| /* |
| * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved. |
| * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| * |
| * This code is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 only, as |
| * published by the Free Software Foundation. |
| * |
| * This code is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| * version 2 for more details (a copy is included in the LICENSE file that |
| * accompanied this code). |
| * |
| * You should have received a copy of the GNU General Public License version |
| * 2 along with this work; if not, write to the Free Software Foundation, |
| * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| * |
| * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| * or visit www.oracle.com if you need additional information or have any |
| * questions. |
| * |
| */ |
| |
| #ifndef SHARE_VM_UTILITIES_TASKQUEUE_HPP |
| #define SHARE_VM_UTILITIES_TASKQUEUE_HPP |
| |
| #include "memory/allocation.hpp" |
| #include "memory/allocation.inline.hpp" |
| #include "runtime/mutex.hpp" |
| #include "runtime/orderAccess.inline.hpp" |
| #include "utilities/globalDefinitions.hpp" |
| #include "utilities/stack.hpp" |
| |
| // Simple TaskQueue stats that are collected by default in debug builds. |
| |
| #if !defined(TASKQUEUE_STATS) && defined(ASSERT) |
| #define TASKQUEUE_STATS 1 |
| #elif !defined(TASKQUEUE_STATS) |
| #define TASKQUEUE_STATS 0 |
| #endif |
| |
| #if TASKQUEUE_STATS |
| #define TASKQUEUE_STATS_ONLY(code) code |
| #else |
| #define TASKQUEUE_STATS_ONLY(code) |
| #endif // TASKQUEUE_STATS |
| |
| #if TASKQUEUE_STATS |
| class TaskQueueStats { |
| public: |
| enum StatId { |
| push, // number of taskqueue pushes |
| pop, // number of taskqueue pops |
| pop_slow, // subset of taskqueue pops that were done slow-path |
| steal_attempt, // number of taskqueue steal attempts |
| steal, // number of taskqueue steals |
| overflow, // number of overflow pushes |
| overflow_max_len, // max length of overflow stack |
| last_stat_id |
| }; |
| |
| public: |
| inline TaskQueueStats() { reset(); } |
| |
| inline void record_push() { ++_stats[push]; } |
| inline void record_pop() { ++_stats[pop]; } |
| inline void record_pop_slow() { record_pop(); ++_stats[pop_slow]; } |
| inline void record_steal(bool success); |
| inline void record_overflow(size_t new_length); |
| |
| TaskQueueStats & operator +=(const TaskQueueStats & addend); |
| |
| inline size_t get(StatId id) const { return _stats[id]; } |
| inline const size_t* get() const { return _stats; } |
| |
| inline void reset(); |
| |
| // Print the specified line of the header (does not include a line separator). |
| static void print_header(unsigned int line, outputStream* const stream = tty, |
| unsigned int width = 10); |
| // Print the statistics (does not include a line separator). |
| void print(outputStream* const stream = tty, unsigned int width = 10) const; |
| |
| DEBUG_ONLY(void verify() const;) |
| |
| private: |
| size_t _stats[last_stat_id]; |
| static const char * const _names[last_stat_id]; |
| }; |
| |
| void TaskQueueStats::record_steal(bool success) { |
| ++_stats[steal_attempt]; |
| if (success) ++_stats[steal]; |
| } |
| |
| void TaskQueueStats::record_overflow(size_t new_len) { |
| ++_stats[overflow]; |
| if (new_len > _stats[overflow_max_len]) _stats[overflow_max_len] = new_len; |
| } |
| |
| void TaskQueueStats::reset() { |
| memset(_stats, 0, sizeof(_stats)); |
| } |
| #endif // TASKQUEUE_STATS |
| |
| // TaskQueueSuper collects functionality common to all GenericTaskQueue instances. |
| |
| template <unsigned int N, MEMFLAGS F> |
| class TaskQueueSuper: public CHeapObj<F> { |
