| /* |
| * Copyright (c) 2003-2007 Niels Provos <[email protected]> |
| * Copyright (c) 2007-2012 Niels Provos and Nick Mathewson |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. The name of the author may not be used to endorse or promote products |
| * derived from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
| * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
| * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
| * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
| * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| #include "util-internal.h" |
| |
| #ifdef _WIN32 |
| #include <winsock2.h> |
| #include <windows.h> |
| #endif |
| |
| #include "event2/event-config.h" |
| |
| #include <sys/types.h> |
| #include <sys/stat.h> |
| #ifdef EVENT__HAVE_SYS_TIME_H |
| #include <sys/time.h> |
| #endif |
| #include <sys/queue.h> |
| #ifndef _WIN32 |
| #include <sys/socket.h> |
| #include <sys/wait.h> |
| #include <limits.h> |
| #include <signal.h> |
| #include <unistd.h> |
| #include <netdb.h> |
| #endif |
| #include <fcntl.h> |
| #include <signal.h> |
| #include <stdlib.h> |
| #include <stdio.h> |
| #include <string.h> |
| #include <errno.h> |
| #include <assert.h> |
| #include <ctype.h> |
| |
| #include "event2/event.h" |
| #include "event2/event_struct.h" |
| #include "event2/event_compat.h" |
| #include "event2/tag.h" |
| #include "event2/buffer.h" |
| #include "event2/buffer_compat.h" |
| #include "event2/util.h" |
| #include "event-internal.h" |
| #include "evthread-internal.h" |
| #include "log-internal.h" |
| #include "time-internal.h" |
| |
| #include "regress.h" |
| #include "regress_thread.h" |
| |
| #ifndef _WIN32 |
| #include "regress.gen.h" |
| #endif |
| |
| evutil_socket_t pair[2]; |
| int test_ok; |
| int called; |
| struct event_base *global_base; |
| |
| static char wbuf[4096]; |
| static char rbuf[4096]; |
| static int woff; |
| static int roff; |
| static int usepersist; |
| static struct timeval tset; |
| static struct timeval tcalled; |
| |
| |
| #define TEST1 "this is a test" |
| |
| #ifdef _WIN32 |
| #define write(fd,buf,len) send((fd),(buf),(int)(len),0) |
| #define read(fd,buf,len) recv((fd),(buf),(int)(len),0) |
| #endif |
| |
| struct basic_cb_args |
| { |
| struct event_base *eb; |
| struct event *ev; |
| unsigned int callcount; |
| }; |
| |
| static void |
| simple_read_cb(evutil_socket_t fd, short event, void *arg) |
| { |
| char buf[256]; |
| int len; |
| |
| len = read(fd, buf, sizeof(buf)); |
| |
| if (len) { |
| if (!called) { |
| if (event_add(arg, NULL) == -1) |
| exit(1); |
| } |
| } else if (called == 1) |
| test_ok = 1; |
| |
| called++; |
| } |
| |
| static void |
| basic_read_cb(evutil_socket_t fd, short event, void *data) |
| { |
| char buf[256]; |
| int len; |
| struct basic_cb_args *arg = data; |
| |
| len = read(fd, buf, sizeof(buf)); |
| |
| if (len < 0) { |
| tt_fail_perror("read (callback)"); |
| } else { |
| switch (arg->callcount++) { |
| case 0: /* first call: expect to read data; cycle */ |
| if (len > 0) |
| return; |
| |
| tt_fail_msg("EOF before data read"); |
| break; |
| |
| case 1: /* second call: expect EOF; stop */ |
| if (len > 0) |
| tt_fail_msg("not all data read on first cycle"); |
| break; |
| |
| default: /* third call: should not happen */ |
| tt_fail_msg("too many cycles"); |
| } |
| } |
| |
| event_del(arg->ev); |
| event_base_loopexit(arg->eb, NULL); |
| } |
| |
| static void |
| dummy_read_cb(evutil_socket_t fd, short event, void *arg) |
| { |
| } |
| |
| static void |
| simple_write_cb(evutil_socket_t fd, short event, void *arg) |
| { |
| int len; |
| |
| len = write(fd, TEST1, strlen(TEST1) + 1); |
| if (len == -1) |
| test_ok = 0; |
| else |
| test_ok = 1; |
| } |
| |
| static void |
| multiple_write_cb(evutil_socket_t fd, short event, void *arg) |
| { |
| struct event *ev = arg; |
| int len; |
| |
| len = 128; |
| if (woff + len >= (int)sizeof(wbuf)) |
| len = sizeof(wbuf) - woff; |
| |
| len = write(fd, wbuf + woff, len); |
| if (len == -1) { |
| fprintf(stderr, "%s: write\n", __func__); |
| if (usepersist) |
| event_del(ev); |
| return; |
| } |
| |
| woff += len; |
| |
| if (woff >= (int)sizeof(wbuf)) { |
| shutdown(fd, EVUTIL_SHUT_WR); |
| if (usepersist) |
| event_del(ev); |
| return; |
| } |
| |
| if (!usepersist) { |
| if (event_add(ev, NULL) == -1) |
| exit(1); |
| } |
| } |
| |
| static void |
| multiple_read_cb(evutil_socket_t fd, short event, void *arg) |
| { |
| struct event *ev = arg; |
| int len; |
| |
| len = read(fd, rbuf + roff, sizeof(rbuf) - roff); |
| if (len == -1) |
| fprintf(stderr, "%s: read\n", __func__); |
| if (len <= 0) { |
| if (usepersist) |
| event_del(ev); |
| return; |
| } |
| |
| roff += len; |
| if (!usepersist) { |
| if (event_add(ev, NULL) == -1) |
| exit(1); |
| } |
| } |
| |
| static void |
| timeout_cb(evutil_socket_t fd, short event, void *arg) |
| { |
| evutil_gettimeofday(&tcalled, NULL); |
| } |
| |
| struct both { |
| struct event ev; |
| int nread; |
| }; |
| |
| static void |
| combined_read_cb(evutil_socket_t fd, short event, void *arg) |
| { |
| struct both *both = arg; |
| char buf[128]; |
| int len; |
| |
| len = read(fd, buf, sizeof(buf)); |
| if (len == -1) |
| fprintf(stderr, "%s: read\n", __func__); |
| if (len <= 0) |
| return; |
| |
| both->nread += len; |
| if (event_add(&both->ev, NULL) == -1) |
| exit(1); |
| } |
| |
| static void |
| combined_write_cb(evutil_socket_t fd, short event, void *arg) |
| { |
| struct both *both = arg; |
| char buf[128]; |
| int len; |
| |
| len = sizeof(buf); |
| if (len > both->nread) |
| len = both->nread; |
| |
| memset(buf, 'q', len); |
| |
| len = write(fd, buf, len); |
| if (len == -1) |
| fprintf(stderr, "%s: write\n", __func__); |
| if (len <= 0) { |
| shutdown(fd, EVUTIL_SHUT_WR); |
| return; |
| } |
| |
| both->nread -= len; |
| if (event_add(&both->ev, NULL) == -1) |
| exit(1); |
| } |
| |
| /* These macros used to replicate the work of the legacy test wrapper code */ |
| #define setup_test(x) do { \ |
| if (!in_legacy_test_wrapper) { \ |
| TT_FAIL(("Legacy test %s not wrapped properly", x)); \ |
| return; \ |
| } \ |
| } while (0) |
| #define cleanup_test() setup_test("cleanup") |
| |
| static void |
| test_simpleread(void) |
| { |
| struct event ev; |
| |
| /* Very simple read test */ |
| setup_test("Simple read: "); |
| |
| if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) { |
| tt_fail_perror("write"); |
| } |
| |
| shutdown(pair[0], EVUTIL_SHUT_WR); |
| |
| event_set(&ev, pair[1], EV_READ, simple_read_cb, &ev); |
| if (event_add(&ev, NULL) == -1) |
| exit(1); |
| event_dispatch(); |
| |
| cleanup_test(); |
| } |
| |
| static void |
| test_simplewrite(void) |
| { |
| struct event ev; |
| |
| /* Very simple write test */ |
| setup_test("Simple write: "); |
| |
| event_set(&ev, pair[0], EV_WRITE, simple_write_cb, &ev); |
| if (event_add(&ev, NULL) == -1) |
| exit(1); |
| event_dispatch(); |
| |
| cleanup_test(); |
| } |
| |
| static void |
| simpleread_multiple_cb(evutil_socket_t fd, short event, void *arg) |
| { |
| if (++called == 2) |
| test_ok = 1; |
| } |
| |
| static void |
| test_simpleread_multiple(void) |
| { |
| struct event one, two; |
| |
| /* Very simple read test */ |
| setup_test("Simple read to multiple evens: "); |
| |
| if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) { |
| tt_fail_perror("write"); |
| } |
| |
| shutdown(pair[0], EVUTIL_SHUT_WR); |
| |
| event_set(&one, pair[1], EV_READ, simpleread_multiple_cb, NULL); |
| if (event_add(&one, NULL) == -1) |
| exit(1); |
| event_set(&two, pair[1], EV_READ, simpleread_multiple_cb, NULL); |
| if (event_add(&two, NULL) == -1) |
| exit(1); |
| event_dispatch(); |
| |
| cleanup_test(); |
| } |
| |
| static int have_closed = 0; |
| static int premature_event = 0; |
| static void |
| simpleclose_close_fd_cb(evutil_socket_t s, short what, void *ptr) |
| { |
| evutil_socket_t **fds = ptr; |
| TT_BLATHER(("Closing")); |
| evutil_closesocket(*fds[0]); |
| evutil_closesocket(*fds[1]); |
| *fds[0] = -1; |
| *fds[1] = -1; |
| have_closed = 1; |
| } |
| |
| static void |
| record_event_cb(evutil_socket_t s, short what, void *ptr) |
| { |
| short *whatp = ptr; |
| if (!have_closed) |
| premature_event = 1; |
| *whatp = what; |
| TT_BLATHER(("Recorded %d on socket %d", (int)what, (int)s)); |
| } |
| |
| static void |
| test_simpleclose_rw(void *ptr) |
| { |
| /* Test that a close of FD is detected as a read and as a write. */ |
| struct event_base *base = event_base_new(); |
| evutil_socket_t pair1[2]={-1,-1}, pair2[2] = {-1, -1}; |
| evutil_socket_t *to_close[2]; |
| struct event *rev=NULL, *wev=NULL, *closeev=NULL; |
| struct timeval tv; |
| short got_read_on_close = 0, got_write_on_close = 0; |
| char buf[1024]; |
| memset(buf, 99, sizeof(buf)); |
| #ifdef _WIN32 |
| #define LOCAL_SOCKETPAIR_AF AF_INET |
| #else |
| #define LOCAL_SOCKETPAIR_AF AF_UNIX |
| #endif |
| if (evutil_socketpair(LOCAL_SOCKETPAIR_AF, SOCK_STREAM, 0, pair1)<0) |
| TT_DIE(("socketpair: %s", strerror(errno))); |
| if (evutil_socketpair(LOCAL_SOCKETPAIR_AF, SOCK_STREAM, 0, pair2)<0) |
| TT_DIE(("socketpair: %s", strerror(errno))); |
| if (evutil_make_socket_nonblocking(pair1[1]) < 0) |
| TT_DIE(("make_socket_nonblocking")); |
| if (evutil_make_socket_nonblocking(pair2[1]) < 0) |
| TT_DIE(("make_socket_nonblocking")); |
| |
| /** Stuff pair2[1] full of data, until write fails */ |
| while (1) { |
| int r = write(pair2[1], buf, sizeof(buf)); |
| if (r<0) { |
| int err = evutil_socket_geterror(pair2[1]); |
| if (! EVUTIL_ERR_RW_RETRIABLE(err)) |
| TT_DIE(("write failed strangely: %s", |
| evutil_socket_error_to_string(err))); |
| break; |
| } |
| } |
| to_close[0] = &pair1[0]; |
| to_close[1] = &pair2[0]; |
| |
| closeev = event_new(base, -1, EV_TIMEOUT, simpleclose_close_fd_cb, |
| to_close); |
| rev = event_new(base, pair1[1], EV_READ, record_event_cb, |
| &got_read_on_close); |
| TT_BLATHER(("Waiting for read on %d", (int)pair1[1])); |
| wev = event_new(base, pair2[1], EV_WRITE, record_event_cb, |
| &got_write_on_close); |
| TT_BLATHER(("Waiting for write on %d", (int)pair2[1])); |
| tv.tv_sec = 0; |
| tv.tv_usec = 100*1000; /* Close pair1[0] after a little while, and make |
| * sure we get a read event. */ |
| event_add(closeev, &tv); |
| event_add(rev, NULL); |
| event_add(wev, NULL); |
| /* Don't let the test go on too long. */ |
| tv.tv_sec = 0; |
| tv.tv_usec = 200*1000; |
| event_base_loopexit(base, &tv); |
| event_base_loop(base, 0); |
| |
| tt_int_op(got_read_on_close, ==, EV_READ); |
| tt_int_op(got_write_on_close, ==, EV_WRITE); |
| tt_int_op(premature_event, ==, 0); |
| |
| end: |
| if (pair1[0] >= 0) |
| evutil_closesocket(pair1[0]); |
| if (pair1[1] >= 0) |
| evutil_closesocket(pair1[1]); |
| if (pair2[0] >= 0) |
| evutil_closesocket(pair2[0]); |
| if (pair2[1] >= 0) |
| evutil_closesocket(pair2[1]); |
| if (rev) |
| event_free(rev); |
| if (wev) |
| event_free(wev); |
| if (closeev) |
| event_free(closeev); |
| if (base) |
| event_base_free(base); |
| } |
| |
| static void |
| test_simpleclose(void *ptr) |
| { |
| struct basic_test_data *data = ptr; |
| struct event_base *base = data->base; |
| evutil_socket_t *pair = data->pair; |
| const char *flags = (const char *)data->setup_data; |
| int et = !!strstr(flags, "ET"); |
| int persist = !!strstr(flags, "persist"); |
| short events = EV_CLOSED | (et ? EV_ET : 0) | (persist ? EV_PERSIST : 0); |
| struct event *ev = NULL; |
| short got_event; |
| |
| if (!(event_base_get_features(data->base) & EV_FEATURE_EARLY_CLOSE)) |
| tt_skip(); |
| |
| /* XXX: should this code moved to regress_et.c ? */ |
| if (et && !(event_base_get_features(data->base) & EV_FEATURE_ET)) |
| tt_skip(); |
| |
| ev = event_new(base, pair[0], events, record_event_cb, &got_event); |
| tt_assert(ev); |
| tt_assert(!event_add(ev, NULL)); |
| |
| got_event = 0; |
| if (strstr(flags, "close")) { |
| tt_assert(!evutil_closesocket(pair[1])); |
| /* avoid closing in setup routines */ |
| pair[1] = -1; |
| } else if (strstr(flags, "shutdown")) { |
| tt_assert(!shutdown(pair[1], EVUTIL_SHUT_WR)); |
| } else { |
| tt_abort_msg("unknown flags"); |
| } |
| |
| /* w/o edge-triggerd but w/ persist it will not stop */ |
| if (!et && persist) { |
| struct timeval tv; |
| tv.tv_sec = 0; |
| tv.tv_usec = 10000; |
