| /* |
| * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische |
| * Universitaet Berlin. See the accompanying file "COPYRIGHT" for |
| * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE. |
| */ |
| |
| /* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/rpe.c,v 1.3 1994/05/10 20:18:46 jutta Exp $ */ |
| |
| #include <stdio.h> |
| #include <assert.h> |
| |
| #include "private.h" |
| |
| #include "gsm.h" |
| #include "proto.h" |
| |
| /* 4.2.13 .. 4.2.17 RPE ENCODING SECTION |
| */ |
| |
| /* 4.2.13 */ |
| |
| static void Weighting_filter P2((e, x), |
| register word * e, /* signal [-5..0.39.44] IN */ |
| word * x /* signal [0..39] OUT */ |
| ) |
| /* |
| * The coefficients of the weighting filter are stored in a table |
| * (see table 4.4). The following scaling is used: |
| * |
| * H[0..10] = integer( real_H[ 0..10] * 8192 ); |
| */ |
| { |
| /* word wt[ 50 ]; */ |
| |
| register longword L_result; |
| register int k /* , i */ ; |
| |
| /* Initialization of a temporary working array wt[0...49] |
| */ |
| |
| /* for (k = 0; k <= 4; k++) wt[k] = 0; |
| * for (k = 5; k <= 44; k++) wt[k] = *e++; |
| * for (k = 45; k <= 49; k++) wt[k] = 0; |
| * |
| * (e[-5..-1] and e[40..44] are allocated by the caller, |
| * are initially zero and are not written anywhere.) |
| */ |
| e -= 5; |
| |
| /* Compute the signal x[0..39] |
| */ |
| for (k = 0; k <= 39; k++) { |
| |
| L_result = 8192 >> 1; |
| |
| /* for (i = 0; i <= 10; i++) { |
| * L_temp = GSM_L_MULT( wt[k+i], gsm_H[i] ); |
| * L_result = GSM_L_ADD( L_result, L_temp ); |
| * } |
| */ |
| |
| #undef STEP |
| #define STEP( i, H ) (e[ k + i ] * (longword)H) |
| |
| /* Every one of these multiplications is done twice -- |
| * but I don't see an elegant way to optimize this. |
| * Do you? |
| */ |
| |
| #ifdef STUPID_COMPILER |
| L_result += STEP( 0, -134 ) ; |
| L_result += STEP( 1, -374 ) ; |
| /* + STEP( 2, 0 ) */ |
| L_result += STEP( 3, 2054 ) ; |
| L_result += STEP( 4, 5741 ) ; |
| L_result += STEP( 5, 8192 ) ; |
| L_result += STEP( 6, 5741 ) ; |
| L_result += STEP( 7, 2054 ) ; |
| /* + STEP( 8, 0 ) */ |
| L_result += STEP( 9, -374 ) ; |
| L_result += STEP( 10, -134 ) ; |
| #else |
| L_result += |
| STEP( 0, -134 ) |
| + STEP( 1, -374 ) |
| /* + STEP( 2, 0 ) */ |
| + STEP( 3, 2054 ) |
| + STEP( 4, 5741 ) |
| + STEP( 5, 8192 ) |
| + STEP( 6, 5741 ) |
| + STEP( 7, 2054 ) |
| /* + STEP( 8, 0 ) */ |
| + STEP( 9, -374 ) |
| + STEP(10, -134 ) |
| ; |
| #endif |
| |
| /* L_result = GSM_L_ADD( L_result, L_result ); (* scaling(x2) *) |
| * L_result = GSM_L_ADD( L_result, L_result ); (* scaling(x4) *) |
| * |
| * x[k] = SASR( L_result, 16 ); |
| */ |
| |
| /* 2 adds vs. >>16 => 14, minus one shift to compensate for |
| * those we lost when replacing L_MULT by '*'. |
| */ |
| |
| L_result = SASR( L_result, 13 ); |
| x[k] = ( L_result < MIN_WORD ? MIN_WORD |
| : (L_result > MAX_WORD ? MAX_WORD : L_result )); |
