| /* |
| * Copyright (c) 2000-2007 Niels Provos <[email protected]> |
| * Copyright (c) 2007-2012 Niels Provos and Nick Mathewson |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. The name of the author may not be used to endorse or promote products |
| * derived from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
| * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
| * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
| * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
| * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| #include "event2/event-config.h" |
| |
| #ifdef WIN32 |
| #include <winsock2.h> |
| #define WIN32_LEAN_AND_MEAN |
| #include <windows.h> |
| #undef WIN32_LEAN_AND_MEAN |
| #endif |
| #include <sys/types.h> |
| #if !defined(WIN32) && defined(_EVENT_HAVE_SYS_TIME_H) |
| #include <sys/time.h> |
| #endif |
| #include <sys/queue.h> |
| #ifdef _EVENT_HAVE_SYS_SOCKET_H |
| #include <sys/socket.h> |
| #endif |
| #include <stdio.h> |
| #include <stdlib.h> |
| #ifdef _EVENT_HAVE_UNISTD_H |
| #include <unistd.h> |
| #endif |
| #ifdef _EVENT_HAVE_SYS_EVENTFD_H |
| #include <sys/eventfd.h> |
| #endif |
| #include <ctype.h> |
| #include <errno.h> |
| #include <signal.h> |
| #include <string.h> |
| #include <time.h> |
| |
| #include "event2/event.h" |
| #include "event2/event_struct.h" |
| #include "event2/event_compat.h" |
| #include "event-internal.h" |
| #include "defer-internal.h" |
| #include "evthread-internal.h" |
| #include "event2/thread.h" |
| #include "event2/util.h" |
| #include "log-internal.h" |
| #include "evmap-internal.h" |
| #include "iocp-internal.h" |
| #include "changelist-internal.h" |
| #include "ht-internal.h" |
| #include "util-internal.h" |
| |
| #ifdef _EVENT_HAVE_EVENT_PORTS |
| extern const struct eventop evportops; |
| #endif |
| #ifdef _EVENT_HAVE_SELECT |
| extern const struct eventop selectops; |
| #endif |
| #ifdef _EVENT_HAVE_POLL |
| extern const struct eventop pollops; |
| #endif |
| #ifdef _EVENT_HAVE_EPOLL |
| extern const struct eventop epollops; |
| #endif |
| #ifdef _EVENT_HAVE_WORKING_KQUEUE |
| extern const struct eventop kqops; |
| #endif |
| #ifdef _EVENT_HAVE_DEVPOLL |
| extern const struct eventop devpollops; |
| #endif |
| #ifdef WIN32 |
| extern const struct eventop win32ops; |
| #endif |
| |
| /* Array of backends in order of preference. */ |
| static const struct eventop *eventops[] = { |
| #ifdef _EVENT_HAVE_EVENT_PORTS |
| &evportops, |
| #endif |
| #ifdef _EVENT_HAVE_WORKING_KQUEUE |
| &kqops, |
| #endif |
| #ifdef _EVENT_HAVE_EPOLL |
| &epollops, |
| #endif |
| #ifdef _EVENT_HAVE_DEVPOLL |
| &devpollops, |
| #endif |
| #ifdef _EVENT_HAVE_POLL |
| &pollops, |
| #endif |
| #ifdef _EVENT_HAVE_SELECT |
| &selectops, |
| #endif |
| #ifdef WIN32 |
| &win32ops, |
| #endif |
| NULL |
| }; |
| |
| /* Global state; deprecated */ |
| struct event_base *event_global_current_base_ = NULL; |
| #define current_base event_global_current_base_ |
| |
| /* Global state */ |
| |
| static int use_monotonic; |
| |
| /* Prototypes */ |
| static inline int event_add_internal(struct event *ev, |
| const struct timeval *tv, int tv_is_absolute); |
| static inline int event_del_internal(struct event *ev); |
| |
| static void event_queue_insert(struct event_base *, struct event *, int); |
| static void event_queue_remove(struct event_base *, struct event *, int); |
| static int event_haveevents(struct event_base *); |
| |
| static int event_process_active(struct event_base *); |
| |
| static int timeout_next(struct event_base *, struct timeval **); |
| static void timeout_process(struct event_base *); |
| static void timeout_correct(struct event_base *, struct timeval *); |
| |
| static inline void event_signal_closure(struct event_base *, struct event *ev); |
| static inline void event_persist_closure(struct event_base *, struct event *ev); |
| |
| static int evthread_notify_base(struct event_base *base); |
| |
| #ifndef _EVENT_DISABLE_DEBUG_MODE |
| /* These functions implement a hashtable of which 'struct event *' structures |
| * have been setup or added. We don't want to trust the content of the struct |
| * event itself, since we're trying to work through cases where an event gets |
| * clobbered or freed. Instead, we keep a hashtable indexed by the pointer. |
| */ |
| |
| struct event_debug_entry { |
| HT_ENTRY(event_debug_entry) node; |
| const struct event *ptr; |
| unsigned added : 1; |
| }; |
| |
| static inline unsigned |
| hash_debug_entry(const struct event_debug_entry *e) |
| { |
| /* We need to do this silliness to convince compilers that we |
| * honestly mean to cast e->ptr to an integer, and discard any |
| * part of it that doesn't fit in an unsigned. |
| */ |
| unsigned u = (unsigned) ((ev_uintptr_t) e->ptr); |
| /* Our hashtable implementation is pretty sensitive to low bits, |
| * and every struct event is over 64 bytes in size, so we can |
| * just say >>6. */ |
| return (u >> 6); |
| } |
| |
| static inline int |
| eq_debug_entry(const struct event_debug_entry *a, |
| const struct event_debug_entry *b) |
| { |
| return a->ptr == b->ptr; |
| } |
| |
| int _event_debug_mode_on = 0; |
| /* Set if it's too late to enable event_debug_mode. */ |
| static int event_debug_mode_too_late = 0; |
| #ifndef _EVENT_DISABLE_THREAD_SUPPORT |
| static void *_event_debug_map_lock = NULL; |
| #endif |
| static HT_HEAD(event_debug_map, event_debug_entry) global_debug_map = |
| HT_INITIALIZER(); |
| |
| HT_PROTOTYPE(event_debug_map, event_debug_entry, node, hash_debug_entry, |
| eq_debug_entry) |
| HT_GENERATE(event_debug_map, event_debug_entry, node, hash_debug_entry, |
| eq_debug_entry, 0.5, mm_malloc, mm_realloc, mm_free) |
| |
| /* Macro: record that ev is now setup (that is, ready for an add) */ |
| #define _event_debug_note_setup(ev) do { \ |
| if (_event_debug_mode_on) { \ |
| struct event_debug_entry *dent,find; \ |
| find.ptr = (ev); \ |
| EVLOCK_LOCK(_event_debug_map_lock, 0); \ |
| dent = HT_FIND(event_debug_map, &global_debug_map, &find); \ |
| if (dent) { \ |
| dent->added = 0; \ |
| } else { \ |
| dent = mm_malloc(sizeof(*dent)); \ |
| if (!dent) \ |
| event_err(1, \ |
| "Out of memory in debugging code"); \ |
| dent->ptr = (ev); \ |
| dent->added = 0; \ |
| HT_INSERT(event_debug_map, &global_debug_map, dent); \ |
| } \ |
| EVLOCK_UNLOCK(_event_debug_map_lock, 0); \ |
| } \ |
| event_debug_mode_too_late = 1; \ |
| } while (0) |
| /* Macro: record that ev is no longer setup */ |
| #define _event_debug_note_teardown(ev) do { \ |
| if (_event_debug_mode_on) { \ |
| struct event_debug_entry *dent,find; \ |
| find.ptr = (ev); \ |
| EVLOCK_LOCK(_event_debug_map_lock, 0); \ |
| dent = HT_REMOVE(event_debug_map, &global_debug_map, &find); \ |
| if (dent) \ |
| mm_free(dent); \ |
| EVLOCK_UNLOCK(_event_debug_map_lock, 0); \ |
| } \ |
| event_debug_mode_too_late = 1; \ |
| } while (0) |
| /* Macro: record that ev is now added */ |
| #define _event_debug_note_add(ev) do { \ |
| if (_event_debug_mode_on) { \ |
| struct event_debug_entry *dent,find; \ |
| find.ptr = (ev); \ |
| EVLOCK_LOCK(_event_debug_map_lock, 0); \ |
| dent = HT_FIND(event_debug_map, &global_debug_map, &find); \ |
| if (dent) { \ |
| dent->added = 1; \ |
| } else { \ |
| event_errx(_EVENT_ERR_ABORT, \ |
| "%s: noting an add on a non-setup event %p" \ |
| " (events: 0x%x, fd: "EV_SOCK_FMT \ |
| ", flags: 0x%x)", \ |
| __func__, (ev), (ev)->ev_events, \ |
| EV_SOCK_ARG((ev)->ev_fd), (ev)->ev_flags); \ |
| } \ |
| EVLOCK_UNLOCK(_event_debug_map_lock, 0); \ |
| } \ |
| event_debug_mode_too_late = 1; \ |
| } while (0) |
| /* Macro: record that ev is no longer added */ |
| #define _event_debug_note_del(ev) do { \ |
| if (_event_debug_mode_on) { \ |
| struct event_debug_entry *dent,find; \ |
| find.ptr = (ev); \ |
| EVLOCK_LOCK(_event_debug_map_lock, 0); \ |
| dent = HT_FIND(event_debug_map, &global_debug_map, &find); \ |
| if (dent) { \ |
| dent->added = 0; \ |
| } else { \ |
| event_errx(_EVENT_ERR_ABORT, \ |
| "%s: noting a del on a non-setup event %p" \ |
| " (events: 0x%x, fd: "EV_SOCK_FMT \ |
| ", flags: 0x%x)", \ |
| __func__, (ev), (ev)->ev_events, \ |
| EV_SOCK_ARG((ev)->ev_fd), (ev)->ev_flags); \ |
| } \ |
| EVLOCK_UNLOCK(_event_debug_map_lock, 0); \ |
| } \ |
| event_debug_mode_too_late = 1; \ |
| } while (0) |
| /* Macro: assert that ev is setup (i.e., okay to add or inspect) */ |
| #define _event_debug_assert_is_setup(ev) do { \ |
| if (_event_debug_mode_on) { \ |
| struct event_debug_entry *dent,find; \ |
| find.ptr = (ev); \ |
| EVLOCK_LOCK(_event_debug_map_lock, 0); \ |
| dent = HT_FIND(event_debug_map, &global_debug_map, &find); \ |
| if (!dent) { \ |
| event_errx(_EVENT_ERR_ABORT, \ |
| "%s called on a non-initialized event %p" \ |
| " (events: 0x%x, fd: "EV_SOCK_FMT\ |
| ", flags: 0x%x)", \ |
| __func__, (ev), (ev)->ev_events, \ |
| EV_SOCK_ARG((ev)->ev_fd), (ev)->ev_flags); \ |
| } \ |
| EVLOCK_UNLOCK(_event_debug_map_lock, 0); \ |
| } \ |
| } while (0) |
| /* Macro: assert that ev is not added (i.e., okay to tear down or set |
| * up again) */ |
| #define _event_debug_assert_not_added(ev) do { \ |
| if (_event_debug_mode_on) { \ |
| struct event_debug_entry *dent,find; \ |
| find.ptr = (ev); \ |
| EVLOCK_LOCK(_event_debug_map_lock, 0); \ |
| dent = HT_FIND(event_debug_map, &global_debug_map, &find); \ |
| if (dent && dent->added) { \ |
| event_errx(_EVENT_ERR_ABORT, \ |
| "%s called on an already added event %p" \ |
| " (events: 0x%x, fd: "EV_SOCK_FMT", " \ |
| "flags: 0x%x)", \ |
| __func__, (ev), (ev)->ev_events, \ |
| EV_SOCK_ARG((ev)->ev_fd), (ev)->ev_flags); \ |
| } \ |
| EVLOCK_UNLOCK(_event_debug_map_lock, 0); \ |
| } \ |
| } while (0) |
| #else |
| #define _event_debug_note_setup(ev) \ |
| ((void)0) |
| #define _event_debug_note_teardown(ev) \ |
| ((void)0) |
| #define _event_debug_note_add(ev) \ |
| ((void)0) |
| #define _event_debug_note_del(ev) \ |
| ((void)0) |
| #define _event_debug_assert_is_setup(ev) \ |
| ((void)0) |
| #define _event_debug_assert_not_added(ev) \ |
| ((void)0) |
| #endif |
| |
| #define EVENT_BASE_ASSERT_LOCKED(base) \ |
| EVLOCK_ASSERT_LOCKED((base)->th_base_lock) |
| |
| /* The first time this function is called, it sets use_monotonic to 1 |