| protected: |
| // Internal type for indexing the queue; also used for the tag. |
| typedef NOT_LP64(uint16_t) LP64_ONLY(uint32_t) idx_t; |
| |
| // The first free element after the last one pushed (mod N). |
| volatile uint _bottom; |
| |
| enum { MOD_N_MASK = N - 1 }; |
| |
| class Age { |
| public: |
| Age(size_t data = 0) { _data = data; } |
| Age(const Age& age) { _data = age._data; } |
| Age(idx_t top, idx_t tag) { _fields._top = top; _fields._tag = tag; } |
| |
| Age get() const volatile { return _data; } |
| void set(Age age) volatile { _data = age._data; } |
| |
| idx_t top() const volatile { return _fields._top; } |
| idx_t tag() const volatile { return _fields._tag; } |
| |
| // Increment top; if it wraps, increment tag also. |
| void increment() { |
| _fields._top = increment_index(_fields._top); |
| if (_fields._top == 0) ++_fields._tag; |
| } |
| |
| Age cmpxchg(const Age new_age, const Age old_age) volatile { |
| return (size_t) Atomic::cmpxchg_ptr((intptr_t)new_age._data, |
| (volatile intptr_t *)&_data, |
| (intptr_t)old_age._data); |
| } |
| |
| bool operator ==(const Age& other) const { return _data == other._data; } |
| |
| private: |
| struct fields { |
| idx_t _top; |
| idx_t _tag; |
| }; |
| union { |
| size_t _data; |
| fields _fields; |
| }; |
| }; |
| |
| volatile Age _age; |
| |
| // These both operate mod N. |
| static uint increment_index(uint ind) { |
| return (ind + 1) & MOD_N_MASK; |
| } |
| static uint decrement_index(uint ind) { |
| return (ind - 1) & MOD_N_MASK; |
| } |
| |
| // Returns a number in the range [0..N). If the result is "N-1", it should be |
| // interpreted as 0. |
| uint dirty_size(uint bot, uint top) const { |
| return (bot - top) & MOD_N_MASK; |
| } |
| |
| // Returns the size corresponding to the given "bot" and "top". |
| uint size(uint bot, uint top) const { |
| uint sz = dirty_size(bot, top); |
| // Has the queue "wrapped", so that bottom is less than top? There's a |
| // complicated special case here. A pair of threads could perform pop_local |
| // and pop_global operations concurrently, starting from a state in which |
| // _bottom == _top+1. The pop_local could succeed in decrementing _bottom, |
| // and the pop_global in incrementing _top (in which case the pop_global |
| // will be awarded the contested queue element.) The resulting state must |
| // be interpreted as an empty queue. (We only need to worry about one such |
| // event: only the queue owner performs pop_local's, and several concurrent |
| // threads attempting to perform the pop_global will all perform the same |
| // CAS, and only one can succeed.) Any stealing thread that reads after |
| // either the increment or decrement will see an empty queue, and will not |
| // join the competitors. The "sz == -1 || sz == N-1" state will not be |
| // modified by concurrent queues, so the owner thread can reset the state to |
| // _bottom == top so subsequent pushes will be performed normally. |
| return (sz == N - 1) ? 0 : sz; |
| } |
| |
| public: |
| TaskQueueSuper() : _bottom(0), _age() {} |
| |
| // Return true if the TaskQueue contains/does not contain any tasks. |
| bool peek() const { return _bottom != _age.top(); } |
| bool is_empty() const { return size() == 0; } |
| |
| // Return an estimate of the number of elements in the queue. |
| // The "careful" version admits the possibility of pop_local/pop_global |
| // races. |
| uint size() const { |
| return size(_bottom, _age.top()); |
| } |
| |
| uint dirty_size() const { |
| return dirty_size(_bottom, _age.top()); |
| } |
| |
| void set_empty() { |
| _bottom = 0; |
| _age.set(0); |
| } |
| |