| } |
| } |
| |
| /* 4.2.14 */ |
| |
| static void RPE_grid_selection P3((x,xM,Mc_out), |
| word * x, /* [0..39] IN */ |
| word * xM, /* [0..12] OUT */ |
| word * Mc_out /* OUT */ |
| ) |
| /* |
| * The signal x[0..39] is used to select the RPE grid which is |
| * represented by Mc. |
| */ |
| { |
| /* register word temp1; */ |
| register int /* m, */ i; |
| register longword L_result, L_temp; |
| longword EM; /* xxx should be L_EM? */ |
| word Mc; |
| |
| longword L_common_0_3; |
| |
| EM = 0; |
| Mc = 0; |
| |
| /* for (m = 0; m <= 3; m++) { |
| * L_result = 0; |
| * |
| * |
| * for (i = 0; i <= 12; i++) { |
| * |
| * temp1 = SASR( x[m + 3*i], 2 ); |
| * |
| * assert(temp1 != MIN_WORD); |
| * |
| * L_temp = GSM_L_MULT( temp1, temp1 ); |
| * L_result = GSM_L_ADD( L_temp, L_result ); |
| * } |
| * |
| * if (L_result > EM) { |
| * Mc = m; |
| * EM = L_result; |
| * } |
| * } |
| */ |
| |
| #undef STEP |
| #define STEP( m, i ) L_temp = SASR( x[m + 3 * i], 2 ); \ |
| L_result += L_temp * L_temp; |
| |
| /* common part of 0 and 3 */ |
| |
| L_result = 0; |
| STEP( 0, 1 ); STEP( 0, 2 ); STEP( 0, 3 ); STEP( 0, 4 ); |
| STEP( 0, 5 ); STEP( 0, 6 ); STEP( 0, 7 ); STEP( 0, 8 ); |
| STEP( 0, 9 ); STEP( 0, 10); STEP( 0, 11); STEP( 0, 12); |
| L_common_0_3 = L_result; |
| |
| /* i = 0 */ |
| |
| STEP( 0, 0 ); |
| L_result <<= 1; /* implicit in L_MULT */ |
| EM = L_result; |
| |
| /* i = 1 */ |
| |
| L_result = 0; |
| STEP( 1, 0 ); |
| STEP( 1, 1 ); STEP( 1, 2 ); STEP( 1, 3 ); STEP( 1, 4 ); |
| STEP( 1, 5 ); STEP( 1, 6 ); STEP( 1, 7 ); STEP( 1, 8 ); |
| STEP( 1, 9 ); STEP( 1, 10); STEP( 1, 11); STEP( 1, 12); |
| L_result <<= 1; |
| if (L_result > EM) { |
| Mc = 1; |
| EM = L_result; |
| } |
| |
| /* i = 2 */ |
| |
| L_result = 0; |
| STEP( 2, 0 ); |
| STEP( 2, 1 ); STEP( 2, 2 ); STEP( 2, 3 ); STEP( 2, 4 ); |
| STEP( 2, 5 ); STEP( 2, 6 ); STEP( 2, 7 ); STEP( 2, 8 ); |
| STEP( 2, 9 ); STEP( 2, 10); STEP( 2, 11); STEP( 2, 12); |
| L_result <<= 1; |
| if (L_result > EM) { |
| Mc = 2; |
| EM = L_result; |
| } |
| |
| /* i = 3 */ |
| |
| L_result = L_common_0_3; |
| STEP( 3, 12 ); |
| L_result <<= 1; |
| if (L_result > EM) { |
| Mc = 3; |
| EM = L_result; |
| } |
| |
| /**/ |
| |
| /* Down-sampling by a factor 3 to get the selected xM[0..12] |
| * RPE sequence. |
| */ |
| for (i = 0; i <= 12; i ++) xM[i] = x[Mc + 3*i]; |
| *Mc_out = Mc; |
| } |
| |
| /* 4.12.15 */ |
| |
| static void APCM_quantization_xmaxc_to_exp_mant P3((xmaxc,exp_out,mant_out), |
| word xmaxc, /* IN */ |
| word * exp_out, /* OUT */ |
| word * mant_out ) /* OUT */ |
| { |
| word exp, mant; |
| |
| /* Compute exponent and mantissa of the decoded version of xmaxc |
| */ |
| |
| exp = 0; |
| if (xmaxc > 15) exp = SASR(xmaxc, 3) - 1; |
| mant = xmaxc - (exp << 3); |
| |
| if (mant == 0) { |
| exp = -4; |
| mant = 7; |
| } |
| else { |
| while (mant <= 7) { |
| mant = mant << 1 | 1; |
| exp--; |
| } |