| tt_assert(!event_base_loopexit(base, &tv)); |
| } |
| |
| tt_int_op(event_base_loop(base, EVLOOP_NONBLOCK), ==, !persist); |
| tt_int_op(got_event, ==, (events & ~EV_PERSIST)); |
| |
| end: |
| if (ev) |
| event_free(ev); |
| } |
| |
| static void |
| test_multiple(void) |
| { |
| struct event ev, ev2; |
| int i; |
| |
| /* Multiple read and write test */ |
| setup_test("Multiple read/write: "); |
| memset(rbuf, 0, sizeof(rbuf)); |
| for (i = 0; i < (int)sizeof(wbuf); i++) |
| wbuf[i] = i; |
| |
| roff = woff = 0; |
| usepersist = 0; |
| |
| event_set(&ev, pair[0], EV_WRITE, multiple_write_cb, &ev); |
| if (event_add(&ev, NULL) == -1) |
| exit(1); |
| event_set(&ev2, pair[1], EV_READ, multiple_read_cb, &ev2); |
| if (event_add(&ev2, NULL) == -1) |
| exit(1); |
| event_dispatch(); |
| |
| if (roff == woff) |
| test_ok = memcmp(rbuf, wbuf, sizeof(wbuf)) == 0; |
| |
| cleanup_test(); |
| } |
| |
| static void |
| test_persistent(void) |
| { |
| struct event ev, ev2; |
| int i; |
| |
| /* Multiple read and write test with persist */ |
| setup_test("Persist read/write: "); |
| memset(rbuf, 0, sizeof(rbuf)); |
| for (i = 0; i < (int)sizeof(wbuf); i++) |
| wbuf[i] = i; |
| |
| roff = woff = 0; |
| usepersist = 1; |
| |
| event_set(&ev, pair[0], EV_WRITE|EV_PERSIST, multiple_write_cb, &ev); |
| if (event_add(&ev, NULL) == -1) |
| exit(1); |
| event_set(&ev2, pair[1], EV_READ|EV_PERSIST, multiple_read_cb, &ev2); |
| if (event_add(&ev2, NULL) == -1) |
| exit(1); |
| event_dispatch(); |
| |
| if (roff == woff) |
| test_ok = memcmp(rbuf, wbuf, sizeof(wbuf)) == 0; |
| |
| cleanup_test(); |
| } |
| |
| static void |
| test_combined(void) |
| { |
| struct both r1, r2, w1, w2; |
| |
| setup_test("Combined read/write: "); |
| memset(&r1, 0, sizeof(r1)); |
| memset(&r2, 0, sizeof(r2)); |
| memset(&w1, 0, sizeof(w1)); |
| memset(&w2, 0, sizeof(w2)); |
| |
| w1.nread = 4096; |
| w2.nread = 8192; |
| |
| event_set(&r1.ev, pair[0], EV_READ, combined_read_cb, &r1); |
| event_set(&w1.ev, pair[0], EV_WRITE, combined_write_cb, &w1); |
| event_set(&r2.ev, pair[1], EV_READ, combined_read_cb, &r2); |
| event_set(&w2.ev, pair[1], EV_WRITE, combined_write_cb, &w2); |
| tt_assert(event_add(&r1.ev, NULL) != -1); |
| tt_assert(!event_add(&w1.ev, NULL)); |
| tt_assert(!event_add(&r2.ev, NULL)); |
| tt_assert(!event_add(&w2.ev, NULL)); |
| event_dispatch(); |
| |
| if (r1.nread == 8192 && r2.nread == 4096) |
| test_ok = 1; |
| |
| end: |
| cleanup_test(); |
| } |
| |
| static void |
| test_simpletimeout(void) |
| { |
| struct timeval tv; |
| struct event ev; |
| |
| setup_test("Simple timeout: "); |
| |
| tv.tv_usec = 200*1000; |
| tv.tv_sec = 0; |
| evutil_timerclear(&tcalled); |
| evtimer_set(&ev, timeout_cb, NULL); |
| evtimer_add(&ev, &tv); |
| |
| evutil_gettimeofday(&tset, NULL); |
| event_dispatch(); |
| test_timeval_diff_eq(&tset, &tcalled, 200); |
| |
| test_ok = 1; |
| end: |
| cleanup_test(); |
| } |
| |
| static void |
| periodic_timeout_cb(evutil_socket_t fd, short event, void *arg) |
| { |
| int *count = arg; |
| |
| (*count)++; |
| if (*count == 6) { |
| /* call loopexit only once - on slow machines(?), it is |
| * apparently possible for this to get called twice. */ |
| test_ok = 1; |
| event_base_loopexit(global_base, NULL); |
| } |
| } |
| |
| static void |
| test_persistent_timeout(void) |
| { |
| struct timeval tv; |
| struct event ev; |
| int count = 0; |
| |
| evutil_timerclear(&tv); |
| tv.tv_usec = 10000; |
| |
| event_assign(&ev, global_base, -1, EV_TIMEOUT|EV_PERSIST, |
| periodic_timeout_cb, &count); |
| event_add(&ev, &tv); |
| |
| event_dispatch(); |
| |
| event_del(&ev); |
| } |
| |
| static void |
| test_persistent_timeout_jump(void *ptr) |
| { |
| struct basic_test_data *data = ptr; |
| struct event ev; |
| int count = 0; |
| struct timeval msec100 = { 0, 100 * 1000 }; |
| struct timeval msec50 = { 0, 50 * 1000 }; |
| struct timeval msec300 = { 0, 300 * 1000 }; |
| |
| event_assign(&ev, data->base, -1, EV_PERSIST, periodic_timeout_cb, &count); |
| event_add(&ev, &msec100); |
| /* Wait for a bit */ |
| evutil_usleep_(&msec300); |
| event_base_loopexit(data->base, &msec50); |
| event_base_dispatch(data->base); |
| tt_int_op(count, ==, 1); |
| |
| end: |
| event_del(&ev); |
| } |
| |
| struct persist_active_timeout_called { |
| int n; |
| short events[16]; |
| struct timeval tvs[16]; |
| }; |
| |
| static void |
| activate_cb(evutil_socket_t fd, short event, void *arg) |
| { |
| struct event *ev = arg; |
| event_active(ev, EV_READ, 1); |
| } |
| |
| static void |
| persist_active_timeout_cb(evutil_socket_t fd, short event, void *arg) |
| { |
| struct persist_active_timeout_called *c = arg; |
| if (c->n < 15) { |
| c->events[c->n] = event; |
| evutil_gettimeofday(&c->tvs[c->n], NULL); |
| ++c->n; |
| } |
| } |
| |
| static void |
| test_persistent_active_timeout(void *ptr) |
| { |
| struct timeval tv, tv2, tv_exit, start; |
| struct event ev; |
| struct persist_active_timeout_called res; |
| |
| struct basic_test_data *data = ptr; |
| struct event_base *base = data->base; |
| |
| memset(&res, 0, sizeof(res)); |
| |
| tv.tv_sec = 0; |
| tv.tv_usec = 200 * 1000; |
| event_assign(&ev, base, -1, EV_TIMEOUT|EV_PERSIST, |
| persist_active_timeout_cb, &res); |
| event_add(&ev, &tv); |
| |
| tv2.tv_sec = 0; |
| tv2.tv_usec = 100 * 1000; |
| event_base_once(base, -1, EV_TIMEOUT, activate_cb, &ev, &tv2); |
| |
| tv_exit.tv_sec = 0; |
| tv_exit.tv_usec = 600 * 1000; |
| event_base_loopexit(base, &tv_exit); |
| |
| event_base_assert_ok_(base); |
| evutil_gettimeofday(&start, NULL); |
| |
| event_base_dispatch(base); |
| event_base_assert_ok_(base); |
| |
| tt_int_op(res.n, ==, 3); |
| tt_int_op(res.events[0], ==, EV_READ); |
| tt_int_op(res.events[1], ==, EV_TIMEOUT); |
| tt_int_op(res.events[2], ==, EV_TIMEOUT); |
| test_timeval_diff_eq(&start, &res.tvs[0], 100); |
| test_timeval_diff_eq(&start, &res.tvs[1], 300); |
| test_timeval_diff_eq(&start, &res.tvs[2], 500); |
| end: |
| event_del(&ev); |
| } |
| |
| struct common_timeout_info { |
| struct event ev; |
| struct timeval called_at; |
| int which; |
| int count; |
| }; |
| |
| static void |
| common_timeout_cb(evutil_socket_t fd, short event, void *arg) |
| { |
| struct common_timeout_info *ti = arg; |
| ++ti->count; |
| evutil_gettimeofday(&ti->called_at, NULL); |
| if (ti->count >= 4) |
| event_del(&ti->ev); |
| } |
| |
| static void |
| test_common_timeout(void *ptr) |
| { |
| struct basic_test_data *data = ptr; |
| |
| struct event_base *base = data->base; |
| int i; |
| struct common_timeout_info info[100]; |
| |
| struct timeval start; |
| struct timeval tmp_100_ms = { 0, 100*1000 }; |
| struct timeval tmp_200_ms = { 0, 200*1000 }; |
| struct timeval tmp_5_sec = { 5, 0 }; |
| struct timeval tmp_5M_usec = { 0, 5*1000*1000 }; |
| |
| const struct timeval *ms_100, *ms_200, *sec_5; |
| |
| ms_100 = event_base_init_common_timeout(base, &tmp_100_ms); |
| ms_200 = event_base_init_common_timeout(base, &tmp_200_ms); |
| sec_5 = event_base_init_common_timeout(base, &tmp_5_sec); |
| tt_assert(ms_100); |
| tt_assert(ms_200); |
| tt_assert(sec_5); |
| tt_ptr_op(event_base_init_common_timeout(base, &tmp_200_ms), |
| ==, ms_200); |
| tt_ptr_op(event_base_init_common_timeout(base, ms_200), ==, ms_200); |
| tt_ptr_op(event_base_init_common_timeout(base, &tmp_5M_usec), ==, sec_5); |
| tt_int_op(ms_100->tv_sec, ==, 0); |
| tt_int_op(ms_200->tv_sec, ==, 0); |
| tt_int_op(sec_5->tv_sec, ==, 5); |
| tt_int_op(ms_100->tv_usec, ==, 100000|0x50000000); |
| tt_int_op(ms_200->tv_usec, ==, 200000|0x50100000); |
| tt_int_op(sec_5->tv_usec, ==, 0|0x50200000); |
| |
| memset(info, 0, sizeof(info)); |
| |
| for (i=0; i<100; ++i) { |
| info[i].which = i; |
| event_assign(&info[i].ev, base, -1, EV_TIMEOUT|EV_PERSIST, |
| common_timeout_cb, &info[i]); |
| if (i % 2) { |
| if ((i%20)==1) { |
| /* Glass-box test: Make sure we survive the |
| * transition to non-common timeouts. It's |
| * a little tricky. */ |
| event_add(&info[i].ev, ms_200); |
| event_add(&info[i].ev, &tmp_100_ms); |
| } else if ((i%20)==3) { |
| /* Check heap-to-common too. */ |
| event_add(&info[i].ev, &tmp_200_ms); |
| event_add(&info[i].ev, ms_100); |
| } else if ((i%20)==5) { |
| /* Also check common-to-common. */ |
| event_add(&info[i].ev, ms_200); |
| event_add(&info[i].ev, ms_100); |
| } else { |
| event_add(&info[i].ev, ms_100); |
| } |
| } else { |
| event_add(&info[i].ev, ms_200); |
| } |
| } |
| |
| event_base_assert_ok_(base); |
| evutil_gettimeofday(&start, NULL); |
| event_base_dispatch(base); |
| |
| event_base_assert_ok_(base); |
| |
| for (i=0; i<10; ++i) { |
| tt_int_op(info[i].count, ==, 4); |
| if (i % 2) { |
| test_timeval_diff_eq(&start, &info[i].called_at, 400); |
| } else { |
| test_timeval_diff_eq(&start, &info[i].called_at, 800); |
| } |
| } |
| |
| /* Make sure we can free the base with some events in. */ |
| for (i=0; i<100; ++i) { |
| if (i % 2) { |
| event_add(&info[i].ev, ms_100); |
| } else { |
| event_add(&info[i].ev, ms_200); |
| } |
| } |
| |
| end: |
| event_base_free(data->base); /* need to do this here before info is |
| * out-of-scope */ |
| data->base = NULL; |
| } |
| |
| #ifndef _WIN32 |
| |
| #define current_base event_global_current_base_ |
| extern struct event_base *current_base; |
| |
| static void |
| fork_signal_cb(evutil_socket_t fd, short events, void *arg) |
| { |
| event_del(arg); |
| } |
| |
| int child_pair[2] = { -1, -1 }; |
| static void |
| simple_child_read_cb(evutil_socket_t fd, short event, void *arg) |
| { |
| char buf[256]; |
| int len; |
| |
| len = read(fd, buf, sizeof(buf)); |
| if (write(child_pair[0], "", 1) < 0) |
| tt_fail_perror("write"); |
| |
| if (len) { |
| if (!called) { |
| if (event_add(arg, NULL) == -1) |
| exit(1); |
| } |
| } else if (called == 1) |
| test_ok = 1; |
| |
| called++; |
| } |
| |
| #define TEST_FORK_EXIT_SUCCESS 76 |
| static void fork_wait_check(int pid) |
| { |
| int status; |
| |
| TT_BLATHER(("Before waitpid")); |
| |
| #ifdef WNOWAIT |
| if ((waitpid(pid, &status, WNOWAIT) == -1 && errno == EINVAL) && |
| #else |
| if ( |
| #endif |
| waitpid(pid, &status, 0) == -1) { |
| perror("waitpid"); |
| exit(1); |
| } |
| TT_BLATHER(("After waitpid")); |
| |
| if (WEXITSTATUS(status) != TEST_FORK_EXIT_SUCCESS) { |
| fprintf(stdout, "FAILED (exit): %d\n", WEXITSTATUS(status)); |
| exit(1); |
| } |
| } |
| static void |
| test_fork(void) |
| { |
| char c; |
| struct event ev, sig_ev, usr_ev, existing_ev; |
| pid_t pid; |
| |
| setup_test("After fork: "); |
| |
| { |
| if (evutil_socketpair(AF_UNIX, SOCK_STREAM, 0, child_pair) == -1) { |
| fprintf(stderr, "%s: socketpair\n", __func__); |
| exit(1); |
| } |
| |
| if (evutil_make_socket_nonblocking(child_pair[0]) == -1) { |
| fprintf(stderr, "fcntl(O_NONBLOCK)"); |
| exit(1); |
| } |
| } |
| |
| tt_assert(current_base); |
| evthread_make_base_notifiable(current_base); |
| |
| if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) { |
| tt_fail_perror("write"); |
| } |
| |
| event_set(&ev, pair[1], EV_READ, simple_child_read_cb, &ev); |
| if (event_add(&ev, NULL) == -1) |
| exit(1); |
| |
| evsignal_set(&sig_ev, SIGCHLD, fork_signal_cb, &sig_ev); |
| evsignal_add(&sig_ev, NULL); |
| |
| evsignal_set(&existing_ev, SIGUSR2, fork_signal_cb, &existing_ev); |
| evsignal_add(&existing_ev, NULL); |
| |
| event_base_assert_ok_(current_base); |
| TT_BLATHER(("Before fork")); |
| if ((pid = regress_fork()) == 0) { |
| /* in the child */ |
| TT_BLATHER(("In child, before reinit")); |
| event_base_assert_ok_(current_base); |
| if (event_reinit(current_base) == -1) { |
| fprintf(stdout, "FAILED (reinit)\n"); |
| exit(1); |
| } |
| TT_BLATHER(("After reinit")); |
| event_base_assert_ok_(current_base); |
| TT_BLATHER(("After assert-ok")); |
| |
| evsignal_del(&sig_ev); |
| |
| evsignal_set(&usr_ev, SIGUSR1, fork_signal_cb, &usr_ev); |
| evsignal_add(&usr_ev, NULL); |
| kill(getpid(), SIGUSR1); |
| kill(getpid(), SIGUSR2); |
| |
| called = 0; |
| |
| event_dispatch(); |
| |
| event_base_free(current_base); |
| |
| /* we do not send an EOF; simple_read_cb requires an EOF |
| * to set test_ok. we just verify that the callback was |
| * called. */ |
| exit(test_ok != 0 || called != 2 ? -2 : TEST_FORK_EXIT_SUCCESS); |
| } |
| |