| // Maximum number of elements allowed in the queue. This is two less |
| // than the actual queue size, for somewhat complicated reasons. |
| uint max_elems() const { return N - 2; } |
| |
| // Total size of queue. |
| static const uint total_size() { return N; } |
| |
| TASKQUEUE_STATS_ONLY(TaskQueueStats stats;) |
| }; |
| |
| // |
| // GenericTaskQueue implements an ABP, Aurora-Blumofe-Plaxton, double- |
| // ended-queue (deque), intended for use in work stealing. Queue operations |
| // are non-blocking. |
| // |
| // A queue owner thread performs push() and pop_local() operations on one end |
| // of the queue, while other threads may steal work using the pop_global() |
| // method. |
| // |
| // The main difference to the original algorithm is that this |
| // implementation allows wrap-around at the end of its allocated |
| // storage, which is an array. |
| // |
| // The original paper is: |
| // |
| // Arora, N. S., Blumofe, R. D., and Plaxton, C. G. |
| // Thread scheduling for multiprogrammed multiprocessors. |
| // Theory of Computing Systems 34, 2 (2001), 115-144. |
| // |
| // The following paper provides an correctness proof and an |
| // implementation for weakly ordered memory models including (pseudo-) |
| // code containing memory barriers for a Chase-Lev deque. Chase-Lev is |
| // similar to ABP, with the main difference that it allows resizing of the |
| // underlying storage: |
| // |
| // Le, N. M., Pop, A., Cohen A., and Nardell, F. Z. |
| // Correct and efficient work-stealing for weak memory models |
| // Proceedings of the 18th ACM SIGPLAN symposium on Principles and |
| // practice of parallel programming (PPoPP 2013), 69-80 |
| // |
| |
| template <class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE> |
| class GenericTaskQueue: public TaskQueueSuper<N, F> { |
| ArrayAllocator<E, F> _array_allocator; |
| protected: |
| typedef typename TaskQueueSuper<N, F>::Age Age; |
| typedef typename TaskQueueSuper<N, F>::idx_t idx_t; |
| |
| using TaskQueueSuper<N, F>::_bottom; |
| using TaskQueueSuper<N, F>::_age; |
| using TaskQueueSuper<N, F>::increment_index; |
| using TaskQueueSuper<N, F>::decrement_index; |
| using TaskQueueSuper<N, F>::dirty_size; |
| |
| public: |
| using TaskQueueSuper<N, F>::max_elems; |
| using TaskQueueSuper<N, F>::size; |
| |
| #if TASKQUEUE_STATS |
| using TaskQueueSuper<N, F>::stats; |
| #endif |
| |
| private: |
| // Slow paths for push, pop_local. (pop_global has no fast path.) |
| bool push_slow(E t, uint dirty_n_elems); |
| bool pop_local_slow(uint localBot, Age oldAge); |
| |
| public: |
| typedef E element_type; |
| |
| // Initializes the queue to empty. |
| GenericTaskQueue(); |
| |
| void initialize(); |
| |
| // Push the task "t" on the queue. Returns "false" iff the queue is full. |
| inline bool push(E t); |
| |
| // Attempts to claim a task from the "local" end of the queue (the most |
| // recently pushed). If successful, returns true and sets t to the task; |
| // otherwise, returns false (the queue is empty). |
| inline bool pop_local(volatile E& t); |
| |
| // Like pop_local(), but uses the "global" end of the queue (the least |
| // recently pushed). |
| bool pop_global(volatile E& t); |
| |
| // Delete any resource associated with the queue. |
| ~GenericTaskQueue(); |
| |
| // apply the closure to all elements in the task queue |
| void oops_do(OopClosure* f); |
| |
| private: |
| // Element array. |
| volatile E* _elems; |
| }; |
| |
| template<class E, MEMFLAGS F, unsigned int N> |
| GenericTaskQueue<E, F, N>::GenericTaskQueue() { |
| assert(sizeof(Age) == sizeof(size_t), "Depends on this."); |
| } |
| |
