPE]) { |
| len = nla_len(tb[NL80211_BAND_IFTYPE_ATTR_EHT_CAP_PPE]); |
| if (len > sizeof(ppet)) |
| len = sizeof(ppet); |
| memcpy(ppet, |
| nla_data(tb[NL80211_BAND_IFTYPE_ATTR_EHT_CAP_PPE]), |
| len); |
| ppet_len = len; |
| } |
| |
| if (tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_PHY]) { |
| len = nla_len(tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_PHY]); |
| |
| if (len > sizeof(he_phy_cap) - 1) |
| len = sizeof(he_phy_cap) - 1; |
| memcpy(&((__u8 *)he_phy_cap)[1], |
| nla_data(tb[NL80211_BAND_IFTYPE_ATTR_HE_CAP_PHY]), |
| len); |
| } |
| |
| __print_eht_capa(band, mac_cap, phy_cap, mcs_set, mcs_len, ppet, ppet_len, |
| he_phy_cap, true); |
| } |
| |
| void print_he_capability(const uint8_t *ie, int len) |
| { |
| const void *mac_cap, *phy_cap, *mcs_set; |
| int mcs_len; |
| int i = 0; |
| |
| mac_cap = &ie[i]; |
| i += 6; |
| |
| phy_cap = &ie[i]; |
| i += 11; |
| |
| mcs_set = &ie[i]; |
| mcs_len = len - i; |
| |
| __print_he_capa(mac_cap, (const void *)((const __u8 *)phy_cap - 1), |
| mcs_set, mcs_len, NULL, 0, false); |
| } |
| |
| void iw_hexdump(const char *prefix, const __u8 *buf, size_t size) |
| { |
| size_t i; |
| |
| printf("%s: ", prefix); |
| for (i = 0; i < size; i++) { |
| if (i && i % 16 == 0) |
| printf("\n%s: ", prefix); |
| printf("%02x ", buf[i]); |
| } |
| printf("\n\n"); |
| } |
| |
| int get_cf1(const struct chanmode *chanmode, unsigned long freq) |
| { |
| unsigned int cf1 = freq, j; |
| unsigned int bw80[] = { 5180, 5260, 5500, 5580, 5660, 5745, |
| 5955, 6035, 6115, 6195, 6275, 6355, |
| 6435, 6515, 6595, 6675, 6755, 6835, |
| 6195, 6995 }; |
| unsigned int bw160[] = { 5180, 5500, 5955, 6115, 6275, 6435, |
| 6595, 6755, 6915 }; |
| |
| switch (chanmode->width) { |
| case NL80211_CHAN_WIDTH_80: |
| /* setup center_freq1 */ |
| for (j = 0; j < ARRAY_SIZE(bw80); j++) { |
| if (freq >= bw80[j] && freq < bw80[j] + 80) |
| break; |
| } |
| |
| if (j == ARRAY_SIZE(bw80)) |
| break; |
| |
| cf1 = bw80[j] + 30; |
| break; |
| case NL80211_CHAN_WIDTH_160: |
| /* setup center_freq1 */ |
| for (j = 0; j < ARRAY_SIZE(bw160); j++) { |
| if (freq >= bw160[j] && freq < bw160[j] + 160) |
| break; |
| } |
| |
| if (j == ARRAY_SIZE(bw160)) |
| break; |
| |
| cf1 = bw160[j] + 70; |
| break; |
| default: |
| cf1 = freq + chanmode->freq1_diff; |
| break; |
| } |
| |
| return cf1; |
| } |
| |
| int parse_random_mac_addr(struct nl_msg *msg, char *addrs) |
| { |
| char *a_addr, *a_mask, *sep; |
| unsigned char addr[ETH_ALEN], mask[ETH_ALEN]; |
| |
| if (!*addrs) { |
| /* randomise all but the multicast bit */ |
| NLA_PUT(msg, NL80211_ATTR_MAC, ETH_ALEN, |
| "\x00\x00\x00\x00\x00\x00"); |
| NLA_PUT(msg, NL80211_ATTR_MAC_MASK, ETH_ALEN, |
| "\x01\x00\x00\x00\x00\x00"); |
| return 0; |
| } |
| |
| if (*addrs != '=') |
| return 1; |
| |
| addrs++; |
| sep = strchr(addrs, '/'); |
| a_addr = addrs; |
| |
| if (!sep) |
| return 1; |
| |
| *sep = 0; |
| a_mask = sep + 1; |
| if (mac_addr_a2n(addr, a_addr) || mac_addr_a2n(mask, a_mask)) |
| return 1; |
| |
| NLA_PUT(msg, NL80211_ATTR_MAC, ETH_ALEN, addr); |
| NLA_PUT(msg, NL80211_ATTR_MAC_MASK, ETH_ALEN, mask); |
| |
| return 0; |
| nla_put_failure: |
| return -ENOBUFS; |
| } |