| * if we have a clock function that supports monotonic time */ |
| static void |
| detect_monotonic(void) |
| { |
| #if defined(_EVENT_HAVE_CLOCK_GETTIME) && defined(CLOCK_MONOTONIC) |
| struct timespec ts; |
| static int use_monotonic_initialized = 0; |
| |
| if (use_monotonic_initialized) |
| return; |
| |
| if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) |
| use_monotonic = 1; |
| |
| use_monotonic_initialized = 1; |
| #endif |
| } |
| |
| /* How often (in seconds) do we check for changes in wall clock time relative |
| * to monotonic time? Set this to -1 for 'never.' */ |
| #define CLOCK_SYNC_INTERVAL -1 |
| |
| /** Set 'tp' to the current time according to 'base'. We must hold the lock |
| * on 'base'. If there is a cached time, return it. Otherwise, use |
| * clock_gettime or gettimeofday as appropriate to find out the right time. |
| * Return 0 on success, -1 on failure. |
| */ |
| static int |
| gettime(struct event_base *base, struct timeval *tp) |
| { |
| EVENT_BASE_ASSERT_LOCKED(base); |
| |
| if (base->tv_cache.tv_sec) { |
| *tp = base->tv_cache; |
| return (0); |
| } |
| |
| #if defined(_EVENT_HAVE_CLOCK_GETTIME) && defined(CLOCK_MONOTONIC) |
| if (use_monotonic) { |
| struct timespec ts; |
| |
| if (clock_gettime(CLOCK_MONOTONIC, &ts) == -1) |
| return (-1); |
| |
| tp->tv_sec = ts.tv_sec; |
| tp->tv_usec = ts.tv_nsec / 1000; |
| if (base->last_updated_clock_diff + CLOCK_SYNC_INTERVAL |
| < ts.tv_sec) { |
| struct timeval tv; |
| evutil_gettimeofday(&tv,NULL); |
| evutil_timersub(&tv, tp, &base->tv_clock_diff); |
| base->last_updated_clock_diff = ts.tv_sec; |
| } |
| |
| return (0); |
| } |
| #endif |
| |
| return (evutil_gettimeofday(tp, NULL)); |
| } |
| |
| int |
| event_base_gettimeofday_cached(struct event_base *base, struct timeval *tv) |
| { |
| int r; |
| if (!base) { |
| base = current_base; |
| if (!current_base) |
| return evutil_gettimeofday(tv, NULL); |
| } |
| |
| EVBASE_ACQUIRE_LOCK(base, th_base_lock); |
| if (base->tv_cache.tv_sec == 0) { |
| r = evutil_gettimeofday(tv, NULL); |
| } else { |
| #if defined(_EVENT_HAVE_CLOCK_GETTIME) && defined(CLOCK_MONOTONIC) |
| evutil_timeradd(&base->tv_cache, &base->tv_clock_diff, tv); |
| #else |
| *tv = base->tv_cache; |
| #endif |
| r = 0; |
| } |
| EVBASE_RELEASE_LOCK(base, th_base_lock); |
| return r; |
| } |
| |
| /** Make 'base' have no current cached time. */ |
| static inline void |
| clear_time_cache(struct event_base *base) |
| { |
| base->tv_cache.tv_sec = 0; |
| } |
| |
| /** Replace the cached time in 'base' with the current time. */ |
| static inline void |
| update_time_cache(struct event_base *base) |
| { |
| base->tv_cache.tv_sec = 0; |
| if (!(base->flags & EVENT_BASE_FLAG_NO_CACHE_TIME)) |
| gettime(base, &base->tv_cache); |
| } |
| |
| struct event_base * |
| event_init(void) |
| { |
| struct event_base *base = event_base_new_with_config(NULL); |
| |
| if (base == NULL) { |
| event_errx(1, "%s: Unable to construct event_base", __func__); |
| return NULL; |
| } |
| |
| current_base = base; |
| |
| return (base); |
| } |
| |
| struct event_base * |
| event_base_new(void) |
| { |
| struct event_base *base = NULL; |
| struct event_config *cfg = event_config_new(); |
| if (cfg) { |
| base = event_base_new_with_config(cfg); |
| event_config_free(cfg); |
| } |
| return base; |
| } |
| |
| /** Return true iff 'method' is the name of a method that 'cfg' tells us to |
| * avoid. */ |
| static int |
| event_config_is_avoided_method(const struct event_config *cfg, |
| const char *method) |
| { |
| struct event_config_entry *entry; |
| |
| TAILQ_FOREACH(entry, &cfg->entries, next) { |
| if (entry->avoid_method != NULL && |
| strcmp(entry->avoid_method, method) == 0) |
| return (1); |
| } |
| |
| return (0); |
| } |
| |
| /** Return true iff 'method' is disabled according to the environment. */ |
| static int |
| event_is_method_disabled(const char *name) |
| { |
| char environment[64]; |
| int i; |
| |
| evutil_snprintf(environment, sizeof(environment), "EVENT_NO%s", name); |
| for (i = 8; environment[i] != '\0'; ++i) |
| environment[i] = EVUTIL_TOUPPER(environment[i]); |
| /* Note that evutil_getenv() ignores the environment entirely if |
| * we're setuid */ |
| return (evutil_getenv(environment) != NULL); |
| } |
| |
| int |
| event_base_get_features(const struct event_base *base) |
| { |
| return base->evsel->features; |
| } |
| |
| void |
| event_deferred_cb_queue_init(struct deferred_cb_queue *cb) |
| { |
| memset(cb, 0, sizeof(struct deferred_cb_queue)); |
| TAILQ_INIT(&cb->deferred_cb_list); |
| } |
| |
| /** Helper for the deferred_cb queue: wake up the event base. */ |
| static void |
| notify_base_cbq_callback(struct deferred_cb_queue *cb, void *baseptr) |
| { |
| struct event_base *base = baseptr; |
| if (EVBASE_NEED_NOTIFY(base)) |
| evthread_notify_base(base); |
| } |
| |
| struct deferred_cb_queue * |
| event_base_get_deferred_cb_queue(struct event_base *base) |
| { |
| return base ? &base->defer_queue : NULL; |
| } |
| |
| void |
| event_enable_debug_mode(void) |
| { |
| #ifndef _EVENT_DISABLE_DEBUG_MODE |
| if (_event_debug_mode_on) |
| event_errx(1, "%s was called twice!", __func__); |
| if (event_debug_mode_too_late) |
| event_errx(1, "%s must be called *before* creating any events " |
| "or event_bases",__func__); |
| |
| _event_debug_mode_on = 1; |
| |
| HT_INIT(event_debug_map, &global_debug_map); |
| #endif |
| } |
| |
| #if 0 |
| void |
| event_disable_debug_mode(void) |
| { |
| struct event_debug_entry **ent, *victim; |
| |
| EVLOCK_LOCK(_event_debug_map_lock, 0); |
| for (ent = HT_START(event_debug_map, &global_debug_map); ent; ) { |
| victim = *ent; |
| ent = HT_NEXT_RMV(event_debug_map,&global_debug_map, ent); |
| mm_free(victim); |
| } |
| HT_CLEAR(event_debug_map, &global_debug_map); |
| EVLOCK_UNLOCK(_event_debug_map_lock , 0); |
| } |
| #endif |
| |
| struct event_base * |
| event_base_new_with_config(const struct event_config *cfg) |
| { |
| int i; |
| struct event_base *base; |
| int should_check_environment; |
| |
| #ifndef _EVENT_DISABLE_DEBUG_MODE |
| event_debug_mode_too_late = 1; |
| #endif |
| |
| if ((base = mm_calloc(1, sizeof(struct event_base))) == NULL) { |
| event_warn("%s: calloc", __func__); |
| return NULL; |
| } |
| detect_monotonic(); |
| gettime(base, &base->event_tv); |
| |
| min_heap_ctor(&base->timeheap); |
| TAILQ_INIT(&base->eventqueue); |
| base->sig.ev_signal_pair[0] = -1; |
| base->sig.ev_signal_pair[1] = -1; |
| base->th_notify_fd[0] = -1; |
| base->th_notify_fd[1] = -1; |
| |
| event_deferred_cb_queue_init(&base->defer_queue); |
| base->defer_queue.notify_fn = notify_base_cbq_callback; |
| base->defer_queue.notify_arg = base; |
| if (cfg) |
| base->flags = cfg->flags; |
| |
| evmap_io_initmap(&base->io); |
| evmap_signal_initmap(&base->sigmap); |
| event_changelist_init(&base->changelist); |
| |
| base->evbase = NULL; |
| |
| should_check_environment = |
| !(cfg && (cfg->flags & EVENT_BASE_FLAG_IGNORE_ENV)); |
| |
| for (i = 0; eventops[i] && !base->evbase; i++) { |
| if (cfg != NULL) { |
| /* determine if this backend should be avoided */ |
| if (event_config_is_avoided_method(cfg, |
| eventops[i]->name)) |
| continue; |
| if ((eventops[i]->features & cfg->require_features) |
| != cfg->require_features) |
| continue; |
| } |
| |
| /* also obey the environment variables */ |
| if (should_check_environment && |
| event_is_method_disabled(eventops[i]->name)) |
| continue; |
| |
| base->evsel = eventops[i]; |
| |
| base->evbase = base->evsel->init(base); |
| } |
| |
| if (base->evbase == NULL) { |
| event_warnx("%s: no event mechanism available", |
| __func__); |
| base->evsel = NULL; |
| event_base_free(base); |
| return NULL; |
| } |
| |
| if (evutil_getenv("EVENT_SHOW_METHOD")) |
| event_msgx("libevent using: %s", base->evsel->name); |
| |
| /* allocate a single active event queue */ |
| if (event_base_priority_init(base, 1) < 0) { |
| event_base_free(base); |
| return NULL; |
| } |
| |
| /* prepare for threading */ |
| |
| #ifndef _EVENT_DISABLE_THREAD_SUPPORT |
| if (EVTHREAD_LOCKING_ENABLED() && |
| (!cfg || !(cfg->flags & EVENT_BASE_FLAG_NOLOCK))) { |
| int r; |
| EVTHREAD_ALLOC_LOCK(base->th_base_lock, |
| EVTHREAD_LOCKTYPE_RECURSIVE); |
| base->defer_queue.lock = base->th_base_lock; |
| EVTHREAD_ALLOC_COND(base->current_event_cond); |
| r = evthread_make_base_notifiable(base); |
| if (r<0) { |
| event_warnx("%s: Unable to make base notifiable.", __func__); |
| event_base_free(base); |
| return NULL; |
| } |
| } |
| #endif |
| |
| #ifdef WIN32 |
| if (cfg && (cfg->flags & EVENT_BASE_FLAG_STARTUP_IOCP)) |
| event_base_start_iocp(base, cfg->n_cpus_hint); |
| #endif |
| |
| return (base); |
| } |
| |
| int |
| event_base_start_iocp(struct event_base *base, int n_cpus) |
| { |
| #ifdef WIN32 |
| if (base->iocp) |
| return 0; |
| base->iocp = event_iocp_port_launch(n_cpus); |
| if (!base->iocp) { |
| event_warnx("%s: Couldn't launch IOCP", __func__); |
| return -1; |
| } |
| return 0; |
| #else |
| return -1; |
| #endif |
| } |
| |
| void |
| event_base_stop_iocp(struct event_base *base) |
| { |
| #ifdef WIN32 |
| int rv; |
| |
| if (!base->iocp) |
| return; |
| rv = event_iocp_shutdown(base->iocp, -1); |
| EVUTIL_ASSERT(rv >= 0); |
| base->iocp = NULL; |
| #endif |
| } |
| |
| void |
| event_base_free(struct event_base *base) |
| { |
| int i, n_deleted=0; |
| struct event *ev; |
| /* XXXX grab the lock? If there is contention when one thread frees |
| * the base, then the contending thread will be very sad soon. */ |
| |
| /* event_base_free(NULL) is how to free the current_base if we |
| * made it with event_init and forgot to hold a reference to it. */ |
| if (base == NULL && current_base) |
| base = current_base; |
| /* If we're freeing current_base, there won't be a current_base. */ |
| if (base == current_base) |
| current_base = NULL; |
| /* Don't actually free NULL. */ |
| if (base == NULL) { |
| event_warnx("%s: no base to free", __func__); |
| return; |
| } |
| /* XXX(niels) - check for internal events first */ |
| |
| #ifdef WIN32 |
| event_base_stop_iocp(base); |
| #endif |
| |
| /* threading fds if we have them */ |
| if (base->th_notify_fd[0] != -1) { |
| event_del(&base->th_notify); |
| EVUTIL_CLOSESOCKET(base->th_notify_fd[0]); |