| /** wait until client read first message */ |
| if (read(child_pair[1], &c, 1) < 0) { |
| tt_fail_perror("read"); |
| } |
| if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) { |
| tt_fail_perror("write"); |
| } |
| |
| fork_wait_check(pid); |
| |
| /* test that the current event loop still works */ |
| if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) { |
| fprintf(stderr, "%s: write\n", __func__); |
| } |
| |
| shutdown(pair[0], EVUTIL_SHUT_WR); |
| |
| evsignal_set(&usr_ev, SIGUSR1, fork_signal_cb, &usr_ev); |
| evsignal_add(&usr_ev, NULL); |
| kill(getpid(), SIGUSR1); |
| kill(getpid(), SIGUSR2); |
| |
| event_dispatch(); |
| |
| evsignal_del(&sig_ev); |
| tt_int_op(test_ok, ==, 1); |
| |
| end: |
| cleanup_test(); |
| if (child_pair[0] != -1) |
| evutil_closesocket(child_pair[0]); |
| if (child_pair[1] != -1) |
| evutil_closesocket(child_pair[1]); |
| } |
| |
| #ifdef EVTHREAD_USE_PTHREADS_IMPLEMENTED |
| static void* del_wait_thread(void *arg) |
| { |
| struct timeval tv_start, tv_end; |
| |
| evutil_gettimeofday(&tv_start, NULL); |
| event_dispatch(); |
| evutil_gettimeofday(&tv_end, NULL); |
| |
| test_timeval_diff_eq(&tv_start, &tv_end, 300); |
| |
| end: |
| return NULL; |
| } |
| |
| static void |
| del_wait_cb(evutil_socket_t fd, short event, void *arg) |
| { |
| struct timeval delay = { 0, 300*1000 }; |
| TT_BLATHER(("Sleeping: %i", test_ok)); |
| evutil_usleep_(&delay); |
| ++test_ok; |
| } |
| |
| static void |
| test_del_wait(void) |
| { |
| struct event ev; |
| THREAD_T thread; |
| |
| setup_test("event_del will wait: "); |
| |
| event_set(&ev, pair[1], EV_READ|EV_PERSIST, del_wait_cb, &ev); |
| event_add(&ev, NULL); |
| |
| THREAD_START(thread, del_wait_thread, NULL); |
| |
| if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) { |
| tt_fail_perror("write"); |
| } |
| |
| { |
| struct timeval delay = { 0, 30*1000 }; |
| evutil_usleep_(&delay); |
| } |
| |
| { |
| struct timeval tv_start, tv_end; |
| evutil_gettimeofday(&tv_start, NULL); |
| event_del(&ev); |
| evutil_gettimeofday(&tv_end, NULL); |
| test_timeval_diff_eq(&tv_start, &tv_end, 270); |
| } |
| |
| THREAD_JOIN(thread); |
| |
| tt_int_op(test_ok, ==, 1); |
| |
| end: |
| ; |
| } |
| |
| static void null_cb(evutil_socket_t fd, short what, void *arg) {} |
| static void* test_del_notify_thread(void *arg) |
| { |
| event_dispatch(); |
| return NULL; |
| } |
| static void |
| test_del_notify(void) |
| { |
| struct event ev; |
| THREAD_T thread; |
| |
| test_ok = 1; |
| |
| event_set(&ev, -1, EV_READ, null_cb, &ev); |
| event_add(&ev, NULL); |
| |
| THREAD_START(thread, test_del_notify_thread, NULL); |
| |
| { |
| struct timeval delay = { 0, 1000 }; |
| evutil_usleep_(&delay); |
| } |
| |
| event_del(&ev); |
| THREAD_JOIN(thread); |
| } |
| #endif |
| |
| static void |
| signal_cb_sa(int sig) |
| { |
| test_ok = 2; |
| } |
| |
| static void |
| signal_cb(evutil_socket_t fd, short event, void *arg) |
| { |
| struct event *ev = arg; |
| |
| evsignal_del(ev); |
| test_ok = 1; |
| } |
| |
| static void |
| test_simplesignal_impl(int find_reorder) |
| { |
| struct event ev; |
| struct itimerval itv; |
| |
| evsignal_set(&ev, SIGALRM, signal_cb, &ev); |
| evsignal_add(&ev, NULL); |
| /* find bugs in which operations are re-ordered */ |
| if (find_reorder) { |
| evsignal_del(&ev); |
| evsignal_add(&ev, NULL); |
| } |
| |
| memset(&itv, 0, sizeof(itv)); |
| itv.it_value.tv_sec = 0; |
| itv.it_value.tv_usec = 100000; |
| if (setitimer(ITIMER_REAL, &itv, NULL) == -1) |
| goto skip_simplesignal; |
| |
| event_dispatch(); |
| skip_simplesignal: |
| if (evsignal_del(&ev) == -1) |
| test_ok = 0; |
| |
| cleanup_test(); |
| } |
| |
| static void |
| test_simplestsignal(void) |
| { |
| setup_test("Simplest one signal: "); |
| test_simplesignal_impl(0); |
| } |
| |
| static void |
| test_simplesignal(void) |
| { |
| setup_test("Simple signal: "); |
| test_simplesignal_impl(1); |
| } |
| |
| static void |
| test_multiplesignal(void) |
| { |
| struct event ev_one, ev_two; |
| struct itimerval itv; |
| |
| setup_test("Multiple signal: "); |
| |
| evsignal_set(&ev_one, SIGALRM, signal_cb, &ev_one); |
| evsignal_add(&ev_one, NULL); |
| |
| evsignal_set(&ev_two, SIGALRM, signal_cb, &ev_two); |
| evsignal_add(&ev_two, NULL); |
| |
| memset(&itv, 0, sizeof(itv)); |
| itv.it_value.tv_sec = 0; |
| itv.it_value.tv_usec = 100000; |
| if (setitimer(ITIMER_REAL, &itv, NULL) == -1) |
| goto skip_simplesignal; |
| |
| event_dispatch(); |
| |
| skip_simplesignal: |
| if (evsignal_del(&ev_one) == -1) |
| test_ok = 0; |
| if (evsignal_del(&ev_two) == -1) |
| test_ok = 0; |
| |
| cleanup_test(); |
| } |
| |
| static void |
| test_immediatesignal(void) |
| { |
| struct event ev; |
| |
| test_ok = 0; |
| evsignal_set(&ev, SIGUSR1, signal_cb, &ev); |
| evsignal_add(&ev, NULL); |
| kill(getpid(), SIGUSR1); |
| event_loop(EVLOOP_NONBLOCK); |
| evsignal_del(&ev); |
| cleanup_test(); |
| } |
| |
| static void |
| test_signal_dealloc(void) |
| { |
| /* make sure that evsignal_event is event_del'ed and pipe closed */ |
| struct event ev; |
| struct event_base *base = event_init(); |
| evsignal_set(&ev, SIGUSR1, signal_cb, &ev); |
| evsignal_add(&ev, NULL); |
| evsignal_del(&ev); |
| event_base_free(base); |
| /* If we got here without asserting, we're fine. */ |
| test_ok = 1; |
| cleanup_test(); |
| } |
| |
| static void |
| test_signal_pipeloss(void) |
| { |
| /* make sure that the base1 pipe is closed correctly. */ |
| struct event_base *base1, *base2; |
| int pipe1; |
| test_ok = 0; |
| base1 = event_init(); |
| pipe1 = base1->sig.ev_signal_pair[0]; |
| base2 = event_init(); |
| event_base_free(base2); |
| event_base_free(base1); |
| if (close(pipe1) != -1 || errno!=EBADF) { |
| /* fd must be closed, so second close gives -1, EBADF */ |
| printf("signal pipe not closed. "); |
| test_ok = 0; |
| } else { |
| test_ok = 1; |
| } |
| cleanup_test(); |
| } |
| |
| /* |
| * make two bases to catch signals, use both of them. this only works |
| * for event mechanisms that use our signal pipe trick. kqueue handles |
| * signals internally, and all interested kqueues get all the signals. |
| */ |
| static void |
| test_signal_switchbase(void) |
| { |
| struct event ev1, ev2; |
| struct event_base *base1, *base2; |
| int is_kqueue; |
| test_ok = 0; |
| base1 = event_init(); |
| base2 = event_init(); |
| is_kqueue = !strcmp(event_get_method(),"kqueue"); |
| evsignal_set(&ev1, SIGUSR1, signal_cb, &ev1); |
| evsignal_set(&ev2, SIGUSR1, signal_cb, &ev2); |
| if (event_base_set(base1, &ev1) || |
| event_base_set(base2, &ev2) || |
| event_add(&ev1, NULL) || |
| event_add(&ev2, NULL)) { |
| fprintf(stderr, "%s: cannot set base, add\n", __func__); |
| exit(1); |
| } |
| |
| tt_ptr_op(event_get_base(&ev1), ==, base1); |
| tt_ptr_op(event_get_base(&ev2), ==, base2); |
| |
| test_ok = 0; |
| /* can handle signal before loop is called */ |
| kill(getpid(), SIGUSR1); |
| event_base_loop(base2, EVLOOP_NONBLOCK); |
| if (is_kqueue) { |
| if (!test_ok) |
| goto end; |
| test_ok = 0; |
| } |
| event_base_loop(base1, EVLOOP_NONBLOCK); |
| if (test_ok && !is_kqueue) { |
| test_ok = 0; |
| |
| /* set base1 to handle signals */ |
| event_base_loop(base1, EVLOOP_NONBLOCK); |
| kill(getpid(), SIGUSR1); |
| event_base_loop(base1, EVLOOP_NONBLOCK); |
| event_base_loop(base2, EVLOOP_NONBLOCK); |
| } |
| end: |
| event_base_free(base1); |
| event_base_free(base2); |
| cleanup_test(); |
| } |
| |
| /* |
| * assert that a signal event removed from the event queue really is |
| * removed - with no possibility of it's parent handler being fired. |
| */ |
| static void |
| test_signal_assert(void) |
| { |
| struct event ev; |
| struct event_base *base = event_init(); |
| test_ok = 0; |
| /* use SIGCONT so we don't kill ourselves when we signal to nowhere */ |
| evsignal_set(&ev, SIGCONT, signal_cb, &ev); |
| evsignal_add(&ev, NULL); |
| /* |
| * if evsignal_del() fails to reset the handler, it's current handler |
| * will still point to evsig_handler(). |
| */ |
| evsignal_del(&ev); |
| |
| kill(getpid(), SIGCONT); |
| #if 0 |
| /* only way to verify we were in evsig_handler() */ |
| /* XXXX Now there's no longer a good way. */ |
| if (base->sig.evsig_caught) |
| test_ok = 0; |
| else |
| test_ok = 1; |
| #else |
| test_ok = 1; |
| #endif |
| |
| event_base_free(base); |
| cleanup_test(); |
| return; |
| } |
| |
| /* |
| * assert that we restore our previous signal handler properly. |
| */ |
| static void |
| test_signal_restore(void) |
| { |
| struct event ev; |
| struct event_base *base = event_init(); |
| #ifdef EVENT__HAVE_SIGACTION |
| struct sigaction sa; |
| #endif |
| |
| test_ok = 0; |
| #ifdef EVENT__HAVE_SIGACTION |
| sa.sa_handler = signal_cb_sa; |
| sa.sa_flags = 0x0; |
| sigemptyset(&sa.sa_mask); |
| if (sigaction(SIGUSR1, &sa, NULL) == -1) |
| goto out; |
| #else |
| if (signal(SIGUSR1, signal_cb_sa) == SIG_ERR) |
| goto out; |
| #endif |
| evsignal_set(&ev, SIGUSR1, signal_cb, &ev); |
| evsignal_add(&ev, NULL); |
| evsignal_del(&ev); |
| |
| kill(getpid(), SIGUSR1); |
| /* 1 == signal_cb, 2 == signal_cb_sa, we want our previous handler */ |
| if (test_ok != 2) |
| test_ok = 0; |
| out: |
| event_base_free(base); |
| cleanup_test(); |
| return; |
| } |
| |
| static void |
| signal_cb_swp(int sig, short event, void *arg) |
| { |
| called++; |
| if (called < 5) |
| kill(getpid(), sig); |
| else |
| event_loopexit(NULL); |
| } |
| static void |
| timeout_cb_swp(evutil_socket_t fd, short event, void *arg) |
| { |
| if (called == -1) { |
| struct timeval tv = {5, 0}; |
| |
| called = 0; |
| evtimer_add((struct event *)arg, &tv); |
| kill(getpid(), SIGUSR1); |
| return; |
| } |
| test_ok = 0; |
| event_loopexit(NULL); |
| } |
| |
| static void |
| test_signal_while_processing(void) |
| { |
| struct event_base *base = event_init(); |
| struct event ev, ev_timer; |
| struct timeval tv = {0, 0}; |
| |
| setup_test("Receiving a signal while processing other signal: "); |
| |
| called = -1; |
| test_ok = 1; |
| signal_set(&ev, SIGUSR1, signal_cb_swp, NULL); |
| signal_add(&ev, NULL); |
| evtimer_set(&ev_timer, timeout_cb_swp, &ev_timer); |
| evtimer_add(&ev_timer, &tv); |
| event_dispatch(); |
| |
| event_base_free(base); |
| cleanup_test(); |
| return; |
| } |
| #endif |
| |
| static void |
| test_free_active_base(void *ptr) |
| { |
| struct basic_test_data *data = ptr; |
| struct event_base *base1; |
| struct event ev1; |
| |
| base1 = event_init(); |
| tt_assert(base1); |
| event_assign(&ev1, base1, data->pair[1], EV_READ, dummy_read_cb, NULL); |
| event_add(&ev1, NULL); |
| event_base_free(base1); /* should not crash */ |
| |
| base1 = event_init(); |
| tt_assert(base1); |
| event_assign(&ev1, base1, data->pair[0], 0, dummy_read_cb, NULL); |
| event_active(&ev1, EV_READ, 1); |
| event_base_free(base1); |
| end: |
| ; |
| } |
| |
| static void |
| test_manipulate_active_events(void *ptr) |
| { |
| struct basic_test_data *data = ptr; |
| struct event_base *base = data->base; |
| struct event ev1; |
| |
| event_assign(&ev1, base, -1, EV_TIMEOUT, dummy_read_cb, NULL); |
| |
| /* Make sure an active event is pending. */ |
| event_active(&ev1, EV_READ, 1); |
| tt_int_op(event_pending(&ev1, EV_READ|EV_TIMEOUT|EV_WRITE, NULL), |
| ==, EV_READ); |
| |
| /* Make sure that activating an event twice works. */ |
| event_active(&ev1, EV_WRITE, 1); |
| tt_int_op(event_pending(&ev1, EV_READ|EV_TIMEOUT|EV_WRITE, NULL), |
| ==, EV_READ|EV_WRITE); |
| |
| end: |
| event_del(&ev1); |
| } |
| |
| static void |
| event_selfarg_cb(evutil_socket_t fd, short event, void *arg) |
| { |
| struct event *ev = arg; |
| struct event_base *base = event_get_base(ev); |
| event_base_assert_ok_(base); |
| event_base_loopexit(base, NULL); |
| tt_want(ev == event_base_get_running_event(base)); |
| } |
| |
| static void |
| test_event_new_selfarg(void *ptr) |
| { |
| struct basic_test_data *data = ptr; |
| struct event_base *base = data->base; |
| struct event *ev = event_new(base, -1, EV_READ, event_selfarg_cb, |
| event_self_cbarg()); |
| |
| event_active(ev, EV_READ, 1); |
| event_base_dispatch(base); |
| |
| event_free(ev); |
| } |
| |
| static void |
| test_event_assign_selfarg(void *ptr) |
| { |
| struct basic_test_data *data = ptr; |
| struct event_base *base = data->base; |
| struct event ev; |