| mant -= 8; |
| } |
| |
| assert( exp >= -4 && exp <= 6 ); |
| assert( mant >= 0 && mant <= 7 ); |
| |
| *exp_out = exp; |
| *mant_out = mant; |
| } |
| |
| static void APCM_quantization P5((xM,xMc,mant_out,exp_out,xmaxc_out), |
| word * xM, /* [0..12] IN */ |
| |
| word * xMc, /* [0..12] OUT */ |
| word * mant_out, /* OUT */ |
| word * exp_out, /* OUT */ |
| word * xmaxc_out /* OUT */ |
| ) |
| { |
| int i, itest; |
| |
| word xmax, xmaxc, temp, temp1, temp2; |
| word exp, mant; |
| |
| |
| /* Find the maximum absolute value xmax of xM[0..12]. |
| */ |
| |
| xmax = 0; |
| for (i = 0; i <= 12; i++) { |
| temp = xM[i]; |
| temp = GSM_ABS(temp); |
| if (temp > xmax) xmax = temp; |
| } |
| |
| /* Qantizing and coding of xmax to get xmaxc. |
| */ |
| |
| exp = 0; |
| temp = SASR( xmax, 9 ); |
| itest = 0; |
| |
| for (i = 0; i <= 5; i++) { |
| |
| itest |= (temp <= 0); |
| temp = SASR( temp, 1 ); |
| |
| assert(exp <= 5); |
| if (itest == 0) exp++; /* exp = add (exp, 1) */ |
| } |
| |
| assert(exp <= 6 && exp >= 0); |
| temp = exp + 5; |
| |
| assert(temp <= 11 && temp >= 0); |
| xmaxc = gsm_add( SASR(xmax, temp), exp << 3 ); |
| |
| /* Quantizing and coding of the xM[0..12] RPE sequence |
| * to get the xMc[0..12] |
| */ |
| |
| APCM_quantization_xmaxc_to_exp_mant( xmaxc, &exp, &mant ); |
| |
| /* This computation uses the fact that the decoded version of xmaxc |
| * can be calculated by using the exponent and the mantissa part of |
| * xmaxc (logarithmic table). |
| * So, this method avoids any division and uses only a scaling |
| * of the RPE samples by a function of the exponent. A direct |
| * multiplication by the inverse of the mantissa (NRFAC[0..7] |
| * found in table 4.5) gives the 3 bit coded version xMc[0..12] |
| * of the RPE samples. |
| */ |
| |
| |
| /* Direct computation of xMc[0..12] using table 4.5 |
| */ |
| |
| assert( exp <= 4096 && exp >= -4096); |
| assert( mant >= 0 && mant <= 7 ); |
| |
| temp1 = 6 - exp; /* normalization by the exponent */ |
| temp2 = gsm_NRFAC[ mant ]; /* inverse mantissa */ |
| |
| for (i = 0; i <= 12; i++) { |
| |
| assert(temp1 >= 0 && temp1 < 16); |
| |
| temp = xM[i] << temp1; |
| temp = GSM_MULT( temp, temp2 ); |
| temp = SASR(temp, 12); |
| xMc[i] = temp + 4; /* see note below */ |
| } |
| |
| /* NOTE: This equation is used to make all the xMc[i] positive. |
| */ |
| |
| *mant_out = mant; |
| *exp_out = exp; |
| *xmaxc_out = xmaxc; |
| } |
| |
| /* 4.2.16 */ |
| |
| static void APCM_inverse_quantization P4((xMc,mant,exp,xMp), |
| register word * xMc, /* [0..12] IN */ |
| word mant, |
| word exp, |
| register word * xMp) /* [0..12] OUT */ |
| /* |
| * This part is for decoding the RPE sequence of coded xMc[0..12] |
| * samples to obtain the xMp[0..12] array. Table 4.6 is used to get |
| * the mantissa of xmaxc (FAC[0..7]). |
| */ |
| { |
| int i; |
| word temp, temp1, temp2, temp3; |
| longword ltmp; |
| |