| if (base->th_notify_fd[1] != -1) |
| EVUTIL_CLOSESOCKET(base->th_notify_fd[1]); |
| base->th_notify_fd[0] = -1; |
| base->th_notify_fd[1] = -1; |
| event_debug_unassign(&base->th_notify); |
| } |
| |
| /* Delete all non-internal events. */ |
| for (ev = TAILQ_FIRST(&base->eventqueue); ev; ) { |
| struct event *next = TAILQ_NEXT(ev, ev_next); |
| if (!(ev->ev_flags & EVLIST_INTERNAL)) { |
| event_del(ev); |
| ++n_deleted; |
| } |
| ev = next; |
| } |
| while ((ev = min_heap_top(&base->timeheap)) != NULL) { |
| event_del(ev); |
| ++n_deleted; |
| } |
| for (i = 0; i < base->n_common_timeouts; ++i) { |
| struct common_timeout_list *ctl = |
| base->common_timeout_queues[i]; |
| event_del(&ctl->timeout_event); /* Internal; doesn't count */ |
| event_debug_unassign(&ctl->timeout_event); |
| for (ev = TAILQ_FIRST(&ctl->events); ev; ) { |
| struct event *next = TAILQ_NEXT(ev, |
| ev_timeout_pos.ev_next_with_common_timeout); |
| if (!(ev->ev_flags & EVLIST_INTERNAL)) { |
| event_del(ev); |
| ++n_deleted; |
| } |
| ev = next; |
| } |
| mm_free(ctl); |
| } |
| if (base->common_timeout_queues) |
| mm_free(base->common_timeout_queues); |
| |
| for (i = 0; i < base->nactivequeues; ++i) { |
| for (ev = TAILQ_FIRST(&base->activequeues[i]); ev; ) { |
| struct event *next = TAILQ_NEXT(ev, ev_active_next); |
| if (!(ev->ev_flags & EVLIST_INTERNAL)) { |
| event_del(ev); |
| ++n_deleted; |
| } |
| ev = next; |
| } |
| } |
| |
| if (n_deleted) |
| event_debug(("%s: %d events were still set in base", |
| __func__, n_deleted)); |
| |
| if (base->evsel != NULL && base->evsel->dealloc != NULL) |
| base->evsel->dealloc(base); |
| |
| for (i = 0; i < base->nactivequeues; ++i) |
| EVUTIL_ASSERT(TAILQ_EMPTY(&base->activequeues[i])); |
| |
| EVUTIL_ASSERT(min_heap_empty(&base->timeheap)); |
| min_heap_dtor(&base->timeheap); |
| |
| mm_free(base->activequeues); |
| |
| EVUTIL_ASSERT(TAILQ_EMPTY(&base->eventqueue)); |
| |
| evmap_io_clear(&base->io); |
| evmap_signal_clear(&base->sigmap); |
| event_changelist_freemem(&base->changelist); |
| |
| EVTHREAD_FREE_LOCK(base->th_base_lock, EVTHREAD_LOCKTYPE_RECURSIVE); |
| EVTHREAD_FREE_COND(base->current_event_cond); |
| |
| mm_free(base); |
| } |
| |
| /* reinitialize the event base after a fork */ |
| int |
| event_reinit(struct event_base *base) |
| { |
| const struct eventop *evsel; |
| int res = 0; |
| struct event *ev; |
| int was_notifiable = 0; |
| |
| EVBASE_ACQUIRE_LOCK(base, th_base_lock); |
| |
| evsel = base->evsel; |
| |
| #if 0 |
| /* Right now, reinit always takes effect, since even if the |
| backend doesn't require it, the signal socketpair code does. |
| |
| XXX |
| */ |
| /* check if this event mechanism requires reinit */ |
| if (!evsel->need_reinit) |
| goto done; |
| #endif |
| |
| /* prevent internal delete */ |
| if (base->sig.ev_signal_added) { |
| /* we cannot call event_del here because the base has |
| * not been reinitialized yet. */ |
| event_queue_remove(base, &base->sig.ev_signal, |
| EVLIST_INSERTED); |
| if (base->sig.ev_signal.ev_flags & EVLIST_ACTIVE) |
| event_queue_remove(base, &base->sig.ev_signal, |
| EVLIST_ACTIVE); |
| if (base->sig.ev_signal_pair[0] != -1) |
| EVUTIL_CLOSESOCKET(base->sig.ev_signal_pair[0]); |
| if (base->sig.ev_signal_pair[1] != -1) |
| EVUTIL_CLOSESOCKET(base->sig.ev_signal_pair[1]); |
| base->sig.ev_signal_added = 0; |
| } |
| if (base->th_notify_fd[0] != -1) { |
| /* we cannot call event_del here because the base has |
| * not been reinitialized yet. */ |
| was_notifiable = 1; |
| event_queue_remove(base, &base->th_notify, |
| EVLIST_INSERTED); |
| if (base->th_notify.ev_flags & EVLIST_ACTIVE) |
| event_queue_remove(base, &base->th_notify, |
| EVLIST_ACTIVE); |
| base->sig.ev_signal_added = 0; |
| EVUTIL_CLOSESOCKET(base->th_notify_fd[0]); |
| if (base->th_notify_fd[1] != -1) |
| EVUTIL_CLOSESOCKET(base->th_notify_fd[1]); |
| base->th_notify_fd[0] = -1; |
| base->th_notify_fd[1] = -1; |
| event_debug_unassign(&base->th_notify); |
| } |
| |
| if (base->evsel->dealloc != NULL) |
| base->evsel->dealloc(base); |
| base->evbase = evsel->init(base); |
| if (base->evbase == NULL) { |
| event_errx(1, "%s: could not reinitialize event mechanism", |
| __func__); |
| res = -1; |
| goto done; |
| } |
| |
| event_changelist_freemem(&base->changelist); /* XXX */ |
| evmap_io_clear(&base->io); |
| evmap_signal_clear(&base->sigmap); |
| |
| TAILQ_FOREACH(ev, &base->eventqueue, ev_next) { |
| if (ev->ev_events & (EV_READ|EV_WRITE)) { |
| if (ev == &base->sig.ev_signal) { |
| /* If we run into the ev_signal event, it's only |
| * in eventqueue because some signal event was |
| * added, which made evsig_add re-add ev_signal. |
| * So don't double-add it. */ |
| continue; |
| } |
| if (evmap_io_add(base, ev->ev_fd, ev) == -1) |
| res = -1; |
| } else if (ev->ev_events & EV_SIGNAL) { |
| if (evmap_signal_add(base, (int)ev->ev_fd, ev) == -1) |
| res = -1; |
| } |
| } |
| |
| if (was_notifiable && res == 0) |
| res = evthread_make_base_notifiable(base); |
| |
| done: |
| EVBASE_RELEASE_LOCK(base, th_base_lock); |
| return (res); |
| } |
| |
| const char ** |
| event_get_supported_methods(void) |
| { |
| static const char **methods = NULL; |
| const struct eventop **method; |
| const char **tmp; |
| int i = 0, k; |
| |
| /* count all methods */ |
| for (method = &eventops[0]; *method != NULL; ++method) { |
| ++i; |
| } |
| |
| /* allocate one more than we need for the NULL pointer */ |
| tmp = mm_calloc((i + 1), sizeof(char *)); |
| if (tmp == NULL) |
| return (NULL); |
| |
| /* populate the array with the supported methods */ |
| for (k = 0, i = 0; eventops[k] != NULL; ++k) { |
| tmp[i++] = eventops[k]->name; |
| } |
| tmp[i] = NULL; |
| |
| if (methods != NULL) |
| mm_free((char**)methods); |
| |
| methods = tmp; |
| |
| return (methods); |
| } |
| |
| struct event_config * |
| event_config_new(void) |
| { |
| struct event_config *cfg = mm_calloc(1, sizeof(*cfg)); |
| |
| if (cfg == NULL) |
| return (NULL); |
| |
| TAILQ_INIT(&cfg->entries); |
| |
| return (cfg); |
| } |
| |
| static void |
| event_config_entry_free(struct event_config_entry *entry) |
| { |
| if (entry->avoid_method != NULL) |
| mm_free((char *)entry->avoid_method); |
| mm_free(entry); |
| } |
| |
| void |
| event_config_free(struct event_config *cfg) |
| { |
| struct event_config_entry *entry; |
| |
| while ((entry = TAILQ_FIRST(&cfg->entries)) != NULL) { |
| TAILQ_REMOVE(&cfg->entries, entry, next); |
| event_config_entry_free(entry); |
| } |
| mm_free(cfg); |
| } |
| |
| int |
| event_config_set_flag(struct event_config *cfg, int flag) |
| { |
| if (!cfg) |
| return -1; |
| cfg->flags |= flag; |
| return 0; |
| } |
| |
| int |
| event_config_avoid_method(struct event_config *cfg, const char *method) |
| { |
| struct event_config_entry *entry = mm_malloc(sizeof(*entry)); |
| if (entry == NULL) |
| return (-1); |
| |
| if ((entry->avoid_method = mm_strdup(method)) == NULL) { |
| mm_free(entry); |
| return (-1); |
| } |
| |
| TAILQ_INSERT_TAIL(&cfg->entries, entry, next); |
| |
| return (0); |
| } |
| |
| int |
| event_config_require_features(struct event_config *cfg, |
| int features) |
| { |
| if (!cfg) |
| return (-1); |
| cfg->require_features = features; |
| return (0); |
| } |
| |
| int |
| event_config_set_num_cpus_hint(struct event_config *cfg, int cpus) |
| { |
| if (!cfg) |
| return (-1); |
| cfg->n_cpus_hint = cpus; |
| return (0); |
| } |
| |
| int |
| event_priority_init(int npriorities) |
| { |
| return event_base_priority_init(current_base, npriorities); |
| } |
| |
| int |
| event_base_priority_init(struct event_base *base, int npriorities) |
| { |
| int i; |
| |
| if (N_ACTIVE_CALLBACKS(base) || npriorities < 1 |
| || npriorities >= EVENT_MAX_PRIORITIES) |
| return (-1); |
| |
| if (npriorities == base->nactivequeues) |
| return (0); |
| |
| if (base->nactivequeues) { |
| mm_free(base->activequeues); |
| base->nactivequeues = 0; |
| } |
| |
| /* Allocate our priority queues */ |
| base->activequeues = (struct event_list *) |
| mm_calloc(npriorities, sizeof(struct event_list)); |
| if (base->activequeues == NULL) { |
| event_warn("%s: calloc", __func__); |
| return (-1); |
| } |
| base->nactivequeues = npriorities; |
| |
| for (i = 0; i < base->nactivequeues; ++i) { |
| TAILQ_INIT(&base->activequeues[i]); |
| } |
| |
| return (0); |
| } |
| |
| /* Returns true iff we're currently watching any events. */ |
| static int |
| event_haveevents(struct event_base *base) |
| { |
| /* Caller must hold th_base_lock */ |
| return (base->virtual_event_count > 0 || base->event_count > 0); |
| } |
| |
| /* "closure" function called when processing active signal events */ |
| static inline void |
| event_signal_closure(struct event_base *base, struct event *ev) |
| { |
| short ncalls; |
| int should_break; |
| |
| /* Allows deletes to work */ |
| ncalls = ev->ev_ncalls; |
| if (ncalls != 0) |
| ev->ev_pncalls = &ncalls; |
| EVBASE_RELEASE_LOCK(base, th_base_lock); |
| while (ncalls) { |
| ncalls--; |
| ev->ev_ncalls = ncalls; |
| if (ncalls == 0) |
| ev->ev_pncalls = NULL; |
| (*ev->ev_callback)(ev->ev_fd, ev->ev_res, ev->ev_arg); |
| |
| EVBASE_ACQUIRE_LOCK(base, th_base_lock); |
| should_break = base->event_break; |
| EVBASE_RELEASE_LOCK(base, th_base_lock); |
| |
| if (should_break) { |
| if (ncalls != 0) |
| ev->ev_pncalls = NULL; |
| return; |
| } |
| } |
| } |
| |
| /* Common timeouts are special timeouts that are handled as queues rather than |
| * in the minheap. This is more efficient than the minheap if we happen to |
| * know that we're going to get several thousands of timeout events all with |
| * the same timeout value. |
| * |
| * Since all our timeout handling code assumes timevals can be copied, |
| * assigned, etc, we can't use "magic pointer" to encode these common |
| * timeouts. Searching through a list to see if every timeout is common could |
| * also get inefficient. Instead, we take advantage of the fact that tv_usec |
| * is 32 bits long, but only uses 20 of those bits (since it can never be over |
| * 999999.) We use the top bits to encode 4 bites of magic number, and 8 bits |
| * of index into the event_base's aray of common timeouts. |
| */ |
| |