| template<class E, MEMFLAGS F, unsigned int N> |
| void GenericTaskQueue<E, F, N>::initialize() { |
| _elems = _array_allocator.allocate(N); |
| } |
| |
| template<class E, MEMFLAGS F, unsigned int N> |
| void GenericTaskQueue<E, F, N>::oops_do(OopClosure* f) { |
| // tty->print_cr("START OopTaskQueue::oops_do"); |
| uint iters = size(); |
| uint index = _bottom; |
| for (uint i = 0; i < iters; ++i) { |
| index = decrement_index(index); |
| // tty->print_cr(" doing entry %d," INTPTR_T " -> " INTPTR_T, |
| // index, &_elems[index], _elems[index]); |
| E* t = (E*)&_elems[index]; // cast away volatility |
| oop* p = (oop*)t; |
| assert((*t)->is_oop_or_null(), "Not an oop or null"); |
| f->do_oop(p); |
| } |
| // tty->print_cr("END OopTaskQueue::oops_do"); |
| } |
| |
| template<class E, MEMFLAGS F, unsigned int N> |
| bool GenericTaskQueue<E, F, N>::push_slow(E t, uint dirty_n_elems) { |
| if (dirty_n_elems == N - 1) { |
| // Actually means 0, so do the push. |
| uint localBot = _bottom; |
| // g++ complains if the volatile result of the assignment is |
| // unused, so we cast the volatile away. We cannot cast directly |
| // to void, because gcc treats that as not using the result of the |
| // assignment. However, casting to E& means that we trigger an |
| // unused-value warning. So, we cast the E& to void. |
| (void)const_cast<E&>(_elems[localBot] = t); |
| OrderAccess::release_store(&_bottom, increment_index(localBot)); |
| TASKQUEUE_STATS_ONLY(stats.record_push()); |
| return true; |
| } |
| return false; |
| } |
| |
| // pop_local_slow() is done by the owning thread and is trying to |
| // get the last task in the queue. It will compete with pop_global() |
| // that will be used by other threads. The tag age is incremented |
| // whenever the queue goes empty which it will do here if this thread |
| // gets the last task or in pop_global() if the queue wraps (top == 0 |
| // and pop_global() succeeds, see pop_global()). |
| template<class E, MEMFLAGS F, unsigned int N> |
| bool GenericTaskQueue<E, F, N>::pop_local_slow(uint localBot, Age oldAge) { |
| // This queue was observed to contain exactly one element; either this |
| // thread will claim it, or a competing "pop_global". In either case, |
| // the queue will be logically empty afterwards. Create a new Age value |
| // that represents the empty queue for the given value of "_bottom". (We |
| // must also increment "tag" because of the case where "bottom == 1", |
| // "top == 0". A pop_global could read the queue element in that case, |
| // then have the owner thread do a pop followed by another push. Without |
| // the incrementing of "tag", the pop_global's CAS could succeed, |
| // allowing it to believe it has claimed the stale element.) |
| Age newAge((idx_t)localBot, oldAge.tag() + 1); |
| // Perhaps a competing pop_global has already incremented "top", in which |
| // case it wins the element. |
| if (localBot == oldAge.top()) { |
| // No competing pop_global has yet incremented "top"; we'll try to |
| // install new_age, thus claiming the element. |
| Age tempAge = _age.cmpxchg(newAge, oldAge); |
| if (tempAge == oldAge) { |
| // We win. |
| assert(dirty_size(localBot, _age.top()) != N - 1, "sanity"); |
| TASKQUEUE_STATS_ONLY(stats.record_pop_slow()); |
| return true; |
| } |
| } |
| // We lose; a completing pop_global gets the element. But the queue is empty |
| // and top is greater than bottom. Fix this representation of the empty queue |
| // to become the canonical one. |
| _age.set(newAge); |
| assert(dirty_size(localBot, _age.top()) != N - 1, "sanity"); |
| return false; |
| } |
| |
| template<class E, MEMFLAGS F, unsigned int N> |