| |
| event_assign(&ev, base, -1, EV_READ, event_selfarg_cb, |
| event_self_cbarg()); |
| event_active(&ev, EV_READ, 1); |
| event_base_dispatch(base); |
| } |
| |
| static void |
| test_event_base_get_num_events(void *ptr) |
| { |
| struct basic_test_data *data = ptr; |
| struct event_base *base = data->base; |
| struct event ev; |
| int event_count_active; |
| int event_count_virtual; |
| int event_count_added; |
| int event_count_active_virtual; |
| int event_count_active_added; |
| int event_count_virtual_added; |
| int event_count_active_added_virtual; |
| |
| struct timeval qsec = {0, 100000}; |
| |
| event_assign(&ev, base, -1, EV_READ, event_selfarg_cb, |
| event_self_cbarg()); |
| |
| event_add(&ev, &qsec); |
| event_count_active = event_base_get_num_events(base, |
| EVENT_BASE_COUNT_ACTIVE); |
| event_count_virtual = event_base_get_num_events(base, |
| EVENT_BASE_COUNT_VIRTUAL); |
| event_count_added = event_base_get_num_events(base, |
| EVENT_BASE_COUNT_ADDED); |
| event_count_active_virtual = event_base_get_num_events(base, |
| EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_VIRTUAL); |
| event_count_active_added = event_base_get_num_events(base, |
| EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_ADDED); |
| event_count_virtual_added = event_base_get_num_events(base, |
| EVENT_BASE_COUNT_VIRTUAL|EVENT_BASE_COUNT_ADDED); |
| event_count_active_added_virtual = event_base_get_num_events(base, |
| EVENT_BASE_COUNT_ACTIVE| |
| EVENT_BASE_COUNT_ADDED| |
| EVENT_BASE_COUNT_VIRTUAL); |
| tt_int_op(event_count_active, ==, 0); |
| tt_int_op(event_count_virtual, ==, 0); |
| /* libevent itself adds a timeout event, so the event_count is 2 here */ |
| tt_int_op(event_count_added, ==, 2); |
| tt_int_op(event_count_active_virtual, ==, 0); |
| tt_int_op(event_count_active_added, ==, 2); |
| tt_int_op(event_count_virtual_added, ==, 2); |
| tt_int_op(event_count_active_added_virtual, ==, 2); |
| |
| event_active(&ev, EV_READ, 1); |
| event_count_active = event_base_get_num_events(base, |
| EVENT_BASE_COUNT_ACTIVE); |
| event_count_virtual = event_base_get_num_events(base, |
| EVENT_BASE_COUNT_VIRTUAL); |
| event_count_added = event_base_get_num_events(base, |
| EVENT_BASE_COUNT_ADDED); |
| event_count_active_virtual = event_base_get_num_events(base, |
| EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_VIRTUAL); |
| event_count_active_added = event_base_get_num_events(base, |
| EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_ADDED); |
| event_count_virtual_added = event_base_get_num_events(base, |
| EVENT_BASE_COUNT_VIRTUAL|EVENT_BASE_COUNT_ADDED); |
| event_count_active_added_virtual = event_base_get_num_events(base, |
| EVENT_BASE_COUNT_ACTIVE| |
| EVENT_BASE_COUNT_ADDED| |
| EVENT_BASE_COUNT_VIRTUAL); |
| tt_int_op(event_count_active, ==, 1); |
| tt_int_op(event_count_virtual, ==, 0); |
| tt_int_op(event_count_added, ==, 3); |
| tt_int_op(event_count_active_virtual, ==, 1); |
| tt_int_op(event_count_active_added, ==, 4); |
| tt_int_op(event_count_virtual_added, ==, 3); |
| tt_int_op(event_count_active_added_virtual, ==, 4); |
| |
| event_base_loop(base, 0); |
| event_count_active = event_base_get_num_events(base, |
| EVENT_BASE_COUNT_ACTIVE); |
| event_count_virtual = event_base_get_num_events(base, |
| EVENT_BASE_COUNT_VIRTUAL); |
| event_count_added = event_base_get_num_events(base, |
| EVENT_BASE_COUNT_ADDED); |
| event_count_active_virtual = event_base_get_num_events(base, |
| EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_VIRTUAL); |
| event_count_active_added = event_base_get_num_events(base, |
| EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_ADDED); |
| event_count_virtual_added = event_base_get_num_events(base, |
| EVENT_BASE_COUNT_VIRTUAL|EVENT_BASE_COUNT_ADDED); |
| event_count_active_added_virtual = event_base_get_num_events(base, |
| EVENT_BASE_COUNT_ACTIVE| |
| EVENT_BASE_COUNT_ADDED| |
| EVENT_BASE_COUNT_VIRTUAL); |
| tt_int_op(event_count_active, ==, 0); |
| tt_int_op(event_count_virtual, ==, 0); |
| tt_int_op(event_count_added, ==, 0); |
| tt_int_op(event_count_active_virtual, ==, 0); |
| tt_int_op(event_count_active_added, ==, 0); |
| tt_int_op(event_count_virtual_added, ==, 0); |
| tt_int_op(event_count_active_added_virtual, ==, 0); |
| |
| event_base_add_virtual_(base); |
| event_count_active = event_base_get_num_events(base, |
| EVENT_BASE_COUNT_ACTIVE); |
| event_count_virtual = event_base_get_num_events(base, |
| EVENT_BASE_COUNT_VIRTUAL); |
| event_count_added = event_base_get_num_events(base, |
| EVENT_BASE_COUNT_ADDED); |
| event_count_active_virtual = event_base_get_num_events(base, |
| EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_VIRTUAL); |
| event_count_active_added = event_base_get_num_events(base, |
| EVENT_BASE_COUNT_ACTIVE|EVENT_BASE_COUNT_ADDED); |
| event_count_virtual_added = event_base_get_num_events(base, |
| EVENT_BASE_COUNT_VIRTUAL|EVENT_BASE_COUNT_ADDED); |
| event_count_active_added_virtual = event_base_get_num_events(base, |
| EVENT_BASE_COUNT_ACTIVE| |
| EVENT_BASE_COUNT_ADDED| |
| EVENT_BASE_COUNT_VIRTUAL); |
| tt_int_op(event_count_active, ==, 0); |
| tt_int_op(event_count_virtual, ==, 1); |
| tt_int_op(event_count_added, ==, 0); |
| tt_int_op(event_count_active_virtual, ==, 1); |
| tt_int_op(event_count_active_added, ==, 0); |
| tt_int_op(event_count_virtual_added, ==, 1); |
| tt_int_op(event_count_active_added_virtual, ==, 1); |
| |
| end: |
| ; |
| } |
| |
| static void |
| test_event_base_get_max_events(void *ptr) |
| { |
| struct basic_test_data *data = ptr; |
| struct event_base *base = data->base; |
| struct event ev; |
| struct event ev2; |
| int event_count_active; |
| int event_count_virtual; |
| int event_count_added; |
| int event_count_active_virtual; |
| int event_count_active_added; |
| int event_count_virtual_added; |
| int event_count_active_added_virtual; |
| |
| struct timeval qsec = {0, 100000}; |
| |
| event_assign(&ev, base, -1, EV_READ, event_selfarg_cb, |
| event_self_cbarg()); |
| event_assign(&ev2, base, -1, EV_READ, event_selfarg_cb, |
| event_self_cbarg()); |
| |
| event_add(&ev, &qsec); |
| event_add(&ev2, &qsec); |
| event_del(&ev2); |
| |
| event_count_active = event_base_get_max_events(base, |
| EVENT_BASE_COUNT_ACTIVE, 0); |
| event_count_virtual = event_base_get_max_events(base, |
| EVENT_BASE_COUNT_VIRTUAL, 0); |
| event_count_added = event_base_get_max_events(base, |
| EVENT_BASE_COUNT_ADDED, 0); |
| event_count_active_virtual = event_base_get_max_events(base, |
| EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_VIRTUAL, 0); |
| event_count_active_added = event_base_get_max_events(base, |
| EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_ADDED, 0); |
| event_count_virtual_added = event_base_get_max_events(base, |
| EVENT_BASE_COUNT_VIRTUAL | EVENT_BASE_COUNT_ADDED, 0); |
| event_count_active_added_virtual = event_base_get_max_events(base, |
| EVENT_BASE_COUNT_ACTIVE | |
| EVENT_BASE_COUNT_ADDED | |
| EVENT_BASE_COUNT_VIRTUAL, 0); |
| |
| tt_int_op(event_count_active, ==, 0); |
| tt_int_op(event_count_virtual, ==, 0); |
| /* libevent itself adds a timeout event, so the event_count is 4 here */ |
| tt_int_op(event_count_added, ==, 4); |
| tt_int_op(event_count_active_virtual, ==, 0); |
| tt_int_op(event_count_active_added, ==, 4); |
| tt_int_op(event_count_virtual_added, ==, 4); |
| tt_int_op(event_count_active_added_virtual, ==, 4); |
| |
| event_active(&ev, EV_READ, 1); |
| event_count_active = event_base_get_max_events(base, |
| EVENT_BASE_COUNT_ACTIVE, 0); |
| event_count_virtual = event_base_get_max_events(base, |
| EVENT_BASE_COUNT_VIRTUAL, 0); |
| event_count_added = event_base_get_max_events(base, |
| EVENT_BASE_COUNT_ADDED, 0); |
| event_count_active_virtual = event_base_get_max_events(base, |
| EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_VIRTUAL, 0); |
| event_count_active_added = event_base_get_max_events(base, |
| EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_ADDED, 0); |
| event_count_virtual_added = event_base_get_max_events(base, |
| EVENT_BASE_COUNT_VIRTUAL | EVENT_BASE_COUNT_ADDED, 0); |
| event_count_active_added_virtual = event_base_get_max_events(base, |
| EVENT_BASE_COUNT_ACTIVE | |
| EVENT_BASE_COUNT_ADDED | |
| EVENT_BASE_COUNT_VIRTUAL, 0); |
| |
| tt_int_op(event_count_active, ==, 1); |
| tt_int_op(event_count_virtual, ==, 0); |
| tt_int_op(event_count_added, ==, 4); |
| tt_int_op(event_count_active_virtual, ==, 1); |
| tt_int_op(event_count_active_added, ==, 5); |
| tt_int_op(event_count_virtual_added, ==, 4); |
| tt_int_op(event_count_active_added_virtual, ==, 5); |
| |
| event_base_loop(base, 0); |
| event_count_active = event_base_get_max_events(base, |
| EVENT_BASE_COUNT_ACTIVE, 1); |
| event_count_virtual = event_base_get_max_events(base, |
| EVENT_BASE_COUNT_VIRTUAL, 1); |
| event_count_added = event_base_get_max_events(base, |
| EVENT_BASE_COUNT_ADDED, 1); |
| event_count_active_virtual = event_base_get_max_events(base, |
| EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_VIRTUAL, 0); |
| event_count_active_added = event_base_get_max_events(base, |
| EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_ADDED, 0); |
| event_count_virtual_added = event_base_get_max_events(base, |
| EVENT_BASE_COUNT_VIRTUAL | EVENT_BASE_COUNT_ADDED, 0); |
| event_count_active_added_virtual = event_base_get_max_events(base, |
| EVENT_BASE_COUNT_ACTIVE | |
| EVENT_BASE_COUNT_ADDED | |
| EVENT_BASE_COUNT_VIRTUAL, 1); |
| |
| tt_int_op(event_count_active, ==, 1); |
| tt_int_op(event_count_virtual, ==, 0); |
| tt_int_op(event_count_added, ==, 4); |
| tt_int_op(event_count_active_virtual, ==, 0); |
| tt_int_op(event_count_active_added, ==, 0); |
| tt_int_op(event_count_virtual_added, ==, 0); |
| tt_int_op(event_count_active_added_virtual, ==, 0); |
| |
| event_count_active = event_base_get_max_events(base, |
| EVENT_BASE_COUNT_ACTIVE, 0); |
| event_count_virtual = event_base_get_max_events(base, |
| EVENT_BASE_COUNT_VIRTUAL, 0); |
| event_count_added = event_base_get_max_events(base, |
| EVENT_BASE_COUNT_ADDED, 0); |
| tt_int_op(event_count_active, ==, 0); |
| tt_int_op(event_count_virtual, ==, 0); |
| tt_int_op(event_count_added, ==, 0); |
| |
| event_base_add_virtual_(base); |
| event_count_active = event_base_get_max_events(base, |
| EVENT_BASE_COUNT_ACTIVE, 0); |
| event_count_virtual = event_base_get_max_events(base, |
| EVENT_BASE_COUNT_VIRTUAL, 0); |
| event_count_added = event_base_get_max_events(base, |
| EVENT_BASE_COUNT_ADDED, 0); |
| event_count_active_virtual = event_base_get_max_events(base, |
| EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_VIRTUAL, 0); |
| event_count_active_added = event_base_get_max_events(base, |
| EVENT_BASE_COUNT_ACTIVE | EVENT_BASE_COUNT_ADDED, 0); |
| event_count_virtual_added = event_base_get_max_events(base, |
| EVENT_BASE_COUNT_VIRTUAL | EVENT_BASE_COUNT_ADDED, 0); |
| event_count_active_added_virtual = event_base_get_max_events(base, |
| EVENT_BASE_COUNT_ACTIVE | |
| EVENT_BASE_COUNT_ADDED | |
| EVENT_BASE_COUNT_VIRTUAL, 0); |
| |
| tt_int_op(event_count_active, ==, 0); |
| tt_int_op(event_count_virtual, ==, 1); |
| tt_int_op(event_count_added, ==, 0); |
| tt_int_op(event_count_active_virtual, ==, 1); |
| tt_int_op(event_count_active_added, ==, 0); |
| tt_int_op(event_count_virtual_added, ==, 1); |
| tt_int_op(event_count_active_added_virtual, ==, 1); |
| |
| end: |
| ; |
| } |
| |
| static void |
| test_bad_assign(void *ptr) |
| { |
| struct event ev; |
| int r; |
| /* READ|SIGNAL is not allowed */ |
| r = event_assign(&ev, NULL, -1, EV_SIGNAL|EV_READ, dummy_read_cb, NULL); |
| tt_int_op(r,==,-1); |
| |
| end: |
| ; |
| } |
| |
| static int reentrant_cb_run = 0; |
| |
| static void |
| bad_reentrant_run_loop_cb(evutil_socket_t fd, short what, void *ptr) |
| { |
| struct event_base *base = ptr; |
| int r; |
| reentrant_cb_run = 1; |
| /* This reentrant call to event_base_loop should be detected and |
| * should fail */ |
| r = event_base_loop(base, 0); |
| tt_int_op(r, ==, -1); |
| end: |
| ; |
| } |
| |
| static void |
| test_bad_reentrant(void *ptr) |
| { |
| struct basic_test_data *data = ptr; |
| struct event_base *base = data->base; |
| struct event ev; |
| int r; |
| event_assign(&ev, base, -1, |