| #define MICROSECONDS_MASK COMMON_TIMEOUT_MICROSECONDS_MASK |
| #define COMMON_TIMEOUT_IDX_MASK 0x0ff00000 |
| #define COMMON_TIMEOUT_IDX_SHIFT 20 |
| #define COMMON_TIMEOUT_MASK 0xf0000000 |
| #define COMMON_TIMEOUT_MAGIC 0x50000000 |
| |
| #define COMMON_TIMEOUT_IDX(tv) \ |
| (((tv)->tv_usec & COMMON_TIMEOUT_IDX_MASK)>>COMMON_TIMEOUT_IDX_SHIFT) |
| |
| /** Return true iff if 'tv' is a common timeout in 'base' */ |
| static inline int |
| is_common_timeout(const struct timeval *tv, |
| const struct event_base *base) |
| { |
| int idx; |
| if ((tv->tv_usec & COMMON_TIMEOUT_MASK) != COMMON_TIMEOUT_MAGIC) |
| return 0; |
| idx = COMMON_TIMEOUT_IDX(tv); |
| return idx < base->n_common_timeouts; |
| } |
| |
| /* True iff tv1 and tv2 have the same common-timeout index, or if neither |
| * one is a common timeout. */ |
| static inline int |
| is_same_common_timeout(const struct timeval *tv1, const struct timeval *tv2) |
| { |
| return (tv1->tv_usec & ~MICROSECONDS_MASK) == |
| (tv2->tv_usec & ~MICROSECONDS_MASK); |
| } |
| |
| /** Requires that 'tv' is a common timeout. Return the corresponding |
| * common_timeout_list. */ |
| static inline struct common_timeout_list * |
| get_common_timeout_list(struct event_base *base, const struct timeval *tv) |
| { |
| return base->common_timeout_queues[COMMON_TIMEOUT_IDX(tv)]; |
| } |
| |
| #if 0 |
| static inline int |
| common_timeout_ok(const struct timeval *tv, |
| struct event_base *base) |
| { |
| const struct timeval *expect = |
| &get_common_timeout_list(base, tv)->duration; |
| return tv->tv_sec == expect->tv_sec && |
| tv->tv_usec == expect->tv_usec; |
| } |
| #endif |
| |
| /* Add the timeout for the first event in given common timeout list to the |
| * event_base's minheap. */ |
| static void |
| common_timeout_schedule(struct common_timeout_list *ctl, |
| const struct timeval *now, struct event *head) |
| { |
| struct timeval timeout = head->ev_timeout; |
| timeout.tv_usec &= MICROSECONDS_MASK; |
| event_add_internal(&ctl->timeout_event, &timeout, 1); |
| } |
| |
| /* Callback: invoked when the timeout for a common timeout queue triggers. |
| * This means that (at least) the first event in that queue should be run, |
| * and the timeout should be rescheduled if there are more events. */ |
| static void |
| common_timeout_callback(evutil_socket_t fd, short what, void *arg) |
| { |
| struct timeval now; |
| struct common_timeout_list *ctl = arg; |
| struct event_base *base = ctl->base; |
| struct event *ev = NULL; |
| EVBASE_ACQUIRE_LOCK(base, th_base_lock); |
| gettime(base, &now); |
| while (1) { |
| ev = TAILQ_FIRST(&ctl->events); |
| if (!ev || ev->ev_timeout.tv_sec > now.tv_sec || |
| (ev->ev_timeout.tv_sec == now.tv_sec && |
| (ev->ev_timeout.tv_usec&MICROSECONDS_MASK) > now.tv_usec)) |
| break; |
| event_del_internal(ev); |
| event_active_nolock(ev, EV_TIMEOUT, 1); |
| } |
| if (ev) |
| common_timeout_schedule(ctl, &now, ev); |
| EVBASE_RELEASE_LOCK(base, th_base_lock); |
| } |
| |
| #define MAX_COMMON_TIMEOUTS 256 |
| |
| const struct timeval * |
| event_base_init_common_timeout(struct event_base *base, |
| const struct timeval *duration) |
| { |
| int i; |
| struct timeval tv; |
| const struct timeval *result=NULL; |
| struct common_timeout_list *new_ctl; |
| |
| EVBASE_ACQUIRE_LOCK(base, th_base_lock); |
| if (duration->tv_usec > 1000000) { |
| memcpy(&tv, duration, sizeof(struct timeval)); |
| if (is_common_timeout(duration, base)) |
| tv.tv_usec &= MICROSECONDS_MASK; |
| tv.tv_sec += tv.tv_usec / 1000000; |
| tv.tv_usec %= 1000000; |
| duration = &tv; |
| } |
| for (i = 0; i < base->n_common_timeouts; ++i) { |
| const struct common_timeout_list *ctl = |
| base->common_timeout_queues[i]; |
| if (duration->tv_sec == ctl->duration.tv_sec && |
| duration->tv_usec == |
| (ctl->duration.tv_usec & MICROSECONDS_MASK)) { |
| EVUTIL_ASSERT(is_common_timeout(&ctl->duration, base)); |
| result = &ctl->duration; |
| goto done; |
| } |
| } |
| if (base->n_common_timeouts == MAX_COMMON_TIMEOUTS) { |
| event_warnx("%s: Too many common timeouts already in use; " |
| "we only support %d per event_base", __func__, |
| MAX_COMMON_TIMEOUTS); |
| goto done; |
| } |
| if (base->n_common_timeouts_allocated == base->n_common_timeouts) { |
| int n = base->n_common_timeouts < 16 ? 16 : |
| base->n_common_timeouts*2; |
| struct common_timeout_list **newqueues = |
| mm_realloc(base->common_timeout_queues, |
| n*sizeof(struct common_timeout_queue *)); |
| if (!newqueues) { |
| event_warn("%s: realloc",__func__); |
| goto done; |
| } |
| base->n_common_timeouts_allocated = n; |
| base->common_timeout_queues = newqueues; |
| } |
| new_ctl = mm_calloc(1, sizeof(struct common_timeout_list)); |
| if (!new_ctl) { |
| event_warn("%s: calloc",__func__); |
| goto done; |
| } |
| TAILQ_INIT(&new_ctl->events); |
| new_ctl->duration.tv_sec = duration->tv_sec; |
| new_ctl->duration.tv_usec = |
| duration->tv_usec | COMMON_TIMEOUT_MAGIC | |
| (base->n_common_timeouts << COMMON_TIMEOUT_IDX_SHIFT); |
| evtimer_assign(&new_ctl->timeout_event, base, |
| common_timeout_callback, new_ctl); |
| new_ctl->timeout_event.ev_flags |= EVLIST_INTERNAL; |
| event_priority_set(&new_ctl->timeout_event, 0); |
| new_ctl->base = base; |
| base->common_timeout_queues[base->n_common_timeouts++] = new_ctl; |
| result = &new_ctl->duration; |
| |
| done: |
| if (result) |
| EVUTIL_ASSERT(is_common_timeout(result, base)); |
| |
| EVBASE_RELEASE_LOCK(base, th_base_lock); |
| return result; |
| } |
| |
| /* Closure function invoked when we're activating a persistent event. */ |
| static inline void |
| event_persist_closure(struct event_base *base, struct event *ev) |
| { |
| // Define our callback, we use this to store our callback before it's executed |
| void (*evcb_callback)(evutil_socket_t, short, void *); |
| |
| // Other fields of *ev that must be stored before executing |
| evutil_socket_t evcb_fd; |
| short evcb_res; |
| void *evcb_arg; |
| |
| /* reschedule the persistent event if we have a timeout. */ |
| if (ev->ev_io_timeout.tv_sec || ev->ev_io_timeout.tv_usec) { |
| /* If there was a timeout, we want it to run at an interval of |
| * ev_io_timeout after the last time it was _scheduled_ for, |
| * not ev_io_timeout after _now_. If it fired for another |
| * reason, though, the timeout ought to start ticking _now_. */ |
| struct timeval run_at, relative_to, delay, now; |
| ev_uint32_t usec_mask = 0; |
| EVUTIL_ASSERT(is_same_common_timeout(&ev->ev_timeout, |
| &ev->ev_io_timeout)); |
| gettime(base, &now); |
| if (is_common_timeout(&ev->ev_timeout, base)) { |
| delay = ev->ev_io_timeout; |
| usec_mask = delay.tv_usec & ~MICROSECONDS_MASK; |
| delay.tv_usec &= MICROSECONDS_MASK; |
| if (ev->ev_res & EV_TIMEOUT) { |
| relative_to = ev->ev_timeout; |
| relative_to.tv_usec &= MICROSECONDS_MASK; |
| } else { |
| relative_to = now; |
| } |
| } else { |
| delay = ev->ev_io_timeout; |
| if (ev->ev_res & EV_TIMEOUT) { |
| relative_to = ev->ev_timeout; |
| } else { |
| relative_to = now; |
| } |
| } |
| evutil_timeradd(&relative_to, &delay, &run_at); |
| if (evutil_timercmp(&run_at, &now, <)) { |
| /* Looks like we missed at least one invocation due to |
| * a clock jump, not running the event loop for a |
| * while, really slow callbacks, or |
| * something. Reschedule relative to now. |
| */ |
| evutil_timeradd(&now, &delay, &run_at); |
| } |
| run_at.tv_usec |= usec_mask; |
| event_add_internal(ev, &run_at, 1); |
| } |
| |
| // Save our callback before we release the lock |
| evcb_callback = ev->ev_callback; |
| evcb_fd = ev->ev_fd; |
| evcb_res = ev->ev_res; |
| evcb_arg = ev->ev_arg; |
| |
| // Release the lock |
| EVBASE_RELEASE_LOCK(base, th_base_lock); |
| |
| // Execute the callback |
| (evcb_callback)(evcb_fd, evcb_res, evcb_arg); |
| } |
| |
| /* |
| Helper for event_process_active to process all the events in a single queue, |
| releasing the lock as we go. This function requires that the lock be held |
| when it's invoked. Returns -1 if we get a signal or an event_break that |
| means we should stop processing any active events now. Otherwise returns |
| the number of non-internal events that we processed. |
| */ |
| static int |
| event_process_active_single_queue(struct event_base *base, |
| struct event_list *activeq) |
| { |
| struct event *ev; |
| int count = 0; |
| |
| EVUTIL_ASSERT(activeq != NULL); |
| |
| for (ev = TAILQ_FIRST(activeq); ev; ev = TAILQ_FIRST(activeq)) { |
| if (ev->ev_events & EV_PERSIST) |
| event_queue_remove(base, ev, EVLIST_ACTIVE); |
| else |
| event_del_internal(ev); |
| if (!(ev->ev_flags & EVLIST_INTERNAL)) |
| ++count; |
| |
| event_debug(( |
| "event_process_active: event: %p, %s%scall %p", |
| ev, |
| ev->ev_res & EV_READ ? "EV_READ " : " ", |
| ev->ev_res & EV_WRITE ? "EV_WRITE " : " ", |
| ev->ev_callback)); |
| |
| #ifndef _EVENT_DISABLE_THREAD_SUPPORT |
| base->current_event = ev; |
| base->current_event_waiters = 0; |
| #endif |
| |
| switch (ev->ev_closure) { |
| case EV_CLOSURE_SIGNAL: |
| event_signal_closure(base, ev); |
| break; |
| case EV_CLOSURE_PERSIST: |
| event_persist_closure(base, ev); |
| break; |
| default: |
| case EV_CLOSURE_NONE: |
| EVBASE_RELEASE_LOCK(base, th_base_lock); |
| (*ev->ev_callback)( |
| ev->ev_fd, ev->ev_res, ev->ev_arg); |
| break; |
| } |
| |
| EVBASE_ACQUIRE_LOCK(base, th_base_lock); |
| #ifndef _EVENT_DISABLE_THREAD_SUPPORT |
| base->current_event = NULL; |
| if (base->current_event_waiters) { |
| base->current_event_waiters = 0; |
| EVTHREAD_COND_BROADCAST(base->current_event_cond); |
| } |
| #endif |
| |
| if (base->event_break) |
| return -1; |
| if (base->event_continue) |
| break; |
| } |
| return count; |
| } |
| |
| /* |
| Process up to MAX_DEFERRED of the defered_cb entries in 'queue'. If |
| *breakptr becomes set to 1, stop. Requires that we start out holding |
| the lock on 'queue'; releases the lock around 'queue' for each deferred_cb |
| we process. |
| */ |
| static int |
| event_process_deferred_callbacks(struct deferred_cb_queue *queue, int *breakptr) |
| { |
| int count = 0; |
| struct deferred_cb *cb; |
| |
| #define MAX_DEFERRED 16 |
| while ((cb = TAILQ_FIRST(&queue->deferred_cb_list))) { |
| cb->queued = 0; |
| TAILQ_REMOVE(&queue->deferred_cb_list, cb, cb_next); |