| bool GenericTaskQueue<E, F, N>::pop_global(volatile E& t) { |
| Age oldAge = _age.get(); |
| // Architectures with weak memory model require a barrier here |
| // to guarantee that bottom is not older than age, |
| // which is crucial for the correctness of the algorithm. |
| #if !(defined SPARC || defined IA32 || defined AMD64) |
| OrderAccess::fence(); |
| #endif |
| uint localBot = OrderAccess::load_acquire((volatile juint*)&_bottom); |
| uint n_elems = size(localBot, oldAge.top()); |
| if (n_elems == 0) { |
| return false; |
| } |
| |
| // g++ complains if the volatile result of the assignment is |
| // unused, so we cast the volatile away. We cannot cast directly |
| // to void, because gcc treats that as not using the result of the |
| // assignment. However, casting to E& means that we trigger an |
| // unused-value warning. So, we cast the E& to void. |
| (void) const_cast<E&>(t = _elems[oldAge.top()]); |
| Age newAge(oldAge); |
| newAge.increment(); |
| Age resAge = _age.cmpxchg(newAge, oldAge); |
| |
| // Note that using "_bottom" here might fail, since a pop_local might |
| // have decremented it. |
| assert(dirty_size(localBot, newAge.top()) != N - 1, "sanity"); |
| return resAge == oldAge; |
| } |
| |
| template<class E, MEMFLAGS F, unsigned int N> |
| GenericTaskQueue<E, F, N>::~GenericTaskQueue() { |
| FREE_C_HEAP_ARRAY(E, _elems, F); |
| } |
| |
| // OverflowTaskQueue is a TaskQueue that also includes an overflow stack for |
| // elements that do not fit in the TaskQueue. |
| // |
| // This class hides two methods from super classes: |
| // |
| // push() - push onto the task queue or, if that fails, onto the overflow stack |
| // is_empty() - return true if both the TaskQueue and overflow stack are empty |
| // |
| // Note that size() is not hidden--it returns the number of elements in the |
| // TaskQueue, and does not include the size of the overflow stack. This |
| // simplifies replacement of GenericTaskQueues with OverflowTaskQueues. |
| template<class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE> |
| class OverflowTaskQueue: public GenericTaskQueue<E, F, N> |
| { |
| public: |
| typedef Stack<E, F> overflow_t; |
| typedef GenericTaskQueue<E, F, N> taskqueue_t; |
| |
| TASKQUEUE_STATS_ONLY(using taskqueue_t::stats;) |
| |
| // Push task t onto the queue or onto the overflow stack. Return true. |
| inline bool push(E t); |
| |
| // Try to push task t onto the queue only. Returns true if successful, false otherwise. |
| inline bool try_push_to_taskqueue(E t); |
| |
| // Attempt to pop from the overflow stack; return true if anything was popped. |
| inline bool pop_overflow(E& t); |
| |
| inline overflow_t* overflow_stack() { return &_overflow_stack; } |
| |
| inline bool taskqueue_empty() const { return taskqueue_t::is_empty(); } |
| inline bool overflow_empty() const { return _overflow_stack.is_empty(); } |
| inline bool is_empty() const { |
| return taskqueue_empty() && overflow_empty(); |
| } |
| |
| private: |
| overflow_t _overflow_stack; |
| }; |
| |
| template <class E, MEMFLAGS F, unsigned int N> |
| bool OverflowTaskQueue<E, F, N>::push(E t) |
| { |
| if (!taskqueue_t::push(t)) { |
| overflow_stack()->push(t); |
| TASKQUEUE_STATS_ONLY(stats.record_overflow(overflow_stack()->size())); |
| } |
| return true; |
| } |
| |
| template <class E, MEMFLAGS F, unsigned int N> |
| bool OverflowTaskQueue<E, F, N>::pop_overflow(E& t) |
| { |
| if (overflow_empty()) return false; |
| t = overflow_stack()->pop(); |
| return true; |
| } |
| |
| template <class E, MEMFLAGS F, unsigned int N> |
| bool OverflowTaskQueue<E, F, N>::try_push_to_taskqueue(E t) { |