| 0, bad_reentrant_run_loop_cb, base); |
| |
| event_active(&ev, EV_WRITE, 1); |
| r = event_base_loop(base, 0); |
| tt_int_op(r, ==, 1); |
| tt_int_op(reentrant_cb_run, ==, 1); |
| end: |
| ; |
| } |
| |
| static int n_write_a_byte_cb=0; |
| static int n_read_and_drain_cb=0; |
| static int n_activate_other_event_cb=0; |
| static void |
| write_a_byte_cb(evutil_socket_t fd, short what, void *arg) |
| { |
| char buf[] = "x"; |
| if (write(fd, buf, 1) == 1) |
| ++n_write_a_byte_cb; |
| } |
| static void |
| read_and_drain_cb(evutil_socket_t fd, short what, void *arg) |
| { |
| char buf[128]; |
| int n; |
| ++n_read_and_drain_cb; |
| while ((n = read(fd, buf, sizeof(buf))) > 0) |
| ; |
| } |
| |
| static void |
| activate_other_event_cb(evutil_socket_t fd, short what, void *other_) |
| { |
| struct event *ev_activate = other_; |
| ++n_activate_other_event_cb; |
| event_active_later_(ev_activate, EV_READ); |
| } |
| |
| static void |
| test_active_later(void *ptr) |
| { |
| struct basic_test_data *data = ptr; |
| struct event *ev1 = NULL, *ev2 = NULL; |
| struct event ev3, ev4; |
| struct timeval qsec = {0, 100000}; |
| ev1 = event_new(data->base, data->pair[0], EV_READ|EV_PERSIST, read_and_drain_cb, NULL); |
| ev2 = event_new(data->base, data->pair[1], EV_WRITE|EV_PERSIST, write_a_byte_cb, NULL); |
| event_assign(&ev3, data->base, -1, 0, activate_other_event_cb, &ev4); |
| event_assign(&ev4, data->base, -1, 0, activate_other_event_cb, &ev3); |
| event_add(ev1, NULL); |
| event_add(ev2, NULL); |
| event_active_later_(&ev3, EV_READ); |
| |
| event_base_loopexit(data->base, &qsec); |
| |
| event_base_loop(data->base, 0); |
| |
| TT_BLATHER(("%d write calls, %d read calls, %d activate-other calls.", |
| n_write_a_byte_cb, n_read_and_drain_cb, n_activate_other_event_cb)); |
| event_del(&ev3); |
| event_del(&ev4); |
| |
| tt_int_op(n_write_a_byte_cb, ==, n_activate_other_event_cb); |
| tt_int_op(n_write_a_byte_cb, >, 100); |
| tt_int_op(n_read_and_drain_cb, >, 100); |
| tt_int_op(n_activate_other_event_cb, >, 100); |
| |
| event_active_later_(&ev4, EV_READ); |
| event_active(&ev4, EV_READ, 1); /* This should make the event |
| active immediately. */ |
| tt_assert((ev4.ev_flags & EVLIST_ACTIVE) != 0); |
| tt_assert((ev4.ev_flags & EVLIST_ACTIVE_LATER) == 0); |
| |
| /* Now leave this one around, so that event_free sees it and removes |
| * it. */ |
| event_active_later_(&ev3, EV_READ); |
| event_base_assert_ok_(data->base); |
| |
| end: |
| if (ev1) |
| event_free(ev1); |
| if (ev2) |
| event_free(ev2); |
| |
| event_base_free(data->base); |
| data->base = NULL; |
| } |
| |
| |
| static void incr_arg_cb(evutil_socket_t fd, short what, void *arg) |
| { |
| int *intptr = arg; |
| (void) fd; (void) what; |
| ++*intptr; |
| } |
| static void remove_timers_cb(evutil_socket_t fd, short what, void *arg) |
| { |
| struct event **ep = arg; |
| (void) fd; (void) what; |
| event_remove_timer(ep[0]); |
| event_remove_timer(ep[1]); |
| } |
| static void send_a_byte_cb(evutil_socket_t fd, short what, void *arg) |
| { |
| evutil_socket_t *sockp = arg; |
| (void) fd; (void) what; |
| if (write(*sockp, "A", 1) < 0) |
| tt_fail_perror("write"); |
| } |
| struct read_not_timeout_param |
| { |
| struct event **ev; |
| int events; |
| int count; |
| }; |
| static void read_not_timeout_cb(evutil_socket_t fd, short what, void *arg) |
| { |
| struct read_not_timeout_param *rntp = arg; |
| char c; |
| ev_ssize_t n; |
| (void) fd; (void) what; |
| n = read(fd, &c, 1); |
| tt_int_op(n, ==, 1); |
| rntp->events |= what; |
| ++rntp->count; |
| if(2 == rntp->count) event_del(rntp->ev[0]); |
| end: |
| ; |
| } |
| |
| static void |
| test_event_remove_timeout(void *ptr) |
| { |
| struct basic_test_data *data = ptr; |
| struct event_base *base = data->base; |
| struct event *ev[5]; |
| int ev1_fired=0; |
| struct timeval ms25 = { 0, 25*1000 }, |
| ms40 = { 0, 40*1000 }, |
| ms75 = { 0, 75*1000 }, |
| ms125 = { 0, 125*1000 }; |
| struct read_not_timeout_param rntp = { ev, 0, 0 }; |
| |
| event_base_assert_ok_(base); |
| |
| ev[0] = event_new(base, data->pair[0], EV_READ|EV_PERSIST, |
| read_not_timeout_cb, &rntp); |
| ev[1] = evtimer_new(base, incr_arg_cb, &ev1_fired); |
| ev[2] = evtimer_new(base, remove_timers_cb, ev); |
| ev[3] = evtimer_new(base, send_a_byte_cb, &data->pair[1]); |
| ev[4] = evtimer_new(base, send_a_byte_cb, &data->pair[1]); |
| tt_assert(base); |
| event_add(ev[2], &ms25); /* remove timers */ |
| event_add(ev[4], &ms40); /* write to test if timer re-activates */ |
| event_add(ev[0], &ms75); /* read */ |
| event_add(ev[1], &ms75); /* timer */ |
| event_add(ev[3], &ms125); /* timeout. */ |
| event_base_assert_ok_(base); |
| |
| event_base_dispatch(base); |
| |
| tt_int_op(ev1_fired, ==, 0); |
| tt_int_op(rntp.events, ==, EV_READ); |
| |
| event_base_assert_ok_(base); |
| end: |
| event_free(ev[0]); |
| event_free(ev[1]); |
| event_free(ev[2]); |
| event_free(ev[3]); |
| event_free(ev[4]); |
| } |
| |
| static void |
| test_event_base_new(void *ptr) |
| { |
| struct basic_test_data *data = ptr; |
| struct event_base *base = 0; |
| struct event ev1; |
| struct basic_cb_args args; |
| |
| int towrite = (int)strlen(TEST1)+1; |
| int len = write(data->pair[0], TEST1, towrite); |
| |
| if (len < 0) |
| tt_abort_perror("initial write"); |
| else if (len != towrite) |
| tt_abort_printf(("initial write fell short (%d of %d bytes)", |
| len, towrite)); |
| |
| if (shutdown(data->pair[0], EVUTIL_SHUT_WR)) |
| tt_abort_perror("initial write shutdown"); |
| |
| base = event_base_new(); |
| if (!base) |
| tt_abort_msg("failed to create event base"); |
| |
| args.eb = base; |
| args.ev = &ev1; |
| args.callcount = 0; |
| event_assign(&ev1, base, data->pair[1], |
| EV_READ|EV_PERSIST, basic_read_cb, &args); |
| |
| if (event_add(&ev1, NULL)) |
| tt_abort_perror("initial event_add"); |
| |
| if (event_base_loop(base, 0)) |
| tt_abort_msg("unsuccessful exit from event loop"); |
| |
| end: |
| if (base) |
| event_base_free(base); |
| } |
| |
| static void |
| test_loopexit(void) |
| { |
| struct timeval tv, tv_start, tv_end; |
| struct event ev; |
| |
| setup_test("Loop exit: "); |
| |
| tv.tv_usec = 0; |
| tv.tv_sec = 60*60*24; |
| evtimer_set(&ev, timeout_cb, NULL); |
| evtimer_add(&ev, &tv); |
| |
| tv.tv_usec = 300*1000; |
| tv.tv_sec = 0; |
| event_loopexit(&tv); |
| |
| evutil_gettimeofday(&tv_start, NULL); |
| event_dispatch(); |
| evutil_gettimeofday(&tv_end, NULL); |
| |
| evtimer_del(&ev); |
| |
| tt_assert(event_base_got_exit(global_base)); |
| tt_assert(!event_base_got_break(global_base)); |
| |
| test_timeval_diff_eq(&tv_start, &tv_end, 300); |
| |
| test_ok = 1; |
| end: |
| cleanup_test(); |
| } |
| |
| static void |
| test_loopexit_multiple(void) |
| { |
| struct timeval tv, tv_start, tv_end; |
| struct event_base *base; |
| |
| setup_test("Loop Multiple exit: "); |
| |
| base = event_base_new(); |
| |
| tv.tv_usec = 200*1000; |
| tv.tv_sec = 0; |
| event_base_loopexit(base, &tv); |
| |
| tv.tv_usec = 0; |
| tv.tv_sec = 3; |
| event_base_loopexit(base, &tv); |
| |
| evutil_gettimeofday(&tv_start, NULL); |
| event_base_dispatch(base); |
| evutil_gettimeofday(&tv_end, NULL); |
| |
| tt_assert(event_base_got_exit(base)); |
| tt_assert(!event_base_got_break(base)); |
| |
| event_base_free(base); |
| |
| test_timeval_diff_eq(&tv_start, &tv_end, 200); |
| |
| test_ok = 1; |
| |
| end: |
| cleanup_test(); |
| } |
| |
| static void |
| break_cb(evutil_socket_t fd, short events, void *arg) |
| { |
| test_ok = 1; |
| event_loopbreak(); |
| } |
| |
| static void |
| fail_cb(evutil_socket_t fd, short events, void *arg) |
| { |
| test_ok = 0; |
| } |
| |
| static void |
| test_loopbreak(void) |
| { |
| struct event ev1, ev2; |
| struct timeval tv; |
| |
| setup_test("Loop break: "); |
| |
| tv.tv_sec = 0; |
| tv.tv_usec = 0; |
| evtimer_set(&ev1, break_cb, NULL); |
| evtimer_add(&ev1, &tv); |
| evtimer_set(&ev2, fail_cb, NULL); |
| evtimer_add(&ev2, &tv); |
| |
| event_dispatch(); |
| |
| tt_assert(!event_base_got_exit(global_base)); |
| tt_assert(event_base_got_break(global_base)); |
| |
| evtimer_del(&ev1); |
| evtimer_del(&ev2); |
| |
| end: |
| cleanup_test(); |
| } |
| |
| static struct event *readd_test_event_last_added = NULL; |
| static void |
| re_add_read_cb(evutil_socket_t fd, short event, void *arg) |
| { |
| char buf[256]; |
| struct event *ev_other = arg; |
| ev_ssize_t n_read; |
| |
| readd_test_event_last_added = ev_other; |
| |
| n_read = read(fd, buf, sizeof(buf)); |
| |
| if (n_read < 0) { |
| tt_fail_perror("read"); |
| event_base_loopbreak(event_get_base(ev_other)); |
| } else { |
| event_add(ev_other, NULL); |
| ++test_ok; |
| } |
| } |
| static void |
| test_nonpersist_readd(void *_data) |
| { |
| struct event ev1, ev2; |
| struct basic_test_data *data = _data; |
| |
| memset(&ev1, 0, sizeof(ev1)); |
| memset(&ev2, 0, sizeof(ev2)); |
| |
| tt_assert(!event_assign(&ev1, data->base, data->pair[0], EV_READ, re_add_read_cb, &ev2)); |
| tt_assert(!event_assign(&ev2, data->base, data->pair[1], EV_READ, re_add_read_cb, &ev1)); |
| |
| tt_int_op(write(data->pair[0], "Hello", 5), ==, 5); |
| tt_int_op(write(data->pair[1], "Hello", 5), ==, 5); |
| |
| tt_int_op(event_add(&ev1, NULL), ==, 0); |
| tt_int_op(event_add(&ev2, NULL), ==, 0); |
| tt_int_op(event_base_loop(data->base, EVLOOP_ONCE), ==, 0); |
| tt_int_op(test_ok, ==, 2); |
| |
| /* At this point, we executed both callbacks. Whichever one got |
| * called first added the second, but the second then immediately got |
| * deleted before its callback was called. At this point, though, it |
| * re-added the first. |
| */ |
| tt_assert(readd_test_event_last_added); |
| if (readd_test_event_last_added == &ev1) { |
| tt_assert(event_pending(&ev1, EV_READ, NULL) && !event_pending(&ev2, EV_READ, NULL)); |
| } else { |
| tt_assert(event_pending(&ev2, EV_READ, NULL) && !event_pending(&ev1, EV_READ, NULL)); |
| } |
| |
| end: |
| if (event_initialized(&ev1)) |
| event_del(&ev1); |
| if (event_initialized(&ev2)) |
| event_del(&ev2); |
| } |
| |
| struct test_pri_event { |
| struct event ev; |
| int count; |
| }; |
| |
| static void |
| test_priorities_cb(evutil_socket_t fd, short what, void *arg) |
| { |
| struct test_pri_event *pri = arg; |
| struct timeval tv; |
| |
| if (pri->count == 3) { |
| event_loopexit(NULL); |
| return; |
| } |
| |
| pri->count++; |
| |
| evutil_timerclear(&tv); |
| event_add(&pri->ev, &tv); |
| } |
| |
| static void |
| test_priorities_impl(int npriorities) |
| { |
| struct test_pri_event one, two; |
| struct timeval tv; |
| |
| TT_BLATHER(("Testing Priorities %d: ", npriorities)); |
| |
| event_base_priority_init(global_base, npriorities); |
| |
| memset(&one, 0, sizeof(one)); |
| memset(&two, 0, sizeof(two)); |
| |
| timeout_set(&one.ev, test_priorities_cb, &one); |
| if (event_priority_set(&one.ev, 0) == -1) { |
| fprintf(stderr, "%s: failed to set priority", __func__); |
| exit(1); |
| } |
| |
| timeout_set(&two.ev, test_priorities_cb, &two); |
| if (event_priority_set(&two.ev, npriorities - 1) == -1) { |
| fprintf(stderr, "%s: failed to set priority", __func__); |
| exit(1); |
| } |
| |
| evutil_timerclear(&tv); |
| |
| if (event_add(&one.ev, &tv) == -1) |
| exit(1); |
| if (event_add(&two.ev, &tv) == -1) |
| exit(1); |
| |
| event_dispatch(); |
| |
| event_del(&one.ev); |
| event_del(&two.ev); |
| |
| if (npriorities == 1) { |
| if (one.count == 3 && two.count == 3) |
| test_ok = 1; |
| } else if (npriorities == 2) { |
| /* Two is called once because event_loopexit is priority 1 */ |
| if (one.count == 3 && two.count == 1) |
| test_ok = 1; |
| } else { |
| if (one.count == 3 && two.count == 0) |
| test_ok = 1; |
| } |
| } |
| |
| static void |
| test_priorities(void) |
| { |
| test_priorities_impl(1); |
| if (test_ok) |
| test_priorities_impl(2); |
| if (test_ok) |
| test_priorities_impl(3); |
| } |
| |
| /* priority-active-inversion: activate a higher-priority event, and make sure |
| * it keeps us from running a lower-priority event first. */ |
| static int n_pai_calls = 0; |
| static struct event pai_events[3]; |
| |
| static void |
| prio_active_inversion_cb(evutil_socket_t fd, short what, void *arg) |
| { |
| int *call_order = arg; |
| *call_order = n_pai_calls++; |
| if (n_pai_calls == 1) { |