| --queue->active_count; |
| UNLOCK_DEFERRED_QUEUE(queue); |
| |
| cb->cb(cb, cb->arg); |
| |
| LOCK_DEFERRED_QUEUE(queue); |
| if (*breakptr) |
| return -1; |
| if (++count == MAX_DEFERRED) |
| break; |
| } |
| #undef MAX_DEFERRED |
| return count; |
| } |
| |
| /* |
| * Active events are stored in priority queues. Lower priorities are always |
| * process before higher priorities. Low priority events can starve high |
| * priority ones. |
| */ |
| |
| static int |
| event_process_active(struct event_base *base) |
| { |
| /* Caller must hold th_base_lock */ |
| struct event_list *activeq = NULL; |
| int i, c = 0; |
| |
| for (i = 0; i < base->nactivequeues; ++i) { |
| if (TAILQ_FIRST(&base->activequeues[i]) != NULL) { |
| base->event_running_priority = i; |
| activeq = &base->activequeues[i]; |
| c = event_process_active_single_queue(base, activeq); |
| if (c < 0) { |
| base->event_running_priority = -1; |
| return -1; |
| } else if (c > 0) |
| break; /* Processed a real event; do not |
| * consider lower-priority events */ |
| /* If we get here, all of the events we processed |
| * were internal. Continue. */ |
| } |
| } |
| |
| event_process_deferred_callbacks(&base->defer_queue,&base->event_break); |
| base->event_running_priority = -1; |
| return c; |
| } |
| |
| /* |
| * Wait continuously for events. We exit only if no events are left. |
| */ |
| |
| int |
| event_dispatch(void) |
| { |
| return (event_loop(0)); |
| } |
| |
| int |
| event_base_dispatch(struct event_base *event_base) |
| { |
| return (event_base_loop(event_base, 0)); |
| } |
| |
| const char * |
| event_base_get_method(const struct event_base *base) |
| { |
| EVUTIL_ASSERT(base); |
| return (base->evsel->name); |
| } |
| |
| /** Callback: used to implement event_base_loopexit by telling the event_base |
| * that it's time to exit its loop. */ |
| static void |
| event_loopexit_cb(evutil_socket_t fd, short what, void *arg) |
| { |
| struct event_base *base = arg; |
| base->event_gotterm = 1; |
| } |
| |
| int |
| event_loopexit(const struct timeval *tv) |
| { |
| return (event_once(-1, EV_TIMEOUT, event_loopexit_cb, |
| current_base, tv)); |
| } |
| |
| int |
| event_base_loopexit(struct event_base *event_base, const struct timeval *tv) |
| { |
| return (event_base_once(event_base, -1, EV_TIMEOUT, event_loopexit_cb, |
| event_base, tv)); |
| } |
| |
| int |
| event_loopbreak(void) |
| { |
| return (event_base_loopbreak(current_base)); |
| } |
| |
| int |
| event_base_loopbreak(struct event_base *event_base) |
| { |
| int r = 0; |
| if (event_base == NULL) |
| return (-1); |
| |
| EVBASE_ACQUIRE_LOCK(event_base, th_base_lock); |
| event_base->event_break = 1; |
| |
| if (EVBASE_NEED_NOTIFY(event_base)) { |
| r = evthread_notify_base(event_base); |
| } else { |
| r = (0); |
| } |
| EVBASE_RELEASE_LOCK(event_base, th_base_lock); |
| return r; |
| } |
| |
| int |
| event_base_got_break(struct event_base *event_base) |
| { |
| int res; |
| EVBASE_ACQUIRE_LOCK(event_base, th_base_lock); |
| res = event_base->event_break; |
| EVBASE_RELEASE_LOCK(event_base, th_base_lock); |
| return res; |
| } |
| |
| int |
| event_base_got_exit(struct event_base *event_base) |
| { |
| int res; |
| EVBASE_ACQUIRE_LOCK(event_base, th_base_lock); |
| res = event_base->event_gotterm; |
| EVBASE_RELEASE_LOCK(event_base, th_base_lock); |
| return res; |
| } |
| |
| /* not thread safe */ |
| |
| int |
| event_loop(int flags) |
| { |
| return event_base_loop(current_base, flags); |
| } |
| |
| int |
| event_base_loop(struct event_base *base, int flags) |
| { |
| const struct eventop *evsel = base->evsel; |
| struct timeval tv; |
| struct timeval *tv_p; |
| int res, done, retval = 0; |
| |
| /* Grab the lock. We will release it inside evsel.dispatch, and again |
| * as we invoke user callbacks. */ |
| EVBASE_ACQUIRE_LOCK(base, th_base_lock); |
| |
| if (base->running_loop) { |
| event_warnx("%s: reentrant invocation. Only one event_base_loop" |
| " can run on each event_base at once.", __func__); |
| EVBASE_RELEASE_LOCK(base, th_base_lock); |
| return -1; |
| } |
| |
| base->running_loop = 1; |
| |
| clear_time_cache(base); |
| |
| if (base->sig.ev_signal_added && base->sig.ev_n_signals_added) |
| evsig_set_base(base); |
| |
| done = 0; |
| |
| #ifndef _EVENT_DISABLE_THREAD_SUPPORT |
| base->th_owner_id = EVTHREAD_GET_ID(); |
| #endif |
| |
| base->event_gotterm = base->event_break = 0; |
| |
| while (!done) { |
| base->event_continue = 0; |
| |
| /* Terminate the loop if we have been asked to */ |
| if (base->event_gotterm) { |
| break; |
| } |
| |
| if (base->event_break) { |
| break; |
| } |
| |
| timeout_correct(base, &tv); |
| |
| tv_p = &tv; |
| if (!N_ACTIVE_CALLBACKS(base) && !(flags & EVLOOP_NONBLOCK)) { |
| timeout_next(base, &tv_p); |
| } else { |
| /* |
| * if we have active events, we just poll new events |
| * without waiting. |
| */ |
| evutil_timerclear(&tv); |
| } |
| |
| /* If we have no events, we just exit */ |
| if (!event_haveevents(base) && !N_ACTIVE_CALLBACKS(base)) { |
| event_debug(("%s: no events registered.", __func__)); |
| retval = 1; |
| goto done; |
| } |
| |
| /* update last old time */ |
| gettime(base, &base->event_tv); |
| |
| clear_time_cache(base); |
| |
| res = evsel->dispatch(base, tv_p); |
| |
| if (res == -1) { |
| event_debug(("%s: dispatch returned unsuccessfully.", |
| __func__)); |
| retval = -1; |
| goto done; |
| } |
| |
| update_time_cache(base); |
| |
| timeout_process(base); |
| |
| if (N_ACTIVE_CALLBACKS(base)) { |
| int n = event_process_active(base); |
| if ((flags & EVLOOP_ONCE) |
| && N_ACTIVE_CALLBACKS(base) == 0 |
| && n != 0) |
| done = 1; |
| } else if (flags & EVLOOP_NONBLOCK) |
| done = 1; |
| } |
| event_debug(("%s: asked to terminate loop.", __func__)); |
| |
| done: |
| clear_time_cache(base); |
| base->running_loop = 0; |
| |
| EVBASE_RELEASE_LOCK(base, th_base_lock); |
| |
| return (retval); |
| } |
| |
| /* Sets up an event for processing once */ |
| struct event_once { |
| struct event ev; |
| |
| void (*cb)(evutil_socket_t, short, void *); |
| void *arg; |
| }; |
| |
| /* One-time callback to implement event_base_once: invokes the user callback, |
| * then deletes the allocated storage */ |
| static void |
| event_once_cb(evutil_socket_t fd, short events, void *arg) |
| { |
| struct event_once *eonce = arg; |
| |
| (*eonce->cb)(fd, events, eonce->arg); |
| event_debug_unassign(&eonce->ev); |
| mm_free(eonce); |
| } |
| |
| /* not threadsafe, event scheduled once. */ |
| int |
| event_once(evutil_socket_t fd, short events, |
| void (*callback)(evutil_socket_t, short, void *), |
| void *arg, const struct timeval *tv) |
| { |
| return event_base_once(current_base, fd, events, callback, arg, tv); |
| } |
| |
| /* Schedules an event once */ |
| int |
| event_base_once(struct event_base *base, evutil_socket_t fd, short events, |
| void (*callback)(evutil_socket_t, short, void *), |
| void *arg, const struct timeval *tv) |
| { |
| struct event_once *eonce; |
| struct timeval etv; |
| int res = 0; |
| |
| /* We cannot support signals that just fire once, or persistent |
| * events. */ |
| if (events & (EV_SIGNAL|EV_PERSIST)) |
| return (-1); |
| |
| if ((eonce = mm_calloc(1, sizeof(struct event_once))) == NULL) |
| return (-1); |
| |
| eonce->cb = callback; |
| eonce->arg = arg; |
| |
| if (events == EV_TIMEOUT) { |
| if (tv == NULL) { |
| evutil_timerclear(&etv); |
| tv = &etv; |
| } |
| |
| evtimer_assign(&eonce->ev, base, event_once_cb, eonce); |
| } else if (events & (EV_READ|EV_WRITE)) { |
| events &= EV_READ|EV_WRITE; |
| |
| event_assign(&eonce->ev, base, fd, events, event_once_cb, eonce); |
| } else { |
| /* Bad event combination */ |
| mm_free(eonce); |
| return (-1); |
| } |
| |
| if (res == 0) |
| res = event_add(&eonce->ev, tv); |
| if (res != 0) { |
| mm_free(eonce); |
| return (res); |
| } |
| |
| return (0); |
| } |
| |
| int |
| event_assign(struct event *ev, struct event_base *base, evutil_socket_t fd, short events, void (*callback)(evutil_socket_t, short, void *), void *arg) |
| { |
| if (!base) |
| base = current_base; |
| |
| _event_debug_assert_not_added(ev); |
| |
| ev->ev_base = base; |
| |
| ev->ev_callback = callback; |
| ev->ev_arg = arg; |
| ev->ev_fd = fd; |
| ev->ev_events = events; |
| ev->ev_res = 0; |
| ev->ev_flags = EVLIST_INIT; |
| ev->ev_ncalls = 0; |
| ev->ev_pncalls = NULL; |
| |
| if (events & EV_SIGNAL) { |
| if ((events & (EV_READ|EV_WRITE)) != 0) { |
| event_warnx("%s: EV_SIGNAL is not compatible with " |
| "EV_READ or EV_WRITE", __func__); |
| return -1; |
| } |
| ev->ev_closure = EV_CLOSURE_SIGNAL; |
| } else { |
| if (events & EV_PERSIST) { |
| evutil_timerclear(&ev->ev_io_timeout); |
| ev->ev_closure = EV_CLOSURE_PERSIST; |
| } else { |
| ev->ev_closure = EV_CLOSURE_NONE; |
| } |
| } |
| |
| min_heap_elem_init(ev); |
| |
| if (base != NULL) { |
| /* by default, we put new events into the middle priority */ |
| ev->ev_pri = base->nactivequeues / 2; |
| } |
| |
| _event_debug_note_setup(ev); |
| |
| return 0; |
| } |
| |
| int |
| event_base_set(struct event_base *base, struct event *ev) |
| { |
| /* Only innocent events may be assigned to a different base */ |
| if (ev->ev_flags != EVLIST_INIT) |
| return (-1); |
| |
| _event_debug_assert_is_setup(ev); |
| |
| ev->ev_base = base; |
| ev->ev_pri = base->nactivequeues/2; |
| |
| return (0); |
| } |
| |
| void |
| event_set(struct event *ev, evutil_socket_t fd, short events, |
| void (*callback)(evutil_socket_t, short, void *), void *arg) |
| { |
| int r; |
| r = event_assign(ev, current_base, fd, events, callback, arg); |
| EVUTIL_ASSERT(r == 0); |
| } |
| |
| struct event * |
| event_new(struct event_base *base, evutil_socket_t fd, short events, void (*cb)(evutil_socket_t, short, void *), void *arg) |
| { |
| struct event *ev; |
| ev = mm_malloc(sizeof(struct event)); |
| if (ev == NULL) |
| return (NULL); |
| if (event_assign(ev, base, fd, events, cb, arg) < 0) { |
| mm_free(ev); |
| return (NULL); |
| } |
| |
| return (ev); |
| } |
| |
| void |
| event_free(struct event *ev) |
| { |
| _event_debug_assert_is_setup(ev); |
| |
| /* make sure that this event won't be coming back to haunt us. */ |
| event_del(ev); |
| _event_debug_note_teardown(ev); |
| mm_free(ev); |