| return taskqueue_t::push(t); |
| } |
| class TaskQueueSetSuper { |
| protected: |
| static int randomParkAndMiller(int* seed0); |
| public: |
| // Returns "true" if some TaskQueue in the set contains a task. |
| virtual bool peek() = 0; |
| }; |
| |
| template <MEMFLAGS F> class TaskQueueSetSuperImpl: public CHeapObj<F>, public TaskQueueSetSuper { |
| }; |
| |
| template<class T, MEMFLAGS F> |
| class GenericTaskQueueSet: public TaskQueueSetSuperImpl<F> { |
| private: |
| uint _n; |
| T** _queues; |
| |
| public: |
| typedef typename T::element_type E; |
| |
| GenericTaskQueueSet(int n) : _n(n) { |
| typedef T* GenericTaskQueuePtr; |
| _queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n, F); |
| for (int i = 0; i < n; i++) { |
| _queues[i] = NULL; |
| } |
| } |
| |
| bool steal_best_of_2(uint queue_num, int* seed, E& t); |
| |
| void register_queue(uint i, T* q); |
| |
| T* queue(uint n); |
| |
| // The thread with queue number "queue_num" (and whose random number seed is |
| // at "seed") is trying to steal a task from some other queue. (It may try |
| // several queues, according to some configuration parameter.) If some steal |
| // succeeds, returns "true" and sets "t" to the stolen task, otherwise returns |
| // false. |
| bool steal(uint queue_num, int* seed, E& t); |
| |
| bool peek(); |
| }; |
| |
| template<class T, MEMFLAGS F> void |
| GenericTaskQueueSet<T, F>::register_queue(uint i, T* q) { |
| assert(i < _n, "index out of range."); |
| _queues[i] = q; |
| } |
| |
| template<class T, MEMFLAGS F> T* |
| GenericTaskQueueSet<T, F>::queue(uint i) { |
| return _queues[i]; |
| } |
| |
| template<class T, MEMFLAGS F> bool |
| GenericTaskQueueSet<T, F>::steal(uint queue_num, int* seed, E& t) { |
| for (uint i = 0; i < 2 * _n; i++) { |
| if (steal_best_of_2(queue_num, seed, t)) { |
| TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(true)); |
| return true; |
| } |
| } |
| TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(false)); |
| return false; |
| } |
| |
| template<class T, MEMFLAGS F> bool |
| GenericTaskQueueSet<T, F>::steal_best_of_2(uint queue_num, int* seed, E& t) { |
| if (_n > 2) { |
| uint k1 = queue_num; |
| while (k1 == queue_num) k1 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n; |
| uint k2 = queue_num; |
| while (k2 == queue_num || k2 == k1) k2 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n; |
| // Sample both and try the larger. |
| uint sz1 = _queues[k1]->size(); |
| uint sz2 = _queues[k2]->size(); |
| if (sz2 > sz1) return _queues[k2]->pop_global(t); |
| else return _queues[k1]->pop_global(t); |
| } else if (_n == 2) { |
| // Just try the other one. |
| uint k = (queue_num + 1) % 2; |
| return _queues[k]->pop_global(t); |
| } else { |
| assert(_n == 1, "can't be zero."); |
| return false; |
| } |
| } |
| |
| template<class T, MEMFLAGS F> |
| bool GenericTaskQueueSet<T, F>::peek() { |
| // Try all the queues. |
| for (uint j = 0; j < _n; j++) { |
| if (_queues[j]->peek()) |
| return true; |
| } |
| return false; |
| } |
| |
| // When to terminate from the termination protocol. |
| class TerminatorTerminator: public CHeapObj<mtInternal> { |
| public: |
| virtual bool should_exit_termination() = 0; |
| }; |
| |
| // A class to aid in the termination of a set of parallel tasks using |
| // TaskQueueSet's for work stealing. |
| |
| #undef TRACESPINNING |
| |
| class ParallelTaskTerminator: public StackObj { |
| private: |
| int _n_threads; |
| TaskQueueSetSuper* _queue_set; |
| char _pad_before[DEFAULT_CACHE_LINE_SIZE]; |
| int _offered_termination; |
| char _pad_after[DEFAULT_CACHE_LINE_SIZE]; |
| |
| #ifdef TRACESPINNING |