| /* This should activate later, even though it shares a |
| priority with us. */ |
| event_active(&pai_events[1], EV_READ, 1); |
| /* This should activate next, since its priority is higher, |
| even though we activated it second. */ |
| event_active(&pai_events[2], EV_TIMEOUT, 1); |
| } |
| } |
| |
| static void |
| test_priority_active_inversion(void *data_) |
| { |
| struct basic_test_data *data = data_; |
| struct event_base *base = data->base; |
| int call_order[3]; |
| int i; |
| tt_int_op(event_base_priority_init(base, 8), ==, 0); |
| |
| n_pai_calls = 0; |
| memset(call_order, 0, sizeof(call_order)); |
| |
| for (i=0;i<3;++i) { |
| event_assign(&pai_events[i], data->base, -1, 0, |
| prio_active_inversion_cb, &call_order[i]); |
| } |
| |
| event_priority_set(&pai_events[0], 4); |
| event_priority_set(&pai_events[1], 4); |
| event_priority_set(&pai_events[2], 0); |
| |
| event_active(&pai_events[0], EV_WRITE, 1); |
| |
| event_base_dispatch(base); |
| tt_int_op(n_pai_calls, ==, 3); |
| tt_int_op(call_order[0], ==, 0); |
| tt_int_op(call_order[1], ==, 2); |
| tt_int_op(call_order[2], ==, 1); |
| end: |
| ; |
| } |
| |
| |
| static void |
| test_multiple_cb(evutil_socket_t fd, short event, void *arg) |
| { |
| if (event & EV_READ) |
| test_ok |= 1; |
| else if (event & EV_WRITE) |
| test_ok |= 2; |
| } |
| |
| static void |
| test_multiple_events_for_same_fd(void) |
| { |
| struct event e1, e2; |
| |
| setup_test("Multiple events for same fd: "); |
| |
| event_set(&e1, pair[0], EV_READ, test_multiple_cb, NULL); |
| event_add(&e1, NULL); |
| event_set(&e2, pair[0], EV_WRITE, test_multiple_cb, NULL); |
| event_add(&e2, NULL); |
| event_loop(EVLOOP_ONCE); |
| event_del(&e2); |
| |
| if (write(pair[1], TEST1, strlen(TEST1)+1) < 0) { |
| tt_fail_perror("write"); |
| } |
| |
| event_loop(EVLOOP_ONCE); |
| event_del(&e1); |
| |
| if (test_ok != 3) |
| test_ok = 0; |
| |
| cleanup_test(); |
| } |
| |
| int evtag_decode_int(ev_uint32_t *pnumber, struct evbuffer *evbuf); |
| int evtag_decode_int64(ev_uint64_t *pnumber, struct evbuffer *evbuf); |
| int evtag_encode_tag(struct evbuffer *evbuf, ev_uint32_t number); |
| int evtag_decode_tag(ev_uint32_t *pnumber, struct evbuffer *evbuf); |
| |
| static void |
| read_once_cb(evutil_socket_t fd, short event, void *arg) |
| { |
| char buf[256]; |
| int len; |
| |
| len = read(fd, buf, sizeof(buf)); |
| |
| if (called) { |
| test_ok = 0; |
| } else if (len) { |
| /* Assumes global pair[0] can be used for writing */ |
| if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) { |
| tt_fail_perror("write"); |
| test_ok = 0; |
| } else { |
| test_ok = 1; |
| } |
| } |
| |
| called++; |
| } |
| |
| static void |
| test_want_only_once(void) |
| { |
| struct event ev; |
| struct timeval tv; |
| |
| /* Very simple read test */ |
| setup_test("Want read only once: "); |
| |
| if (write(pair[0], TEST1, strlen(TEST1)+1) < 0) { |
| tt_fail_perror("write"); |
| } |
| |
| /* Setup the loop termination */ |
| evutil_timerclear(&tv); |
| tv.tv_usec = 300*1000; |
| event_loopexit(&tv); |
| |
| event_set(&ev, pair[1], EV_READ, read_once_cb, &ev); |
| if (event_add(&ev, NULL) == -1) |
| exit(1); |
| event_dispatch(); |
| |
| cleanup_test(); |
| } |
| |
| #define TEST_MAX_INT 6 |
| |
| static void |
| evtag_int_test(void *ptr) |
| { |
| struct evbuffer *tmp = evbuffer_new(); |
| ev_uint32_t integers[TEST_MAX_INT] = { |
| 0xaf0, 0x1000, 0x1, 0xdeadbeef, 0x00, 0xbef000 |
| }; |
| ev_uint32_t integer; |
| ev_uint64_t big_int; |
| int i; |
| |
| evtag_init(); |
| |
| for (i = 0; i < TEST_MAX_INT; i++) { |
| int oldlen, newlen; |
| oldlen = (int)EVBUFFER_LENGTH(tmp); |
| evtag_encode_int(tmp, integers[i]); |
| newlen = (int)EVBUFFER_LENGTH(tmp); |
| TT_BLATHER(("encoded 0x%08x with %d bytes", |
| (unsigned)integers[i], newlen - oldlen)); |
| big_int = integers[i]; |
| big_int *= 1000000000; /* 1 billion */ |
| evtag_encode_int64(tmp, big_int); |
| } |
| |
| for (i = 0; i < TEST_MAX_INT; i++) { |
| tt_int_op(evtag_decode_int(&integer, tmp), !=, -1); |
| tt_uint_op(integer, ==, integers[i]); |
| tt_int_op(evtag_decode_int64(&big_int, tmp), !=, -1); |
| tt_assert((big_int / 1000000000) == integers[i]); |
| } |
| |
| tt_uint_op(EVBUFFER_LENGTH(tmp), ==, 0); |
| end: |
| evbuffer_free(tmp); |
| } |
| |
| static void |
| evtag_fuzz(void *ptr) |
| { |
| unsigned char buffer[4096]; |
| struct evbuffer *tmp = evbuffer_new(); |
| struct timeval tv; |
| int i, j; |
| |
| int not_failed = 0; |
| |
| evtag_init(); |
| |
| for (j = 0; j < 100; j++) { |
| for (i = 0; i < (int)sizeof(buffer); i++) |
| buffer[i] = test_weakrand(); |
| evbuffer_drain(tmp, -1); |
| evbuffer_add(tmp, buffer, sizeof(buffer)); |
| |
| if (evtag_unmarshal_timeval(tmp, 0, &tv) != -1) |
| not_failed++; |
| } |
| |
| /* The majority of decodes should fail */ |
| tt_int_op(not_failed, <, 10); |
| |
| /* Now insert some corruption into the tag length field */ |
| evbuffer_drain(tmp, -1); |
| evutil_timerclear(&tv); |
| tv.tv_sec = 1; |
| evtag_marshal_timeval(tmp, 0, &tv); |
| evbuffer_add(tmp, buffer, sizeof(buffer)); |
| |
| ((char *)EVBUFFER_DATA(tmp))[1] = '\xff'; |
| if (evtag_unmarshal_timeval(tmp, 0, &tv) != -1) { |
| tt_abort_msg("evtag_unmarshal_timeval should have failed"); |
| } |
| |
| end: |
| evbuffer_free(tmp); |
| } |
| |
| static void |
| evtag_tag_encoding(void *ptr) |
| { |
| struct evbuffer *tmp = evbuffer_new(); |
| ev_uint32_t integers[TEST_MAX_INT] = { |
| 0xaf0, 0x1000, 0x1, 0xdeadbeef, 0x00, 0xbef000 |
| }; |
| ev_uint32_t integer; |
| int i; |
| |
| evtag_init(); |
| |
| for (i = 0; i < TEST_MAX_INT; i++) { |
| int oldlen, newlen; |
| oldlen = (int)EVBUFFER_LENGTH(tmp); |
| evtag_encode_tag(tmp, integers[i]); |
| newlen = (int)EVBUFFER_LENGTH(tmp); |
| TT_BLATHER(("encoded 0x%08x with %d bytes", |
| (unsigned)integers[i], newlen - oldlen)); |
| } |
| |
| for (i = 0; i < TEST_MAX_INT; i++) { |
| tt_int_op(evtag_decode_tag(&integer, tmp), !=, -1); |
| tt_uint_op(integer, ==, integers[i]); |
| } |
| |
| tt_uint_op(EVBUFFER_LENGTH(tmp), ==, 0); |
| |
| end: |
| evbuffer_free(tmp); |
| } |
| |
| static void |
| evtag_test_peek(void *ptr) |
| { |
| struct evbuffer *tmp = evbuffer_new(); |
| ev_uint32_t u32; |
| |
| evtag_marshal_int(tmp, 30, 0); |
| evtag_marshal_string(tmp, 40, "Hello world"); |
| |
| tt_int_op(evtag_peek(tmp, &u32), ==, 1); |
| tt_int_op(u32, ==, 30); |
| tt_int_op(evtag_peek_length(tmp, &u32), ==, 0); |
| tt_int_op(u32, ==, 1+1+1); |
| tt_int_op(evtag_consume(tmp), ==, 0); |
| |
| tt_int_op(evtag_peek(tmp, &u32), ==, 1); |
| tt_int_op(u32, ==, 40); |
| tt_int_op(evtag_peek_length(tmp, &u32), ==, 0); |
| tt_int_op(u32, ==, 1+1+11); |
| tt_int_op(evtag_payload_length(tmp, &u32), ==, 0); |
| tt_int_op(u32, ==, 11); |
| |
| end: |
| evbuffer_free(tmp); |
| } |
| |
| |
| static void |
| test_methods(void *ptr) |
| { |
| const char **methods = event_get_supported_methods(); |
| struct event_config *cfg = NULL; |
| struct event_base *base = NULL; |
| const char *backend; |
| int n_methods = 0; |
| |
| tt_assert(methods); |
| |
| backend = methods[0]; |
| while (*methods != NULL) { |
| TT_BLATHER(("Support method: %s", *methods)); |
| ++methods; |
| ++n_methods; |
| } |
| |
| cfg = event_config_new(); |
| assert(cfg != NULL); |
| |
| tt_int_op(event_config_avoid_method(cfg, backend), ==, 0); |
| event_config_set_flag(cfg, EVENT_BASE_FLAG_IGNORE_ENV); |
| |
| base = event_base_new_with_config(cfg); |
| if (n_methods > 1) { |
| tt_assert(base); |
| tt_str_op(backend, !=, event_base_get_method(base)); |
| } else { |
| tt_assert(base == NULL); |
| } |
| |
| end: |
| if (base) |
| event_base_free(base); |
| if (cfg) |
| event_config_free(cfg); |
| } |
| |
| static void |
| test_version(void *arg) |
| { |
| const char *vstr; |
| ev_uint32_t vint; |
| int major, minor, patch, n; |
| |
| vstr = event_get_version(); |
| vint = event_get_version_number(); |
| |
| tt_assert(vstr); |
| tt_assert(vint); |
| |
| tt_str_op(vstr, ==, LIBEVENT_VERSION); |
| tt_int_op(vint, ==, LIBEVENT_VERSION_NUMBER); |
| |
| n = sscanf(vstr, "%d.%d.%d", &major, &minor, &patch); |
| tt_assert(3 == n); |
| tt_int_op((vint&0xffffff00), ==, ((major<<24)|(minor<<16)|(patch<<8))); |
| end: |
| ; |
| } |
| |
| static void |
| test_base_features(void *arg) |
| { |
| struct event_base *base = NULL; |
| struct event_config *cfg = NULL; |
| |
| cfg = event_config_new(); |
| |
| tt_assert(0 == event_config_require_features(cfg, EV_FEATURE_ET)); |
| |
| base = event_base_new_with_config(cfg); |
| if (base) { |
| tt_int_op(EV_FEATURE_ET, ==, |
| event_base_get_features(base) & EV_FEATURE_ET); |
| } else { |
| base = event_base_new(); |
| tt_int_op(0, ==, event_base_get_features(base) & EV_FEATURE_ET); |
| } |
| |
| end: |
| if (base) |
| event_base_free(base); |
| if (cfg) |
| event_config_free(cfg); |
| } |
| |
| #ifdef EVENT__HAVE_SETENV |
| #define SETENV_OK |
| #elif !defined(EVENT__HAVE_SETENV) && defined(EVENT__HAVE_PUTENV) |
| static void setenv(const char *k, const char *v, int o_) |
| { |
| char b[256]; |
| evutil_snprintf(b, sizeof(b), "%s=%s",k,v); |
| putenv(b); |
| } |
| #define SETENV_OK |
| #endif |
| |
| #ifdef EVENT__HAVE_UNSETENV |
| #define UNSETENV_OK |
| #elif !defined(EVENT__HAVE_UNSETENV) && defined(EVENT__HAVE_PUTENV) |
| static void unsetenv(const char *k) |
| { |
| char b[256]; |
| evutil_snprintf(b, sizeof(b), "%s=",k); |
| putenv(b); |
| } |
| #define UNSETENV_OK |
| #endif |
| |
| #if defined(SETENV_OK) && defined(UNSETENV_OK) |
| static void |
| methodname_to_envvar(const char *mname, char *buf, size_t buflen) |
| { |
| char *cp; |
| evutil_snprintf(buf, buflen, "EVENT_NO%s", mname); |
| for (cp = buf; *cp; ++cp) { |
| *cp = EVUTIL_TOUPPER_(*cp); |
| } |
| } |
| #endif |
| |
| static void |
| test_base_environ(void *arg) |
| { |
| struct event_base *base = NULL; |
| struct event_config *cfg = NULL; |
| |
| #if defined(SETENV_OK) && defined(UNSETENV_OK) |
| const char **basenames; |
| int i, n_methods=0; |
| char varbuf[128]; |
| const char *defaultname, *ignoreenvname; |
| |
| /* See if unsetenv works before we rely on it. */ |
| setenv("EVENT_NOWAFFLES", "1", 1); |
| unsetenv("EVENT_NOWAFFLES"); |
| if (getenv("EVENT_NOWAFFLES") != NULL) { |
| #ifndef EVENT__HAVE_UNSETENV |
| TT_DECLARE("NOTE", ("Can't fake unsetenv; skipping test")); |
| #else |
| TT_DECLARE("NOTE", ("unsetenv doesn't work; skipping test")); |
| #endif |
| tt_skip(); |
| } |
| |
| basenames = event_get_supported_methods(); |
| for (i = 0; basenames[i]; ++i) { |
| methodname_to_envvar(basenames[i], varbuf, sizeof(varbuf)); |
| unsetenv(varbuf); |
| ++n_methods; |
| } |
| |
| base = event_base_new(); |
| tt_assert(base); |
| |
| defaultname = event_base_get_method(base); |
| TT_BLATHER(("default is <%s>", defaultname)); |
| event_base_free(base); |
| base = NULL; |
| |
| /* Can we disable the method with EVENT_NOfoo ? */ |
| if (!strcmp(defaultname, "epoll (with changelist)")) { |
| setenv("EVENT_NOEPOLL", "1", 1); |
| ignoreenvname = "epoll"; |
| } else { |
| methodname_to_envvar(defaultname, varbuf, sizeof(varbuf)); |
| setenv(varbuf, "1", 1); |
| ignoreenvname = defaultname; |
| } |
| |
| /* Use an empty cfg rather than NULL so a failure doesn't exit() */ |
| cfg = event_config_new(); |
| base = event_base_new_with_config(cfg); |
| event_config_free(cfg); |
| cfg = NULL; |
| if (n_methods == 1) { |
| tt_assert(!base); |
| } else { |
| tt_assert(base); |
| tt_str_op(defaultname, !=, event_base_get_method(base)); |
| event_base_free(base); |
| base = NULL; |
| } |
| |
| /* Can we disable looking at the environment with IGNORE_ENV ? */ |
| cfg = event_config_new(); |
| event_config_set_flag(cfg, EVENT_BASE_FLAG_IGNORE_ENV); |
| base = event_base_new_with_config(cfg); |
| tt_assert(base); |
| tt_str_op(ignoreenvname, ==, event_base_get_method(base)); |
| #else |
| tt_skip(); |
| #endif |
| |
| end: |
| if (base) |
| event_base_free(base); |
| if (cfg) |
| event_config_free(cfg); |
| } |
| |
| static void |
| read_called_once_cb(evutil_socket_t fd, short event, void *arg) |
| { |
| tt_int_op(event, ==, EV_READ); |
| called += 1; |
| end: |
| ; |
| } |
| |
| static void |
| timeout_called_once_cb(evutil_socket_t fd, short event, void *arg) |
| { |
| tt_int_op(event, ==, EV_TIMEOUT); |
| called += 100; |
| end: |
| ; |