| |
| } |
| |
| void |
| event_debug_unassign(struct event *ev) |
| { |
| _event_debug_assert_not_added(ev); |
| _event_debug_note_teardown(ev); |
| |
| ev->ev_flags &= ~EVLIST_INIT; |
| } |
| |
| /* |
| * Set's the priority of an event - if an event is already scheduled |
| * changing the priority is going to fail. |
| */ |
| |
| int |
| event_priority_set(struct event *ev, int pri) |
| { |
| _event_debug_assert_is_setup(ev); |
| |
| if (ev->ev_flags & EVLIST_ACTIVE) |
| return (-1); |
| if (pri < 0 || pri >= ev->ev_base->nactivequeues) |
| return (-1); |
| |
| ev->ev_pri = pri; |
| |
| return (0); |
| } |
| |
| /* |
| * Checks if a specific event is pending or scheduled. |
| */ |
| |
| int |
| event_pending(const struct event *ev, short event, struct timeval *tv) |
| { |
| int flags = 0; |
| |
| if (EVUTIL_FAILURE_CHECK(ev->ev_base == NULL)) { |
| event_warnx("%s: event has no event_base set.", __func__); |
| return 0; |
| } |
| |
| EVBASE_ACQUIRE_LOCK(ev->ev_base, th_base_lock); |
| _event_debug_assert_is_setup(ev); |
| |
| if (ev->ev_flags & EVLIST_INSERTED) |
| flags |= (ev->ev_events & (EV_READ|EV_WRITE|EV_SIGNAL)); |
| if (ev->ev_flags & EVLIST_ACTIVE) |
| flags |= ev->ev_res; |
| if (ev->ev_flags & EVLIST_TIMEOUT) |
| flags |= EV_TIMEOUT; |
| |
| event &= (EV_TIMEOUT|EV_READ|EV_WRITE|EV_SIGNAL); |
| |
| /* See if there is a timeout that we should report */ |
| if (tv != NULL && (flags & event & EV_TIMEOUT)) { |
| struct timeval tmp = ev->ev_timeout; |
| tmp.tv_usec &= MICROSECONDS_MASK; |
| #if defined(_EVENT_HAVE_CLOCK_GETTIME) && defined(CLOCK_MONOTONIC) |
| /* correctly remamp to real time */ |
| evutil_timeradd(&ev->ev_base->tv_clock_diff, &tmp, tv); |
| #else |
| *tv = tmp; |
| #endif |
| } |
| |
| EVBASE_RELEASE_LOCK(ev->ev_base, th_base_lock); |
| |
| return (flags & event); |
| } |
| |
| int |
| event_initialized(const struct event *ev) |
| { |
| if (!(ev->ev_flags & EVLIST_INIT)) |
| return 0; |
| |
| return 1; |
| } |
| |
| void |
| event_get_assignment(const struct event *event, struct event_base **base_out, evutil_socket_t *fd_out, short *events_out, event_callback_fn *callback_out, void **arg_out) |
| { |
| _event_debug_assert_is_setup(event); |
| |
| if (base_out) |
| *base_out = event->ev_base; |
| if (fd_out) |
| *fd_out = event->ev_fd; |
| if (events_out) |
| *events_out = event->ev_events; |
| if (callback_out) |
| *callback_out = event->ev_callback; |
| if (arg_out) |
| *arg_out = event->ev_arg; |
| } |
| |
| size_t |
| event_get_struct_event_size(void) |
| { |
| return sizeof(struct event); |
| } |
| |
| evutil_socket_t |
| event_get_fd(const struct event *ev) |
| { |
| _event_debug_assert_is_setup(ev); |
| return ev->ev_fd; |
| } |
| |
| struct event_base * |
| event_get_base(const struct event *ev) |
| { |
| _event_debug_assert_is_setup(ev); |
| return ev->ev_base; |
| } |
| |
| short |
| event_get_events(const struct event *ev) |
| { |
| _event_debug_assert_is_setup(ev); |
| return ev->ev_events; |
| } |
| |
| event_callback_fn |
| event_get_callback(const struct event *ev) |
| { |
| _event_debug_assert_is_setup(ev); |
| return ev->ev_callback; |
| } |
| |
| void * |
| event_get_callback_arg(const struct event *ev) |
| { |
| _event_debug_assert_is_setup(ev); |
| return ev->ev_arg; |
| } |
| |
| int |
| event_add(struct event *ev, const struct timeval *tv) |
| { |
| int res; |
| |
| if (EVUTIL_FAILURE_CHECK(!ev->ev_base)) { |
| event_warnx("%s: event has no event_base set.", __func__); |
| return -1; |
| } |
| |
| EVBASE_ACQUIRE_LOCK(ev->ev_base, th_base_lock); |
| |
| res = event_add_internal(ev, tv, 0); |
| |
| EVBASE_RELEASE_LOCK(ev->ev_base, th_base_lock); |
| |
| return (res); |
| } |
| |
| /* Helper callback: wake an event_base from another thread. This version |
| * works by writing a byte to one end of a socketpair, so that the event_base |
| * listening on the other end will wake up as the corresponding event |
| * triggers */ |
| static int |
| evthread_notify_base_default(struct event_base *base) |
| { |
| char buf[1]; |
| int r; |
| buf[0] = (char) 0; |
| #ifdef WIN32 |
| r = send(base->th_notify_fd[1], buf, 1, 0); |
| #else |
| r = write(base->th_notify_fd[1], buf, 1); |
| #endif |
| return (r < 0 && errno != EAGAIN) ? -1 : 0; |
| } |
| |
| #if defined(_EVENT_HAVE_EVENTFD) && defined(_EVENT_HAVE_SYS_EVENTFD_H) |
| /* Helper callback: wake an event_base from another thread. This version |
| * assumes that you have a working eventfd() implementation. */ |
| static int |
| evthread_notify_base_eventfd(struct event_base *base) |
| { |
| ev_uint64_t msg = 1; |
| int r; |
| do { |
| r = write(base->th_notify_fd[0], (void*) &msg, sizeof(msg)); |
| } while (r < 0 && errno == EAGAIN); |
| |
| return (r < 0) ? -1 : 0; |
| } |
| #endif |
| |
| /** Tell the thread currently running the event_loop for base (if any) that it |
| * needs to stop waiting in its dispatch function (if it is) and process all |
| * active events and deferred callbacks (if there are any). */ |
| static int |
| evthread_notify_base(struct event_base *base) |
| { |
| EVENT_BASE_ASSERT_LOCKED(base); |
| if (!base->th_notify_fn) |
| return -1; |
| if (base->is_notify_pending) |
| return 0; |
| base->is_notify_pending = 1; |
| return base->th_notify_fn(base); |
| } |
| |
| /* Implementation function to add an event. Works just like event_add, |
| * except: 1) it requires that we have the lock. 2) if tv_is_absolute is set, |
| * we treat tv as an absolute time, not as an interval to add to the current |
| * time */ |
| static inline int |
| event_add_internal(struct event *ev, const struct timeval *tv, |
| int tv_is_absolute) |
| { |
| struct event_base *base = ev->ev_base; |
| int res = 0; |
| int notify = 0; |
| |
| EVENT_BASE_ASSERT_LOCKED(base); |
| _event_debug_assert_is_setup(ev); |
| |
| event_debug(( |
| "event_add: event: %p (fd "EV_SOCK_FMT"), %s%s%scall %p", |
| ev, |
| EV_SOCK_ARG(ev->ev_fd), |
| ev->ev_events & EV_READ ? "EV_READ " : " ", |
| ev->ev_events & EV_WRITE ? "EV_WRITE " : " ", |
| tv ? "EV_TIMEOUT " : " ", |
| ev->ev_callback)); |
| |
| EVUTIL_ASSERT(!(ev->ev_flags & ~EVLIST_ALL)); |
| |
| /* |
| * prepare for timeout insertion further below, if we get a |
| * failure on any step, we should not change any state. |
| */ |
| if (tv != NULL && !(ev->ev_flags & EVLIST_TIMEOUT)) { |
| if (min_heap_reserve(&base->timeheap, |
| 1 + min_heap_size(&base->timeheap)) == -1) |
| return (-1); /* ENOMEM == errno */ |
| } |
| |
| /* If the main thread is currently executing a signal event's |
| * callback, and we are not the main thread, then we want to wait |
| * until the callback is done before we mess with the event, or else |
| * we can race on ev_ncalls and ev_pncalls below. */ |
| #ifndef _EVENT_DISABLE_THREAD_SUPPORT |
| if (base->current_event == ev && (ev->ev_events & EV_SIGNAL) |
| && !EVBASE_IN_THREAD(base)) { |
| ++base->current_event_waiters; |
| EVTHREAD_COND_WAIT(base->current_event_cond, base->th_base_lock); |
| } |
| #endif |
| |
| if ((ev->ev_events & (EV_READ|EV_WRITE|EV_SIGNAL)) && |
| !(ev->ev_flags & (EVLIST_INSERTED|EVLIST_ACTIVE))) { |
| if (ev->ev_events & (EV_READ|EV_WRITE)) |
| res = evmap_io_add(base, ev->ev_fd, ev); |
| else if (ev->ev_events & EV_SIGNAL) |
| res = evmap_signal_add(base, (int)ev->ev_fd, ev); |
| if (res != -1) |
| event_queue_insert(base, ev, EVLIST_INSERTED); |
| if (res == 1) { |
| /* evmap says we need to notify the main thread. */ |
| notify = 1; |
| res = 0; |
| } |
| } |
| |
| /* |
| * we should change the timeout state only if the previous event |
| * addition succeeded. |
| */ |
| if (res != -1 && tv != NULL) { |
| struct timeval now; |
| int common_timeout; |
| |
| /* |
| * for persistent timeout events, we remember the |
| * timeout value and re-add the event. |
| * |
| * If tv_is_absolute, this was already set. |
| */ |
| if (ev->ev_closure == EV_CLOSURE_PERSIST && !tv_is_absolute) |
| ev->ev_io_timeout = *tv; |
| |
| /* |
| * we already reserved memory above for the case where we |
| * are not replacing an existing timeout. |
| */ |
| if (ev->ev_flags & EVLIST_TIMEOUT) { |
| /* XXX I believe this is needless. */ |
| if (min_heap_elt_is_top(ev)) |
| notify = 1; |
| event_queue_remove(base, ev, EVLIST_TIMEOUT); |
| } |
| |
| /* Check if it is active due to a timeout. Rescheduling |
| * this timeout before the callback can be executed |
| * removes it from the active list. */ |
| if ((ev->ev_flags & EVLIST_ACTIVE) && |
| (ev->ev_res & EV_TIMEOUT)) { |
| if (ev->ev_events & EV_SIGNAL) { |
| /* See if we are just active executing |
| * this event in a loop |
| */ |
| if (ev->ev_ncalls && ev->ev_pncalls) { |
| /* Abort loop */ |
| *ev->ev_pncalls = 0; |
| } |
| } |
| |
| event_queue_remove(base, ev, EVLIST_ACTIVE); |
| } |
| |
| gettime(base, &now); |
| |
| common_timeout = is_common_timeout(tv, base); |
| if (tv_is_absolute) { |
| ev->ev_timeout = *tv; |
| } else if (common_timeout) { |
| struct timeval tmp = *tv; |
| tmp.tv_usec &= MICROSECONDS_MASK; |
| evutil_timeradd(&now, &tmp, &ev->ev_timeout); |
| ev->ev_timeout.tv_usec |= |
| (tv->tv_usec & ~MICROSECONDS_MASK); |
| } else { |
| evutil_timeradd(&now, tv, &ev->ev_timeout); |
| } |
| |
| event_debug(( |
| "event_add: timeout in %d seconds, call %p", |
| (int)tv->tv_sec, ev->ev_callback)); |
| |
| event_queue_insert(base, ev, EVLIST_TIMEOUT); |
| if (common_timeout) { |
| struct common_timeout_list *ctl = |
| get_common_timeout_list(base, &ev->ev_timeout); |
| if (ev == TAILQ_FIRST(&ctl->events)) { |
| common_timeout_schedule(ctl, &now, ev); |
| } |
| } else { |
| /* See if the earliest timeout is now earlier than it |
| * was before: if so, we will need to tell the main |
| * thread to wake up earlier than it would |
| * otherwise. */ |
| if (min_heap_elt_is_top(ev)) |
| notify = 1; |
| } |
| } |
| |
| /* if we are not in the right thread, we need to wake up the loop */ |
| if (res != -1 && notify && EVBASE_NEED_NOTIFY(base)) |
| evthread_notify_base(base); |
| |
| _event_debug_note_add(ev); |
| |
| return (res); |
| } |
| |
| int |
| event_del(struct event *ev) |
| { |
| int res; |
| |
| if (EVUTIL_FAILURE_CHECK(!ev->ev_base)) { |
| event_warnx("%s: event has no event_base set.", __func__); |
| return -1; |
| } |
| |