| static uint _total_yields; |
| static uint _total_spins; |
| static uint _total_peeks; |
| #endif |
| |
| bool peek_in_queue_set(); |
| protected: |
| virtual void yield(); |
| void sleep(uint millis); |
| |
| public: |
| |
| // "n_threads" is the number of threads to be terminated. "queue_set" is a |
| // queue sets of work queues of other threads. |
| ParallelTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set); |
| |
| // The current thread has no work, and is ready to terminate if everyone |
| // else is. If returns "true", all threads are terminated. If returns |
| // "false", available work has been observed in one of the task queues, |
| // so the global task is not complete. |
| bool offer_termination() { |
| return offer_termination(NULL); |
| } |
| |
| // As above, but it also terminates if the should_exit_termination() |
| // method of the terminator parameter returns true. If terminator is |
| // NULL, then it is ignored. |
| bool offer_termination(TerminatorTerminator* terminator); |
| |
| // Reset the terminator, so that it may be reused again. |
| // The caller is responsible for ensuring that this is done |
| // in an MT-safe manner, once the previous round of use of |
| // the terminator is finished. |
| void reset_for_reuse(); |
| // Same as above but the number of parallel threads is set to the |
| // given number. |
| void reset_for_reuse(int n_threads); |
| |
| #ifdef TRACESPINNING |
| static uint total_yields() { return _total_yields; } |
| static uint total_spins() { return _total_spins; } |
| static uint total_peeks() { return _total_peeks; } |
| static void print_termination_counts(); |
| #endif |
| }; |
| |
| template<class E, MEMFLAGS F, unsigned int N> inline bool |
| GenericTaskQueue<E, F, N>::push(E t) { |
| uint localBot = _bottom; |
| assert(localBot < N, "_bottom out of range."); |
| idx_t top = _age.top(); |
| uint dirty_n_elems = dirty_size(localBot, top); |
| assert(dirty_n_elems < N, "n_elems out of range."); |
| if (dirty_n_elems < max_elems()) { |
| // g++ complains if the volatile result of the assignment is |
| // unused, so we cast the volatile away. We cannot cast directly |
| // to void, because gcc treats that as not using the result of the |
| // assignment. However, casting to E& means that we trigger an |
| // unused-value warning. So, we cast the E& to void. |
| (void) const_cast<E&>(_elems[localBot] = t); |
| OrderAccess::release_store(&_bottom, increment_index(localBot)); |
| TASKQUEUE_STATS_ONLY(stats.record_push()); |
| return true; |
| } else { |
| return push_slow(t, dirty_n_elems); |
| } |
| } |
| |
| template<class E, MEMFLAGS F, unsigned int N> inline bool |
| GenericTaskQueue<E, F, N>::pop_local(volatile E& t) { |
| uint localBot = _bottom; |
| // This value cannot be N-1. That can only occur as a result of |
| // the assignment to bottom in this method. If it does, this method |
| // resets the size to 0 before the next call (which is sequential, |
| // since this is pop_local.) |
| uint dirty_n_elems = dirty_size(localBot, _age.top()); |
| assert(dirty_n_elems != N - 1, "Shouldn't be possible..."); |
| if (dirty_n_elems == 0) return false; |
| localBot = decrement_index(localBot); |
| _bottom = localBot; |
| // This is necessary to prevent any read below from being reordered |
| // before the store just above. |
| OrderAccess::fence(); |
| // g++ complains if the volatile result of the assignment is |
| // unused, so we cast the volatile away. We cannot cast directly |
| // to void, because gcc treats that as not using the result of the |
| // assignment. However, casting to E& means that we trigger an |