| } |
| |
| static void |
| immediate_called_twice_cb(evutil_socket_t fd, short event, void *arg) |
| { |
| tt_int_op(event, ==, EV_TIMEOUT); |
| called += 1000; |
| end: |
| ; |
| } |
| |
| static void |
| test_event_once(void *ptr) |
| { |
| struct basic_test_data *data = ptr; |
| struct timeval tv; |
| int r; |
| |
| tv.tv_sec = 0; |
| tv.tv_usec = 50*1000; |
| called = 0; |
| r = event_base_once(data->base, data->pair[0], EV_READ, |
| read_called_once_cb, NULL, NULL); |
| tt_int_op(r, ==, 0); |
| r = event_base_once(data->base, -1, EV_TIMEOUT, |
| timeout_called_once_cb, NULL, &tv); |
| tt_int_op(r, ==, 0); |
| r = event_base_once(data->base, -1, 0, NULL, NULL, NULL); |
| tt_int_op(r, <, 0); |
| r = event_base_once(data->base, -1, EV_TIMEOUT, |
| immediate_called_twice_cb, NULL, NULL); |
| tt_int_op(r, ==, 0); |
| tv.tv_sec = 0; |
| tv.tv_usec = 0; |
| r = event_base_once(data->base, -1, EV_TIMEOUT, |
| immediate_called_twice_cb, NULL, &tv); |
| tt_int_op(r, ==, 0); |
| |
| if (write(data->pair[1], TEST1, strlen(TEST1)+1) < 0) { |
| tt_fail_perror("write"); |
| } |
| |
| shutdown(data->pair[1], EVUTIL_SHUT_WR); |
| |
| event_base_dispatch(data->base); |
| |
| tt_int_op(called, ==, 2101); |
| end: |
| ; |
| } |
| |
| static void |
| test_event_once_never(void *ptr) |
| { |
| struct basic_test_data *data = ptr; |
| struct timeval tv; |
| |
| /* Have one trigger in 10 seconds (don't worry, because) */ |
| tv.tv_sec = 10; |
| tv.tv_usec = 0; |
| called = 0; |
| event_base_once(data->base, -1, EV_TIMEOUT, |
| timeout_called_once_cb, NULL, &tv); |
| |
| /* But shut down the base in 75 msec. */ |
| tv.tv_sec = 0; |
| tv.tv_usec = 75*1000; |
| event_base_loopexit(data->base, &tv); |
| |
| event_base_dispatch(data->base); |
| |
| tt_int_op(called, ==, 0); |
| end: |
| ; |
| } |
| |
| static void |
| test_event_pending(void *ptr) |
| { |
| struct basic_test_data *data = ptr; |
| struct event *r=NULL, *w=NULL, *t=NULL; |
| struct timeval tv, now, tv2; |
| |
| tv.tv_sec = 0; |
| tv.tv_usec = 500 * 1000; |
| r = event_new(data->base, data->pair[0], EV_READ, simple_read_cb, |
| NULL); |
| w = event_new(data->base, data->pair[1], EV_WRITE, simple_write_cb, |
| NULL); |
| t = evtimer_new(data->base, timeout_cb, NULL); |
| |
| tt_assert(r); |
| tt_assert(w); |
| tt_assert(t); |
| |
| evutil_gettimeofday(&now, NULL); |
| event_add(r, NULL); |
| event_add(t, &tv); |
| |
| tt_assert( event_pending(r, EV_READ, NULL)); |
| tt_assert(!event_pending(w, EV_WRITE, NULL)); |
| tt_assert(!event_pending(r, EV_WRITE, NULL)); |
| tt_assert( event_pending(r, EV_READ|EV_WRITE, NULL)); |
| tt_assert(!event_pending(r, EV_TIMEOUT, NULL)); |
| tt_assert( event_pending(t, EV_TIMEOUT, NULL)); |
| tt_assert( event_pending(t, EV_TIMEOUT, &tv2)); |
| |
| tt_assert(evutil_timercmp(&tv2, &now, >)); |
| |
| test_timeval_diff_eq(&now, &tv2, 500); |
| |
| end: |
| if (r) { |
| event_del(r); |
| event_free(r); |
| } |
| if (w) { |
| event_del(w); |
| event_free(w); |
| } |
| if (t) { |
| event_del(t); |
| event_free(t); |
| } |
| } |
| |
| static void |
| dfd_cb(evutil_socket_t fd, short e, void *data) |
| { |
| *(int*)data = (int)e; |
| } |
| |
| static void |
| test_event_closed_fd_poll(void *arg) |
| { |
| struct timeval tv; |
| struct event *e; |
| struct basic_test_data *data = (struct basic_test_data *)arg; |
| int i = 0; |
| |
| if (strcmp(event_base_get_method(data->base), "poll")) { |
| tinytest_set_test_skipped_(); |
| return; |
| } |
| |
| e = event_new(data->base, data->pair[0], EV_READ, dfd_cb, &i); |
| tt_assert(e); |
| |
| tv.tv_sec = 0; |
| tv.tv_usec = 500 * 1000; |
| event_add(e, &tv); |
| tt_assert(event_pending(e, EV_READ, NULL)); |
| close(data->pair[0]); |
| data->pair[0] = -1; /** avoids double-close */ |
| event_base_loop(data->base, EVLOOP_ONCE); |
| tt_int_op(i, ==, EV_READ); |
| |
| end: |
| if (e) { |
| event_del(e); |
| event_free(e); |
| } |
| } |
| |
| #ifndef _WIN32 |
| /* You can't do this test on windows, since dup2 doesn't work on sockets */ |
| |
| /* Regression test for our workaround for a fun epoll/linux related bug |
| * where fd2 = dup(fd1); add(fd2); close(fd2); dup2(fd1,fd2); add(fd2) |
| * will get you an EEXIST */ |
| static void |
| test_dup_fd(void *arg) |
| { |
| struct basic_test_data *data = arg; |
| struct event_base *base = data->base; |
| struct event *ev1=NULL, *ev2=NULL; |
| int fd, dfd=-1; |
| int ev1_got, ev2_got; |
| |
| tt_int_op(write(data->pair[0], "Hello world", |
| strlen("Hello world")), >, 0); |
| fd = data->pair[1]; |
| |
| dfd = dup(fd); |
| tt_int_op(dfd, >=, 0); |
| |
| ev1 = event_new(base, fd, EV_READ|EV_PERSIST, dfd_cb, &ev1_got); |
| ev2 = event_new(base, dfd, EV_READ|EV_PERSIST, dfd_cb, &ev2_got); |
| ev1_got = ev2_got = 0; |
| event_add(ev1, NULL); |
| event_add(ev2, NULL); |
| event_base_loop(base, EVLOOP_ONCE); |
| tt_int_op(ev1_got, ==, EV_READ); |
| tt_int_op(ev2_got, ==, EV_READ); |
| |
| /* Now close and delete dfd then dispatch. We need to do the |
| * dispatch here so that when we add it later, we think there |
| * was an intermediate delete. */ |
| close(dfd); |
| event_del(ev2); |
| ev1_got = ev2_got = 0; |
| event_base_loop(base, EVLOOP_ONCE); |
| tt_want_int_op(ev1_got, ==, EV_READ); |
| tt_int_op(ev2_got, ==, 0); |
| |
| /* Re-duplicate the fd. We need to get the same duplicated |
| * value that we closed to provoke the epoll quirk. Also, we |
| * need to change the events to write, or else the old lingering |
| * read event will make the test pass whether the change was |
| * successful or not. */ |
| tt_int_op(dup2(fd, dfd), ==, dfd); |
| event_free(ev2); |
| ev2 = event_new(base, dfd, EV_WRITE|EV_PERSIST, dfd_cb, &ev2_got); |
| event_add(ev2, NULL); |
| ev1_got = ev2_got = 0; |
| event_base_loop(base, EVLOOP_ONCE); |
| tt_want_int_op(ev1_got, ==, EV_READ); |
| tt_int_op(ev2_got, ==, EV_WRITE); |
| |
| end: |
| if (ev1) |
| event_free(ev1); |
| if (ev2) |
| event_free(ev2); |
| if (dfd >= 0) |
| close(dfd); |
| } |
| #endif |
| |
| #ifdef EVENT__DISABLE_MM_REPLACEMENT |
| static void |
| test_mm_functions(void *arg) |
| { |
| tinytest_set_test_skipped_(); |
| } |
| #else |
| static int |
| check_dummy_mem_ok(void *mem_) |
| { |
| char *mem = mem_; |
| mem -= 16; |
| return !memcmp(mem, "{[<guardedram>]}", 16); |
| } |
| |
| static void * |
| dummy_malloc(size_t len) |
| { |
| char *mem = malloc(len+16); |
| memcpy(mem, "{[<guardedram>]}", 16); |
| return mem+16; |
| } |
| |
| static void * |
| dummy_realloc(void *mem_, size_t len) |
| { |
| char *mem = mem_; |
| if (!mem) |
| return dummy_malloc(len); |
| tt_want(check_dummy_mem_ok(mem_)); |
| mem -= 16; |
| mem = realloc(mem, len+16); |
| return mem+16; |
| } |
| |
| static void |
| dummy_free(void *mem_) |
| { |
| char *mem = mem_; |
| tt_want(check_dummy_mem_ok(mem_)); |
| mem -= 16; |
| free(mem); |
| } |
| |
| static void |
| test_mm_functions(void *arg) |
| { |
| struct event_base *b = NULL; |
| struct event_config *cfg = NULL; |
| event_set_mem_functions(dummy_malloc, dummy_realloc, dummy_free); |
| cfg = event_config_new(); |
| event_config_avoid_method(cfg, "Nonesuch"); |
| b = event_base_new_with_config(cfg); |
| tt_assert(b); |
| tt_assert(check_dummy_mem_ok(b)); |
| end: |
| if (cfg) |
| event_config_free(cfg); |
| if (b) |
| event_base_free(b); |
| } |
| #endif |
| |
| static void |
| many_event_cb(evutil_socket_t fd, short event, void *arg) |
| { |
| int *calledp = arg; |
| *calledp += 1; |
| } |
| |
| static void |
| test_many_events(void *arg) |
| { |
| /* Try 70 events that should all be ready at once. This will |
| * exercise the "resize" code on most of the backends, and will make |
| * sure that we can get past the 64-handle limit of some windows |
| * functions. */ |
| #define MANY 70 |
| |
| struct basic_test_data *data = arg; |
| struct event_base *base = data->base; |
| int one_at_a_time = data->setup_data != NULL; |
| evutil_socket_t sock[MANY]; |
| struct event *ev[MANY]; |
| int called[MANY]; |
| int i; |
| int loopflags = EVLOOP_NONBLOCK, evflags=0; |
| if (one_at_a_time) { |
| loopflags |= EVLOOP_ONCE; |
| evflags = EV_PERSIST; |
| } |
| |
| memset(sock, 0xff, sizeof(sock)); |
| memset(ev, 0, sizeof(ev)); |
| memset(called, 0, sizeof(called)); |
| |
| for (i = 0; i < MANY; ++i) { |
| /* We need an event that will hit the backend, and that will |
| * be ready immediately. "Send a datagram" is an easy |
| * instance of that. */ |
| sock[i] = socket(AF_INET, SOCK_DGRAM, 0); |
| tt_assert(sock[i] >= 0); |
| tt_assert(!evutil_make_socket_nonblocking(sock[i])); |
| called[i] = 0; |
| ev[i] = event_new(base, sock[i], EV_WRITE|evflags, |
| many_event_cb, &called[i]); |
| event_add(ev[i], NULL); |
| if (one_at_a_time) |
| event_base_loop(base, EVLOOP_NONBLOCK|EVLOOP_ONCE); |
| } |
| |
| event_base_loop(base, loopflags); |
| |
| for (i = 0; i < MANY; ++i) { |
| if (one_at_a_time) |
| tt_int_op(called[i], ==, MANY - i + 1); |
| else |
| tt_int_op(called[i], ==, 1); |
| } |
| |
| end: |
| for (i = 0; i < MANY; ++i) { |
| if (ev[i]) |
| event_free(ev[i]); |
| if (sock[i] >= 0) |
| evutil_closesocket(sock[i]); |
| } |
| #undef MANY |
| } |
| |
| static void |
| test_struct_event_size(void *arg) |
| { |
| tt_int_op(event_get_struct_event_size(), <=, sizeof(struct event)); |
| end: |
| ; |
| } |
| |
| static void |
| test_get_assignment(void *arg) |
| { |
| struct basic_test_data *data = arg; |
| struct event_base *base = data->base; |
| struct event *ev1 = NULL; |
| const char *str = "foo"; |
| |
| struct event_base *b; |
| evutil_socket_t s; |
| short what; |
| event_callback_fn cb; |
| void *cb_arg; |
| |
| ev1 = event_new(base, data->pair[1], EV_READ, dummy_read_cb, (void*)str); |
| event_get_assignment(ev1, &b, &s, &what, &cb, &cb_arg); |
| |
| tt_ptr_op(b, ==, base); |
| tt_fd_op(s, ==, data->pair[1]); |
| tt_int_op(what, ==, EV_READ); |
| tt_ptr_op(cb, ==, dummy_read_cb); |
| tt_ptr_op(cb_arg, ==, str); |
| |
| /* Now make sure this doesn't crash. */ |
| event_get_assignment(ev1, NULL, NULL, NULL, NULL, NULL); |
| |
| end: |
| if (ev1) |
| event_free(ev1); |
| } |
| |
| struct foreach_helper { |
| int count; |
| const struct event *ev; |
| }; |
| |
| static int |
| foreach_count_cb(const struct event_base *base, const struct event *ev, void *arg) |
| { |
| struct foreach_helper *h = event_get_callback_arg(ev); |
| struct timeval *tv = arg; |
| if (event_get_callback(ev) != timeout_cb) |
| return 0; |
| tt_ptr_op(event_get_base(ev), ==, base); |
| tt_int_op(tv->tv_sec, ==, 10); |
| h->ev = ev; |
| h->count++; |
| return 0; |
| end: |
| return -1; |
| } |
| |
| static int |
| foreach_find_cb(const struct event_base *base, const struct event *ev, void *arg) |
| { |
| const struct event **ev_out = arg; |
| struct foreach_helper *h = event_get_callback_arg(ev); |
| if (event_get_callback(ev) != timeout_cb) |
| return 0; |
| if (h->count == 99) { |
| *ev_out = ev; |
| return 101; |
| } |
| return 0; |
| } |
| |
| static void |
| test_event_foreach(void *arg) |
| { |
| struct basic_test_data *data = arg; |
| struct event_base *base = data->base; |
| struct event *ev[5]; |
| struct foreach_helper visited[5]; |
| int i; |
| struct timeval ten_sec = {10,0}; |
| const struct event *ev_found = NULL; |
| |
| for (i = 0; i < 5; ++i) { |
| visited[i].count = 0; |
| visited[i].ev = NULL; |
| ev[i] = event_new(base, -1, 0, timeout_cb, &visited[i]); |
| } |
| |
| tt_int_op(-1, ==, event_base_foreach_event(NULL, foreach_count_cb, NULL)); |
| tt_int_op(-1, ==, event_base_foreach_event(base, NULL, NULL)); |
| |
| event_add(ev[0], &ten_sec); |
| event_add(ev[1], &ten_sec); |
| event_active(ev[1], EV_TIMEOUT, 1); |
| event_active(ev[2], EV_TIMEOUT, 1); |
| event_add(ev[3], &ten_sec); |
| /* Don't touch ev[4]. */ |
| |
| tt_int_op(0, ==, event_base_foreach_event(base, foreach_count_cb, |
| &ten_sec)); |
| tt_int_op(1, ==, visited[0].count); |
| tt_int_op(1, ==, visited[1].count); |
| tt_int_op(1, ==, visited[2].count); |
| tt_int_op(1, ==, visited[3].count); |
| tt_ptr_op(ev[0], ==, visited[0].ev); |
| tt_ptr_op(ev[1], ==, visited[1].ev); |
| tt_ptr_op(ev[2], ==, visited[2].ev); |
| tt_ptr_op(ev[3], ==, visited[3].ev); |
| |
| visited[2].count = 99; |
| tt_int_op(101, ==, event_base_foreach_event(base, foreach_find_cb, |
| &ev_found)); |
| tt_ptr_op(ev_found, ==, ev[2]); |