| EVBASE_ACQUIRE_LOCK(ev->ev_base, th_base_lock); |
| |
| res = event_del_internal(ev); |
| |
| EVBASE_RELEASE_LOCK(ev->ev_base, th_base_lock); |
| |
| return (res); |
| } |
| |
| /* Helper for event_del: always called with th_base_lock held. */ |
| static inline int |
| event_del_internal(struct event *ev) |
| { |
| struct event_base *base; |
| int res = 0, notify = 0; |
| |
| event_debug(("event_del: %p (fd "EV_SOCK_FMT"), callback %p", |
| ev, EV_SOCK_ARG(ev->ev_fd), ev->ev_callback)); |
| |
| /* An event without a base has not been added */ |
| if (ev->ev_base == NULL) |
| return (-1); |
| |
| EVENT_BASE_ASSERT_LOCKED(ev->ev_base); |
| |
| /* If the main thread is currently executing this event's callback, |
| * and we are not the main thread, then we want to wait until the |
| * callback is done before we start removing the event. That way, |
| * when this function returns, it will be safe to free the |
| * user-supplied argument. */ |
| base = ev->ev_base; |
| #ifndef _EVENT_DISABLE_THREAD_SUPPORT |
| if (base->current_event == ev && !EVBASE_IN_THREAD(base)) { |
| ++base->current_event_waiters; |
| EVTHREAD_COND_WAIT(base->current_event_cond, base->th_base_lock); |
| } |
| #endif |
| |
| EVUTIL_ASSERT(!(ev->ev_flags & ~EVLIST_ALL)); |
| |
| /* See if we are just active executing this event in a loop */ |
| if (ev->ev_events & EV_SIGNAL) { |
| if (ev->ev_ncalls && ev->ev_pncalls) { |
| /* Abort loop */ |
| *ev->ev_pncalls = 0; |
| } |
| } |
| |
| if (ev->ev_flags & EVLIST_TIMEOUT) { |
| /* NOTE: We never need to notify the main thread because of a |
| * deleted timeout event: all that could happen if we don't is |
| * that the dispatch loop might wake up too early. But the |
| * point of notifying the main thread _is_ to wake up the |
| * dispatch loop early anyway, so we wouldn't gain anything by |
| * doing it. |
| */ |
| event_queue_remove(base, ev, EVLIST_TIMEOUT); |
| } |
| |
| if (ev->ev_flags & EVLIST_ACTIVE) |
| event_queue_remove(base, ev, EVLIST_ACTIVE); |
| |
| if (ev->ev_flags & EVLIST_INSERTED) { |
| event_queue_remove(base, ev, EVLIST_INSERTED); |
| if (ev->ev_events & (EV_READ|EV_WRITE)) |
| res = evmap_io_del(base, ev->ev_fd, ev); |
| else |
| res = evmap_signal_del(base, (int)ev->ev_fd, ev); |
| if (res == 1) { |
| /* evmap says we need to notify the main thread. */ |
| notify = 1; |
| res = 0; |
| } |
| } |
| |
| /* if we are not in the right thread, we need to wake up the loop */ |
| if (res != -1 && notify && EVBASE_NEED_NOTIFY(base)) |
| evthread_notify_base(base); |
| |
| _event_debug_note_del(ev); |
| |
| return (res); |
| } |
| |
| void |
| event_active(struct event *ev, int res, short ncalls) |
| { |
| if (EVUTIL_FAILURE_CHECK(!ev->ev_base)) { |
| event_warnx("%s: event has no event_base set.", __func__); |
| return; |
| } |
| |
| EVBASE_ACQUIRE_LOCK(ev->ev_base, th_base_lock); |
| |
| _event_debug_assert_is_setup(ev); |
| |
| event_active_nolock(ev, res, ncalls); |
| |
| EVBASE_RELEASE_LOCK(ev->ev_base, th_base_lock); |
| } |
| |
| |
| void |
| event_active_nolock(struct event *ev, int res, short ncalls) |
| { |
| struct event_base *base; |
| |
| event_debug(("event_active: %p (fd "EV_SOCK_FMT"), res %d, callback %p", |
| ev, EV_SOCK_ARG(ev->ev_fd), (int)res, ev->ev_callback)); |
| |
| |
| /* We get different kinds of events, add them together */ |
| if (ev->ev_flags & EVLIST_ACTIVE) { |
| ev->ev_res |= res; |
| return; |
| } |
| |
| base = ev->ev_base; |
| |
| EVENT_BASE_ASSERT_LOCKED(base); |
| |
| ev->ev_res = res; |
| |
| if (ev->ev_pri < base->event_running_priority) |
| base->event_continue = 1; |
| |
| if (ev->ev_events & EV_SIGNAL) { |
| #ifndef _EVENT_DISABLE_THREAD_SUPPORT |
| if (base->current_event == ev && !EVBASE_IN_THREAD(base)) { |
| ++base->current_event_waiters; |
| EVTHREAD_COND_WAIT(base->current_event_cond, base->th_base_lock); |
| } |
| #endif |
| ev->ev_ncalls = ncalls; |
| ev->ev_pncalls = NULL; |
| } |
| |
| event_queue_insert(base, ev, EVLIST_ACTIVE); |
| |
| if (EVBASE_NEED_NOTIFY(base)) |
| evthread_notify_base(base); |
| } |
| |
| void |
| event_deferred_cb_init(struct deferred_cb *cb, deferred_cb_fn fn, void *arg) |
| { |
| memset(cb, 0, sizeof(struct deferred_cb)); |
| cb->cb = fn; |
| cb->arg = arg; |
| } |
| |
| void |
| event_deferred_cb_cancel(struct deferred_cb_queue *queue, |
| struct deferred_cb *cb) |
| { |
| if (!queue) { |
| if (current_base) |
| queue = ¤t_base->defer_queue; |
| else |
| return; |
| } |
| |
| LOCK_DEFERRED_QUEUE(queue); |
| if (cb->queued) { |
| TAILQ_REMOVE(&queue->deferred_cb_list, cb, cb_next); |
| --queue->active_count; |
| cb->queued = 0; |
| } |
| UNLOCK_DEFERRED_QUEUE(queue); |
| } |
| |
| void |
| event_deferred_cb_schedule(struct deferred_cb_queue *queue, |
| struct deferred_cb *cb) |
| { |
| if (!queue) { |
| if (current_base) |
| queue = ¤t_base->defer_queue; |
| else |
| return; |
| } |
| |
| LOCK_DEFERRED_QUEUE(queue); |
| if (!cb->queued) { |
| cb->queued = 1; |
| TAILQ_INSERT_TAIL(&queue->deferred_cb_list, cb, cb_next); |
| ++queue->active_count; |
| if (queue->notify_fn) |
| queue->notify_fn(queue, queue->notify_arg); |
| } |
| UNLOCK_DEFERRED_QUEUE(queue); |
| } |
| |
| static int |
| timeout_next(struct event_base *base, struct timeval **tv_p) |
| { |
| /* Caller must hold th_base_lock */ |
| struct timeval now; |
| struct event *ev; |
| struct timeval *tv = *tv_p; |
| int res = 0; |
| |
| ev = min_heap_top(&base->timeheap); |
| |
| if (ev == NULL) { |
| /* if no time-based events are active wait for I/O */ |
| *tv_p = NULL; |
| goto out; |
| } |
| |
| if (gettime(base, &now) == -1) { |
| res = -1; |
| goto out; |
| } |
| |
| if (evutil_timercmp(&ev->ev_timeout, &now, <=)) { |
| evutil_timerclear(tv); |
| goto out; |
| } |
| |
| evutil_timersub(&ev->ev_timeout, &now, tv); |
| |
| EVUTIL_ASSERT(tv->tv_sec >= 0); |
| EVUTIL_ASSERT(tv->tv_usec >= 0); |
| event_debug(("timeout_next: in %d seconds", (int)tv->tv_sec)); |
| |
| out: |
| return (res); |
| } |
| |
| /* |
| * Determines if the time is running backwards by comparing the current time |
| * against the last time we checked. Not needed when using clock monotonic. |
| * If time is running backwards, we adjust the firing time of every event by |
| * the amount that time seems to have jumped. |
| */ |
| static void |
| timeout_correct(struct event_base *base, struct timeval *tv) |
| { |
| /* Caller must hold th_base_lock. */ |
| struct event **pev; |
| unsigned int size; |
| struct timeval off; |
| int i; |
| |
| if (use_monotonic) |
| return; |
| |
| /* Check if time is running backwards */ |
| gettime(base, tv); |
| |
| if (evutil_timercmp(tv, &base->event_tv, >=)) { |
| base->event_tv = *tv; |
| return; |
| } |
| |
| event_debug(("%s: time is running backwards, corrected", |
| __func__)); |
| evutil_timersub(&base->event_tv, tv, &off); |
| |
| /* |
| * We can modify the key element of the node without destroying |
| * the minheap property, because we change every element. |
| */ |
| pev = base->timeheap.p; |
| size = base->timeheap.n; |
| for (; size-- > 0; ++pev) { |
| struct timeval *ev_tv = &(**pev).ev_timeout; |
| evutil_timersub(ev_tv, &off, ev_tv); |
| } |
| for (i=0; i<base->n_common_timeouts; ++i) { |
| struct event *ev; |
| struct common_timeout_list *ctl = |
| base->common_timeout_queues[i]; |
| TAILQ_FOREACH(ev, &ctl->events, |
| ev_timeout_pos.ev_next_with_common_timeout) { |
| struct timeval *ev_tv = &ev->ev_timeout; |
| ev_tv->tv_usec &= MICROSECONDS_MASK; |
| evutil_timersub(ev_tv, &off, ev_tv); |
| ev_tv->tv_usec |= COMMON_TIMEOUT_MAGIC | |
| (i<<COMMON_TIMEOUT_IDX_SHIFT); |
| } |
| } |
| |
| /* Now remember what the new time turned out to be. */ |
| base->event_tv = *tv; |
| } |
| |
| /* Activate every event whose timeout has elapsed. */ |
| static void |
| timeout_process(struct event_base *base) |
| { |
| /* Caller must hold lock. */ |
| struct timeval now; |
| struct event *ev; |
| |
| if (min_heap_empty(&base->timeheap)) { |
| return; |
| } |
| |
| gettime(base, &now); |
| |
| while ((ev = min_heap_top(&base->timeheap))) { |
| if (evutil_timercmp(&ev->ev_timeout, &now, >)) |
| break; |
| |
| /* delete this event from the I/O queues */ |
| event_del_internal(ev); |
| |
| event_debug(("timeout_process: call %p", |
| ev->ev_callback)); |
| event_active_nolock(ev, EV_TIMEOUT, 1); |
| } |
| } |
| |
| /* Remove 'ev' from 'queue' (EVLIST_...) in base. */ |
| static void |
| event_queue_remove(struct event_base *base, struct event *ev, int queue) |
| { |
| EVENT_BASE_ASSERT_LOCKED(base); |
| |
| if (!(ev->ev_flags & queue)) { |
| event_errx(1, "%s: %p(fd "EV_SOCK_FMT") not on queue %x", __func__, |
| ev, EV_SOCK_ARG(ev->ev_fd), queue); |
| return; |
| } |
| |
| if (~ev->ev_flags & EVLIST_INTERNAL) |
| base->event_count--; |
| |
| ev->ev_flags &= ~queue; |
| switch (queue) { |
| case EVLIST_INSERTED: |
| TAILQ_REMOVE(&base->eventqueue, ev, ev_next); |
| break; |
| case EVLIST_ACTIVE: |
| base->event_count_active--; |
| TAILQ_REMOVE(&base->activequeues[ev->ev_pri], |
| ev, ev_active_next); |
| break; |
| case EVLIST_TIMEOUT: |
| if (is_common_timeout(&ev->ev_timeout, base)) { |
| struct common_timeout_list *ctl = |
| get_common_timeout_list(base, &ev->ev_timeout); |
| TAILQ_REMOVE(&ctl->events, ev, |
| ev_timeout_pos.ev_next_with_common_timeout); |
| } else { |
| min_heap_erase(&base->timeheap, ev); |
| } |
| break; |
| default: |
| event_errx(1, "%s: unknown queue %x", __func__, queue); |
| } |
| } |
| |
| /* Add 'ev' to the common timeout list in 'ev'. */ |
| static void |
| insert_common_timeout_inorder(struct common_timeout_list *ctl, |
| struct event *ev) |
| { |
| struct event *e; |
| /* By all logic, we should just be able to append 'ev' to the end of |
| * ctl->events, since the timeout on each 'ev' is set to {the common |
| * timeout} + {the time when we add the event}, and so the events |
| * should arrive in order of their timeeouts. But just in case |
| * there's some wacky threading issue going on, we do a search from |
| * the end of 'ev' to find the right insertion point. |
| */ |
| TAILQ_FOREACH_REVERSE(e, &ctl->events, |
| event_list, ev_timeout_pos.ev_next_with_common_timeout) { |
| /* This timercmp is a little sneaky, since both ev and e have |