| // unused-value warning. So, we cast the E& to void. |
| (void) const_cast<E&>(t = _elems[localBot]); |
| // This is a second read of "age"; the "size()" above is the first. |
| // If there's still at least one element in the queue, based on the |
| // "_bottom" and "age" we've read, then there can be no interference with |
| // a "pop_global" operation, and we're done. |
| idx_t tp = _age.top(); // XXX |
| if (size(localBot, tp) > 0) { |
| assert(dirty_size(localBot, tp) != N - 1, "sanity"); |
| TASKQUEUE_STATS_ONLY(stats.record_pop()); |
| return true; |
| } else { |
| // Otherwise, the queue contained exactly one element; we take the slow |
| // path. |
| |
| // The barrier is required to prevent reordering the two reads of _age: |
| // one is the _age.get() below, and the other is _age.top() above the if-stmt. |
| // The algorithm may fail if _age.get() reads an older value than _age.top(). |
| OrderAccess::loadload(); |
| return pop_local_slow(localBot, _age.get()); |
| } |
| } |
| |
| typedef GenericTaskQueue<oop, mtGC> OopTaskQueue; |
| typedef GenericTaskQueueSet<OopTaskQueue, mtGC> OopTaskQueueSet; |
| |
| #ifdef _MSC_VER |
| #pragma warning(push) |
| // warning C4522: multiple assignment operators specified |
| #pragma warning(disable:4522) |
| #endif |
| |
| // This is a container class for either an oop* or a narrowOop*. |
| // Both are pushed onto a task queue and the consumer will test is_narrow() |
| // to determine which should be processed. |
| class StarTask { |
| void* _holder; // either union oop* or narrowOop* |
| |
| enum { COMPRESSED_OOP_MASK = 1 }; |
| |
| public: |
| StarTask(narrowOop* p) { |
| assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!"); |
| _holder = (void *)((uintptr_t)p | COMPRESSED_OOP_MASK); |
| } |
| StarTask(oop* p) { |
| assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!"); |
| _holder = (void*)p; |
| } |
| StarTask() { _holder = NULL; } |
| operator oop*() { return (oop*)_holder; } |
| operator narrowOop*() { |
| return (narrowOop*)((uintptr_t)_holder & ~COMPRESSED_OOP_MASK); |
| } |
| |
| StarTask& operator=(const StarTask& t) { |
| _holder = t._holder; |
| return *this; |
| } |
| volatile StarTask& operator=(const volatile StarTask& t) volatile { |
| _holder = t._holder; |
| return *this; |
| } |
| |
| bool is_narrow() const { |
| return (((uintptr_t)_holder & COMPRESSED_OOP_MASK) != 0); |
| } |
| }; |
| |
| class ObjArrayTask |
| { |
| public: |
| ObjArrayTask(oop o = NULL, int idx = 0): _obj(o), _index(idx) { } |
| ObjArrayTask(oop o, size_t idx): _obj(o), _index(int(idx)) { |
| assert(idx <= size_t(max_jint), "too big"); |
| } |
| ObjArrayTask(const ObjArrayTask& t): _obj(t._obj), _index(t._index) { } |
| |
| ObjArrayTask& operator =(const ObjArrayTask& t) { |
| _obj = t._obj; |
| _index = t._index; |
| return *this; |
| } |
| volatile ObjArrayTask& |
| operator =(const volatile ObjArrayTask& t) volatile { |
| (void)const_cast<oop&>(_obj = t._obj); |
| _index = t._index; |
| return *this; |
| } |
| |
| inline oop obj() const { return _obj; } |
| inline int index() const { return _index; } |
| |
| DEBUG_ONLY(bool is_valid() const); // Tasks to be pushed/popped must be valid. |
| |
| private: |
| oop _obj; |
| int _index; |
| }; |
| |
| #ifdef _MSC_VER |
| #pragma warning(pop) |
| #endif |
| |
| typedef OverflowTaskQueue<StarTask, mtClass> OopStarTaskQueue; |
| typedef GenericTaskQueueSet<OopStarTaskQueue, mtClass> OopStarTaskQueueSet; |
| |
| typedef OverflowTaskQueue<size_t, mtInternal> RegionTaskQueue; |
| typedef GenericTaskQueueSet<RegionTaskQueue, mtClass> RegionTaskQueueSet; |
| |
| |
| #endif // SHARE_VM_UTILITIES_TASKQUEUE_HPP |