| |
| end: |
| for (i=0; i<5; ++i) { |
| event_free(ev[i]); |
| } |
| } |
| |
| static struct event_base *cached_time_base = NULL; |
| static int cached_time_reset = 0; |
| static int cached_time_sleep = 0; |
| static void |
| cache_time_cb(evutil_socket_t fd, short what, void *arg) |
| { |
| struct timeval *tv = arg; |
| tt_int_op(0, ==, event_base_gettimeofday_cached(cached_time_base, tv)); |
| if (cached_time_sleep) { |
| struct timeval delay = { 0, 30*1000 }; |
| evutil_usleep_(&delay); |
| } |
| if (cached_time_reset) { |
| event_base_update_cache_time(cached_time_base); |
| } |
| end: |
| ; |
| } |
| |
| static void |
| test_gettimeofday_cached(void *arg) |
| { |
| struct basic_test_data *data = arg; |
| struct event_config *cfg = NULL; |
| struct event_base *base = NULL; |
| struct timeval tv1, tv2, tv3, now; |
| struct event *ev1=NULL, *ev2=NULL, *ev3=NULL; |
| int cached_time_disable = strstr(data->setup_data, "disable") != NULL; |
| |
| cfg = event_config_new(); |
| if (cached_time_disable) { |
| event_config_set_flag(cfg, EVENT_BASE_FLAG_NO_CACHE_TIME); |
| } |
| cached_time_base = base = event_base_new_with_config(cfg); |
| tt_assert(base); |
| |
| /* Try gettimeofday_cached outside of an event loop. */ |
| evutil_gettimeofday(&now, NULL); |
| tt_int_op(0, ==, event_base_gettimeofday_cached(NULL, &tv1)); |
| tt_int_op(0, ==, event_base_gettimeofday_cached(base, &tv2)); |
| tt_int_op(timeval_msec_diff(&tv1, &tv2), <, 10); |
| tt_int_op(timeval_msec_diff(&tv1, &now), <, 10); |
| |
| cached_time_reset = strstr(data->setup_data, "reset") != NULL; |
| cached_time_sleep = strstr(data->setup_data, "sleep") != NULL; |
| |
| ev1 = event_new(base, -1, 0, cache_time_cb, &tv1); |
| ev2 = event_new(base, -1, 0, cache_time_cb, &tv2); |
| ev3 = event_new(base, -1, 0, cache_time_cb, &tv3); |
| |
| event_active(ev1, EV_TIMEOUT, 1); |
| event_active(ev2, EV_TIMEOUT, 1); |
| event_active(ev3, EV_TIMEOUT, 1); |
| |
| event_base_dispatch(base); |
| |
| if (cached_time_reset && cached_time_sleep) { |
| tt_int_op(labs(timeval_msec_diff(&tv1,&tv2)), >, 10); |
| tt_int_op(labs(timeval_msec_diff(&tv2,&tv3)), >, 10); |
| } else if (cached_time_disable && cached_time_sleep) { |
| tt_int_op(labs(timeval_msec_diff(&tv1,&tv2)), >, 10); |
| tt_int_op(labs(timeval_msec_diff(&tv2,&tv3)), >, 10); |
| } else if (! cached_time_disable) { |
| tt_assert(evutil_timercmp(&tv1, &tv2, ==)); |
| tt_assert(evutil_timercmp(&tv2, &tv3, ==)); |
| } |
| |
| end: |
| if (ev1) |
| event_free(ev1); |
| if (ev2) |
| event_free(ev2); |
| if (ev3) |
| event_free(ev3); |
| if (base) |
| event_base_free(base); |
| if (cfg) |
| event_config_free(cfg); |
| } |
| |
| static void |
| tabf_cb(evutil_socket_t fd, short what, void *arg) |
| { |
| int *ptr = arg; |
| *ptr = what; |
| *ptr += 0x10000; |
| } |
| |
| static void |
| test_evmap_invalid_slots(void *arg) |
| { |
| struct basic_test_data *data = arg; |
| struct event_base *base = data->base; |
| struct event *ev1 = NULL, *ev2 = NULL; |
| int e1, e2; |
| #ifndef _WIN32 |
| struct event *ev3 = NULL, *ev4 = NULL; |
| int e3, e4; |
| #endif |
| |
| ev1 = evsignal_new(base, -1, dummy_read_cb, (void *)base); |
| ev2 = evsignal_new(base, NSIG, dummy_read_cb, (void *)base); |
| tt_assert(ev1); |
| tt_assert(ev2); |
| e1 = event_add(ev1, NULL); |
| e2 = event_add(ev2, NULL); |
| tt_int_op(e1, !=, 0); |
| tt_int_op(e2, !=, 0); |
| #ifndef _WIN32 |
| ev3 = event_new(base, INT_MAX, EV_READ, dummy_read_cb, (void *)base); |
| ev4 = event_new(base, INT_MAX / 2, EV_READ, dummy_read_cb, (void *)base); |
| tt_assert(ev3); |
| tt_assert(ev4); |
| e3 = event_add(ev3, NULL); |
| e4 = event_add(ev4, NULL); |
| tt_int_op(e3, !=, 0); |
| tt_int_op(e4, !=, 0); |
| #endif |
| |
| end: |
| event_free(ev1); |
| event_free(ev2); |
| #ifndef _WIN32 |
| event_free(ev3); |
| event_free(ev4); |
| #endif |
| } |
| |
| static void |
| test_active_by_fd(void *arg) |
| { |
| struct basic_test_data *data = arg; |
| struct event_base *base = data->base; |
| struct event *ev1 = NULL, *ev2 = NULL, *ev3 = NULL, *ev4 = NULL; |
| int e1,e2,e3,e4; |
| #ifndef _WIN32 |
| struct event *evsig = NULL; |
| int es; |
| #endif |
| struct timeval tenmin = { 600, 0 }; |
| |
| /* Ensure no crash on nonexistent FD. */ |
| event_base_active_by_fd(base, 1000, EV_READ); |
| |
| /* Ensure no crash on bogus FD. */ |
| event_base_active_by_fd(base, -1, EV_READ); |
| |
| /* Ensure no crash on nonexistent/bogus signal. */ |
| event_base_active_by_signal(base, 1000); |
| event_base_active_by_signal(base, -1); |
| |
| event_base_assert_ok_(base); |
| |
| e1 = e2 = e3 = e4 = 0; |
| ev1 = event_new(base, data->pair[0], EV_READ, tabf_cb, &e1); |
| ev2 = event_new(base, data->pair[0], EV_WRITE, tabf_cb, &e2); |
| ev3 = event_new(base, data->pair[1], EV_READ, tabf_cb, &e3); |
| ev4 = event_new(base, data->pair[1], EV_READ, tabf_cb, &e4); |
| tt_assert(ev1); |
| tt_assert(ev2); |
| tt_assert(ev3); |
| tt_assert(ev4); |
| #ifndef _WIN32 |
| evsig = event_new(base, SIGHUP, EV_SIGNAL, tabf_cb, &es); |
| tt_assert(evsig); |
| event_add(evsig, &tenmin); |
| #endif |
| |
| event_add(ev1, &tenmin); |
| event_add(ev2, NULL); |
| event_add(ev3, NULL); |
| event_add(ev4, &tenmin); |
| |
| |
| event_base_assert_ok_(base); |
| |
| /* Trigger 2, 3, 4 */ |
| event_base_active_by_fd(base, data->pair[0], EV_WRITE); |
| event_base_active_by_fd(base, data->pair[1], EV_READ); |
| event_base_active_by_fd(base, data->pair[1], EV_TIMEOUT); |
| #ifndef _WIN32 |
| event_base_active_by_signal(base, SIGHUP); |
| #endif |
| |
| event_base_assert_ok_(base); |
| |
| event_base_loop(base, EVLOOP_ONCE); |
| |
| tt_int_op(e1, ==, 0); |
| tt_int_op(e2, ==, EV_WRITE | 0x10000); |
| tt_int_op(e3, ==, EV_READ | 0x10000); |
| /* Mask out EV_WRITE here, since it could be genuinely writeable. */ |
| tt_int_op((e4 & ~EV_WRITE), ==, EV_READ | EV_TIMEOUT | 0x10000); |
| #ifndef _WIN32 |
| tt_int_op(es, ==, EV_SIGNAL | 0x10000); |
| #endif |
| |
| end: |
| if (ev1) |
| event_free(ev1); |
| if (ev2) |
| event_free(ev2); |
| if (ev3) |
| event_free(ev3); |
| if (ev4) |
| event_free(ev4); |
| #ifndef _WIN32 |
| if (evsig) |
| event_free(evsig); |
| #endif |
| } |
| |
| struct testcase_t main_testcases[] = { |
| /* Some converted-over tests */ |
| { "methods", test_methods, TT_FORK, NULL, NULL }, |
| { "version", test_version, 0, NULL, NULL }, |
| BASIC(base_features, TT_FORK|TT_NO_LOGS), |
| { "base_environ", test_base_environ, TT_FORK, NULL, NULL }, |
| |
| BASIC(event_base_new, TT_FORK|TT_NEED_SOCKETPAIR), |
| BASIC(free_active_base, TT_FORK|TT_NEED_SOCKETPAIR), |
| |
| BASIC(manipulate_active_events, TT_FORK|TT_NEED_BASE), |
| BASIC(event_new_selfarg, TT_FORK|TT_NEED_BASE), |
| BASIC(event_assign_selfarg, TT_FORK|TT_NEED_BASE), |
| BASIC(event_base_get_num_events, TT_FORK|TT_NEED_BASE), |
| BASIC(event_base_get_max_events, TT_FORK|TT_NEED_BASE), |
| BASIC(evmap_invalid_slots, TT_FORK|TT_NEED_BASE), |
| |
| BASIC(bad_assign, TT_FORK|TT_NEED_BASE|TT_NO_LOGS), |
| BASIC(bad_reentrant, TT_FORK|TT_NEED_BASE|TT_NO_LOGS), |
| BASIC(active_later, TT_FORK|TT_NEED_BASE|TT_NEED_SOCKETPAIR|TT_RETRIABLE), |
| BASIC(event_remove_timeout, TT_FORK|TT_NEED_BASE|TT_NEED_SOCKETPAIR), |
| |
| /* These are still using the old API */ |
| LEGACY(persistent_timeout, TT_FORK|TT_NEED_BASE), |
| { "persistent_timeout_jump", test_persistent_timeout_jump, TT_FORK|TT_NEED_BASE, &basic_setup, NULL }, |
| { "persistent_active_timeout", test_persistent_active_timeout, |
| TT_FORK|TT_NEED_BASE|TT_RETRIABLE, &basic_setup, NULL }, |
| LEGACY(priorities, TT_FORK|TT_NEED_BASE), |
| BASIC(priority_active_inversion, TT_FORK|TT_NEED_BASE), |
| { "common_timeout", test_common_timeout, TT_FORK|TT_NEED_BASE, |
| &basic_setup, NULL }, |
| |
| /* These legacy tests may not all need all of these flags. */ |
| LEGACY(simpleread, TT_ISOLATED), |
| LEGACY(simpleread_multiple, TT_ISOLATED), |
| LEGACY(simplewrite, TT_ISOLATED), |
| { "simpleclose_rw", test_simpleclose_rw, TT_FORK, &basic_setup, NULL }, |
| /* simpleclose */ |
| { "simpleclose_close", test_simpleclose, |
| TT_FORK|TT_NEED_SOCKETPAIR|TT_NEED_BASE, |
| &basic_setup, (void *)"close" }, |
| { "simpleclose_shutdown", test_simpleclose, |
| TT_FORK|TT_NEED_SOCKETPAIR|TT_NEED_BASE, |
| &basic_setup, (void *)"shutdown" }, |
| /* simpleclose_*_persist */ |
| { "simpleclose_close_persist", test_simpleclose, |
| TT_FORK|TT_NEED_SOCKETPAIR|TT_NEED_BASE, |
| &basic_setup, (void *)"close_persist" }, |
| { "simpleclose_shutdown_persist", test_simpleclose, |
| TT_FORK|TT_NEED_SOCKETPAIR|TT_NEED_BASE, |
| &basic_setup, (void *)"shutdown_persist" }, |
| /* simpleclose_*_et */ |
| { "simpleclose_close_et", test_simpleclose, |
| TT_FORK|TT_NEED_SOCKETPAIR|TT_NEED_BASE, |
| &basic_setup, (void *)"close_ET" }, |
| { "simpleclose_shutdown_et", test_simpleclose, |
| TT_FORK|TT_NEED_SOCKETPAIR|TT_NEED_BASE, |
| &basic_setup, (void *)"shutdown_ET" }, |
| /* simpleclose_*_persist_et */ |
| { "simpleclose_close_persist_et", test_simpleclose, |
| TT_FORK|TT_NEED_SOCKETPAIR|TT_NEED_BASE, |
| &basic_setup, (void *)"close_persist_ET" }, |
| { "simpleclose_shutdown_persist_et", test_simpleclose, |
| TT_FORK|TT_NEED_SOCKETPAIR|TT_NEED_BASE, |
| &basic_setup, (void *)"shutdown_persist_ET" }, |
| LEGACY(multiple, TT_ISOLATED), |
| LEGACY(persistent, TT_ISOLATED), |
| LEGACY(combined, TT_ISOLATED), |
| LEGACY(simpletimeout, TT_ISOLATED), |
| LEGACY(loopbreak, TT_ISOLATED), |
| LEGACY(loopexit, TT_ISOLATED), |
| LEGACY(loopexit_multiple, TT_ISOLATED), |
| { "nonpersist_readd", test_nonpersist_readd, TT_FORK|TT_NEED_SOCKETPAIR|TT_NEED_BASE, &basic_setup, NULL }, |
| LEGACY(multiple_events_for_same_fd, TT_ISOLATED), |
| LEGACY(want_only_once, TT_ISOLATED), |
| { "event_once", test_event_once, TT_ISOLATED, &basic_setup, NULL }, |
| { "event_once_never", test_event_once_never, TT_ISOLATED, &basic_setup, NULL }, |
| { "event_pending", test_event_pending, TT_ISOLATED, &basic_setup, |
| NULL }, |
| { "event_closed_fd_poll", test_event_closed_fd_poll, TT_ISOLATED, &basic_setup, |
| NULL }, |
| |
| #ifndef _WIN32 |
| { "dup_fd", test_dup_fd, TT_ISOLATED, &basic_setup, NULL }, |
| #endif |
| { "mm_functions", test_mm_functions, TT_FORK, NULL, NULL }, |
| { "many_events", test_many_events, TT_ISOLATED, &basic_setup, NULL }, |
| { "many_events_slow_add", test_many_events, TT_ISOLATED, &basic_setup, (void*)1 }, |
| |
| { "struct_event_size", test_struct_event_size, 0, NULL, NULL }, |
| BASIC(get_assignment, TT_FORK|TT_NEED_BASE|TT_NEED_SOCKETPAIR), |
| |
| BASIC(event_foreach, TT_FORK|TT_NEED_BASE), |
| { "gettimeofday_cached", test_gettimeofday_cached, TT_FORK, &basic_setup, (void*)"" }, |
| { "gettimeofday_cached_sleep", test_gettimeofday_cached, TT_FORK, &basic_setup, (void*)"sleep" }, |
| { "gettimeofday_cached_reset", test_gettimeofday_cached, TT_FORK, &basic_setup, (void*)"sleep reset" }, |
| { "gettimeofday_cached_disabled", test_gettimeofday_cached, TT_FORK, &basic_setup, (void*)"sleep disable" }, |
| { "gettimeofday_cached_disabled_nosleep", test_gettimeofday_cached, TT_FORK, &basic_setup, (void*)"disable" }, |
| |
| BASIC(active_by_fd, TT_FORK|TT_NEED_BASE|TT_NEED_SOCKETPAIR), |
| |
| #ifndef _WIN32 |
| LEGACY(fork, TT_ISOLATED), |
| #endif |
| |
| #ifdef EVTHREAD_USE_PTHREADS_IMPLEMENTED |
| LEGACY(del_wait, TT_ISOLATED|TT_NEED_THREADS|TT_RETRIABLE), |
| LEGACY(del_notify, TT_ISOLATED|TT_NEED_THREADS), |
| #endif |
| |
| END_OF_TESTCASES |
| }; |
| |
| struct testcase_t evtag_testcases[] = { |
| { "int", evtag_int_test, TT_FORK, NULL, NULL }, |
| { "fuzz", evtag_fuzz, TT_FORK, NULL, NULL }, |
| { "encoding", evtag_tag_encoding, TT_FORK, NULL, NULL }, |
| { "peek", evtag_test_peek, 0, NULL, NULL }, |
| |
| END_OF_TESTCASES |
| }; |
| |
| struct testcase_t signal_testcases[] = { |
| #ifndef _WIN32 |
| LEGACY(simplestsignal, TT_ISOLATED), |
| LEGACY(simplesignal, TT_ISOLATED), |
| LEGACY(multiplesignal, TT_ISOLATED), |
| LEGACY(immediatesignal, TT_ISOLATED), |
| LEGACY(signal_dealloc, TT_ISOLATED), |
| LEGACY(signal_pipeloss, TT_ISOLATED), |
| LEGACY(signal_switchbase, TT_ISOLATED|TT_NO_LOGS), |
| LEGACY(signal_restore, TT_ISOLATED), |
| LEGACY(signal_assert, TT_ISOLATED), |
| LEGACY(signal_while_processing, TT_ISOLATED), |
| #endif |
| END_OF_TESTCASES |
| }; |
| |