| * magic values in tv_usec. Fortunately, they ought to have |
| * the _same_ magic values in tv_usec. Let's assert for that. |
| */ |
| EVUTIL_ASSERT( |
| is_same_common_timeout(&e->ev_timeout, &ev->ev_timeout)); |
| if (evutil_timercmp(&ev->ev_timeout, &e->ev_timeout, >=)) { |
| TAILQ_INSERT_AFTER(&ctl->events, e, ev, |
| ev_timeout_pos.ev_next_with_common_timeout); |
| return; |
| } |
| } |
| TAILQ_INSERT_HEAD(&ctl->events, ev, |
| ev_timeout_pos.ev_next_with_common_timeout); |
| } |
| |
| static void |
| event_queue_insert(struct event_base *base, struct event *ev, int queue) |
| { |
| EVENT_BASE_ASSERT_LOCKED(base); |
| |
| if (ev->ev_flags & queue) { |
| /* Double insertion is possible for active events */ |
| if (queue & EVLIST_ACTIVE) |
| return; |
| |
| event_errx(1, "%s: %p(fd "EV_SOCK_FMT") already on queue %x", __func__, |
| ev, EV_SOCK_ARG(ev->ev_fd), queue); |
| return; |
| } |
| |
| if (~ev->ev_flags & EVLIST_INTERNAL) |
| base->event_count++; |
| |
| ev->ev_flags |= queue; |
| switch (queue) { |
| case EVLIST_INSERTED: |
| TAILQ_INSERT_TAIL(&base->eventqueue, ev, ev_next); |
| break; |
| case EVLIST_ACTIVE: |
| base->event_count_active++; |
| TAILQ_INSERT_TAIL(&base->activequeues[ev->ev_pri], |
| ev,ev_active_next); |
| break; |
| case EVLIST_TIMEOUT: { |
| if (is_common_timeout(&ev->ev_timeout, base)) { |
| struct common_timeout_list *ctl = |
| get_common_timeout_list(base, &ev->ev_timeout); |
| insert_common_timeout_inorder(ctl, ev); |
| } else |
| min_heap_push(&base->timeheap, ev); |
| break; |
| } |
| default: |
| event_errx(1, "%s: unknown queue %x", __func__, queue); |
| } |
| } |
| |
| /* Functions for debugging */ |
| |
| const char * |
| event_get_version(void) |
| { |
| return (_EVENT_VERSION); |
| } |
| |
| ev_uint32_t |
| event_get_version_number(void) |
| { |
| return (_EVENT_NUMERIC_VERSION); |
| } |
| |
| /* |
| * No thread-safe interface needed - the information should be the same |
| * for all threads. |
| */ |
| |
| const char * |
| event_get_method(void) |
| { |
| return (current_base->evsel->name); |
| } |
| |
| #ifndef _EVENT_DISABLE_MM_REPLACEMENT |
| static void *(*_mm_malloc_fn)(size_t sz) = NULL; |
| static void *(*_mm_realloc_fn)(void *p, size_t sz) = NULL; |
| static void (*_mm_free_fn)(void *p) = NULL; |
| |
| void * |
| event_mm_malloc_(size_t sz) |
| { |
| if (_mm_malloc_fn) |
| return _mm_malloc_fn(sz); |
| else |
| return malloc(sz); |
| } |
| |
| void * |
| event_mm_calloc_(size_t count, size_t size) |
| { |
| if (_mm_malloc_fn) { |
| size_t sz = count * size; |
| void *p = _mm_malloc_fn(sz); |
| if (p) |
| memset(p, 0, sz); |
| return p; |
| } else |
| return calloc(count, size); |
| } |
| |
| char * |
| event_mm_strdup_(const char *str) |
| { |
| if (_mm_malloc_fn) { |
| size_t ln = strlen(str); |
| void *p = _mm_malloc_fn(ln+1); |
| if (p) |
| memcpy(p, str, ln+1); |
| return p; |
| } else |
| #ifdef WIN32 |
| return _strdup(str); |
| #else |
| return strdup(str); |
| #endif |
| } |
| |
| void * |
| event_mm_realloc_(void *ptr, size_t sz) |
| { |
| if (_mm_realloc_fn) |
| return _mm_realloc_fn(ptr, sz); |
| else |
| return realloc(ptr, sz); |
| } |
| |
| void |
| event_mm_free_(void *ptr) |
| { |
| if (_mm_free_fn) |
| _mm_free_fn(ptr); |
| else |
| free(ptr); |
| } |
| |
| void |
| event_set_mem_functions(void *(*malloc_fn)(size_t sz), |
| void *(*realloc_fn)(void *ptr, size_t sz), |
| void (*free_fn)(void *ptr)) |
| { |
| _mm_malloc_fn = malloc_fn; |
| _mm_realloc_fn = realloc_fn; |
| _mm_free_fn = free_fn; |
| } |
| #endif |
| |
| #if defined(_EVENT_HAVE_EVENTFD) && defined(_EVENT_HAVE_SYS_EVENTFD_H) |
| static void |
| evthread_notify_drain_eventfd(evutil_socket_t fd, short what, void *arg) |
| { |
| ev_uint64_t msg; |
| ev_ssize_t r; |
| struct event_base *base = arg; |
| |
| r = read(fd, (void*) &msg, sizeof(msg)); |
| if (r<0 && errno != EAGAIN) { |
| event_sock_warn(fd, "Error reading from eventfd"); |
| } |
| EVBASE_ACQUIRE_LOCK(base, th_base_lock); |
| base->is_notify_pending = 0; |
| EVBASE_RELEASE_LOCK(base, th_base_lock); |
| } |
| #endif |
| |
| static void |
| evthread_notify_drain_default(evutil_socket_t fd, short what, void *arg) |
| { |
| unsigned char buf[1024]; |
| struct event_base *base = arg; |
| #ifdef WIN32 |
| while (recv(fd, (char*)buf, sizeof(buf), 0) > 0) |
| ; |
| #else |
| while (read(fd, (char*)buf, sizeof(buf)) > 0) |
| ; |
| #endif |
| |
| EVBASE_ACQUIRE_LOCK(base, th_base_lock); |
| base->is_notify_pending = 0; |
| EVBASE_RELEASE_LOCK(base, th_base_lock); |
| } |
| |
| int |
| evthread_make_base_notifiable(struct event_base *base) |
| { |
| void (*cb)(evutil_socket_t, short, void *) = evthread_notify_drain_default; |
| int (*notify)(struct event_base *) = evthread_notify_base_default; |
| |
| /* XXXX grab the lock here? */ |
| if (!base) |
| return -1; |
| |
| if (base->th_notify_fd[0] >= 0) |
| return 0; |
| |
| #if defined(_EVENT_HAVE_EVENTFD) && defined(_EVENT_HAVE_SYS_EVENTFD_H) |
| #ifndef EFD_CLOEXEC |
| #define EFD_CLOEXEC 0 |
| #endif |
| base->th_notify_fd[0] = eventfd(0, EFD_CLOEXEC); |
| if (base->th_notify_fd[0] >= 0) { |
| evutil_make_socket_closeonexec(base->th_notify_fd[0]); |
| notify = evthread_notify_base_eventfd; |
| cb = evthread_notify_drain_eventfd; |
| } |
| #endif |
| #if defined(_EVENT_HAVE_PIPE) |
| if (base->th_notify_fd[0] < 0) { |
| if ((base->evsel->features & EV_FEATURE_FDS)) { |
| if (pipe(base->th_notify_fd) < 0) { |
| event_warn("%s: pipe", __func__); |
| } else { |
| evutil_make_socket_closeonexec(base->th_notify_fd[0]); |
| evutil_make_socket_closeonexec(base->th_notify_fd[1]); |
| } |
| } |
| } |
| #endif |
| |
| #ifdef WIN32 |
| #define LOCAL_SOCKETPAIR_AF AF_INET |
| #else |
| #define LOCAL_SOCKETPAIR_AF AF_UNIX |
| #endif |
| if (base->th_notify_fd[0] < 0) { |
| if (evutil_socketpair(LOCAL_SOCKETPAIR_AF, SOCK_STREAM, 0, |
| base->th_notify_fd) == -1) { |
| event_sock_warn(-1, "%s: socketpair", __func__); |
| return (-1); |
| } else { |
| evutil_make_socket_closeonexec(base->th_notify_fd[0]); |
| evutil_make_socket_closeonexec(base->th_notify_fd[1]); |
| } |
| } |
| |
| evutil_make_socket_nonblocking(base->th_notify_fd[0]); |
| |
| base->th_notify_fn = notify; |
| |
| /* |
| Making the second socket nonblocking is a bit subtle, given that we |
| ignore any EAGAIN returns when writing to it, and you don't usally |
| do that for a nonblocking socket. But if the kernel gives us EAGAIN, |
| then there's no need to add any more data to the buffer, since |
| the main thread is already either about to wake up and drain it, |
| or woken up and in the process of draining it. |
| */ |
| if (base->th_notify_fd[1] > 0) |
| evutil_make_socket_nonblocking(base->th_notify_fd[1]); |
| |
| /* prepare an event that we can use for wakeup */ |
| event_assign(&base->th_notify, base, base->th_notify_fd[0], |
| EV_READ|EV_PERSIST, cb, base); |
| |
| /* we need to mark this as internal event */ |
| base->th_notify.ev_flags |= EVLIST_INTERNAL; |
| event_priority_set(&base->th_notify, 0); |
| |
| return event_add(&base->th_notify, NULL); |
| } |
| |
| void |
| event_base_dump_events(struct event_base *base, FILE *output) |
| { |
| struct event *e; |
| int i; |
| fprintf(output, "Inserted events:\n"); |
| TAILQ_FOREACH(e, &base->eventqueue, ev_next) { |
| fprintf(output, " %p [fd "EV_SOCK_FMT"]%s%s%s%s%s\n", |
| (void*)e, EV_SOCK_ARG(e->ev_fd), |
| (e->ev_events&EV_READ)?" Read":"", |
| (e->ev_events&EV_WRITE)?" Write":"", |
| (e->ev_events&EV_SIGNAL)?" Signal":"", |
| (e->ev_events&EV_TIMEOUT)?" Timeout":"", |
| (e->ev_events&EV_PERSIST)?" Persist":""); |
| |
| } |
| for (i = 0; i < base->nactivequeues; ++i) { |
| if (TAILQ_EMPTY(&base->activequeues[i])) |
| continue; |
| fprintf(output, "Active events [priority %d]:\n", i); |
| TAILQ_FOREACH(e, &base->eventqueue, ev_next) { |
| fprintf(output, " %p [fd "EV_SOCK_FMT"]%s%s%s%s\n", |
| (void*)e, EV_SOCK_ARG(e->ev_fd), |
| (e->ev_res&EV_READ)?" Read active":"", |
| (e->ev_res&EV_WRITE)?" Write active":"", |
| (e->ev_res&EV_SIGNAL)?" Signal active":"", |
| (e->ev_res&EV_TIMEOUT)?" Timeout active":""); |
| } |
| } |
| } |
| |
| void |
| event_base_add_virtual(struct event_base *base) |
| { |
| EVBASE_ACQUIRE_LOCK(base, th_base_lock); |
| base->virtual_event_count++; |
| EVBASE_RELEASE_LOCK(base, th_base_lock); |
| } |
| |
| void |
| event_base_del_virtual(struct event_base *base) |
| { |
| EVBASE_ACQUIRE_LOCK(base, th_base_lock); |
| EVUTIL_ASSERT(base->virtual_event_count > 0); |
| base->virtual_event_count--; |
| if (base->virtual_event_count == 0 && EVBASE_NEED_NOTIFY(base)) |
| evthread_notify_base(base); |
| EVBASE_RELEASE_LOCK(base, th_base_lock); |
| } |
| |
| #ifndef _EVENT_DISABLE_THREAD_SUPPORT |
| int |
| event_global_setup_locks_(const int enable_locks) |
| { |
| #ifndef _EVENT_DISABLE_DEBUG_MODE |
| EVTHREAD_SETUP_GLOBAL_LOCK(_event_debug_map_lock, 0); |
| #endif |
| if (evsig_global_setup_locks_(enable_locks) < 0) |
| return -1; |
| if (evutil_secure_rng_global_setup_locks_(enable_locks) < 0) |
| return -1; |
| return 0; |
| } |
| #endif |
| |
| void |
| event_base_assert_ok(struct event_base *base) |
| { |
| int i; |
| EVBASE_ACQUIRE_LOCK(base, th_base_lock); |
| evmap_check_integrity(base); |
| |
| /* Check the heap property */ |
| for (i = 1; i < (int)base->timeheap.n; ++i) { |
| int parent = (i - 1) / 2; |
| struct event *ev, *p_ev; |
| ev = base->timeheap.p[i]; |
| p_ev = base->timeheap.p[parent]; |
| EVUTIL_ASSERT(ev->ev_flags & EV_TIMEOUT); |
| EVUTIL_ASSERT(evutil_timercmp(&p_ev->ev_timeout, &ev->ev_timeout, <=)); |
| EVUTIL_ASSERT(ev->ev_timeout_pos.min_heap_idx == i); |
| } |
| |
| /* Check that the common timeouts are fine */ |
| for (i = 0; i < base->n_common_timeouts; ++i) { |
| struct common_timeout_list *ctl = base->common_timeout_queues[i]; |
| struct event *last=NULL, *ev; |
| TAILQ_FOREACH(ev, &ctl->events, ev_timeout_pos.ev_next_with_common_timeout) { |
| if (last) |
| EVUTIL_ASSERT(evutil_timercmp(&last->ev_timeout, &ev->ev_timeout, <=)); |
| EVUTIL_ASSERT(ev->ev_flags & EV_TIMEOUT); |
| EVUTIL_ASSERT(is_common_timeout(&ev->ev_timeout,base)); |
| EVUTIL_ASSERT(COMMON_TIMEOUT_IDX(&ev->ev_timeout) == i); |
| last = ev; |
| } |
| } |
| |
| EVBASE_RELEASE_LOCK(base, th_base_lock); |
| } |