| assert( mant >= 0 && mant <= 7 ); |
| |
| temp1 = gsm_FAC[ mant ]; /* see 4.2-15 for mant */ |
| temp2 = gsm_sub( 6, exp ); /* see 4.2-15 for exp */ |
| temp3 = gsm_asl( 1, gsm_sub( temp2, 1 )); |
| |
| for (i = 13; i--;) { |
| |
| assert( *xMc <= 7 && *xMc >= 0 ); /* 3 bit unsigned */ |
| |
| /* temp = gsm_sub( *xMc++ << 1, 7 ); */ |
| temp = (*xMc++ << 1) - 7; /* restore sign */ |
| assert( temp <= 7 && temp >= -7 ); /* 4 bit signed */ |
| |
| temp <<= 12; /* 16 bit signed */ |
| temp = GSM_MULT_R( temp1, temp ); |
| temp = GSM_ADD( temp, temp3 ); |
| *xMp++ = gsm_asr( temp, temp2 ); |
| } |
| } |
| |
| /* 4.2.17 */ |
| |
| static void RPE_grid_positioning P3((Mc,xMp,ep), |
| word Mc, /* grid position IN */ |
| register word * xMp, /* [0..12] IN */ |
| register word * ep /* [0..39] OUT */ |
| ) |
| /* |
| * This procedure computes the reconstructed long term residual signal |
| * ep[0..39] for the LTP analysis filter. The inputs are the Mc |
| * which is the grid position selection and the xMp[0..12] decoded |
| * RPE samples which are upsampled by a factor of 3 by inserting zero |
| * values. |
| */ |
| { |
| int i = 13; |
| |
| assert(0 <= Mc && Mc <= 3); |
| |
| switch (Mc) { |
| case 3: *ep++ = 0; |
| case 2: do { |
| *ep++ = 0; |
| case 1: *ep++ = 0; |
| case 0: *ep++ = *xMp++; |
| } while (--i); |
| } |
| while (++Mc < 4) *ep++ = 0; |
| |
| /* |
| |
| int i, k; |
| for (k = 0; k <= 39; k++) ep[k] = 0; |
| for (i = 0; i <= 12; i++) { |
| ep[ Mc + (3*i) ] = xMp[i]; |
| } |
| */ |
| } |
| |
| /* 4.2.18 */ |
| |
| /* This procedure adds the reconstructed long term residual signal |
| * ep[0..39] to the estimated signal dpp[0..39] from the long term |
| * analysis filter to compute the reconstructed short term residual |
| * signal dp[-40..-1]; also the reconstructed short term residual |
| * array dp[-120..-41] is updated. |
| */ |
| |
| #if 0 /* Has been inlined in code.c */ |
| void Gsm_Update_of_reconstructed_short_time_residual_signal P3((dpp, ep, dp), |
| word * dpp, /* [0...39] IN */ |
| word * ep, /* [0...39] IN */ |
| word * dp) /* [-120...-1] IN/OUT */ |
| { |
| int k; |
| |
| for (k = 0; k <= 79; k++) |
| dp[ -120 + k ] = dp[ -80 + k ]; |
| |
| for (k = 0; k <= 39; k++) |
| dp[ -40 + k ] = gsm_add( ep[k], dpp[k] ); |
| } |
| #endif /* Has been inlined in code.c */ |
| |
| void Gsm_RPE_Encoding P5((S,e,xmaxc,Mc,xMc), |
| |
| struct gsm_state * S, |
| |
| word * e, /* -5..-1][0..39][40..44 IN/OUT */ |
| word * xmaxc, /* OUT */ |
| word * Mc, /* OUT */ |
| word * xMc) /* [0..12] OUT */ |
| { |
| word x[40]; |
| word xM[13], xMp[13]; |
| word mant, exp; |
| |
| Weighting_filter(e, x); |
| RPE_grid_selection(x, xM, Mc); |
| |
| APCM_quantization( xM, xMc, &mant, &exp, xmaxc); |
| APCM_inverse_quantization( xMc, mant, exp, xMp); |
| |
| RPE_grid_positioning( *Mc, xMp, e ); |
| |
| } |
| |
| void Gsm_RPE_Decoding P5((S, xmaxcr, Mcr, xMcr, erp), |
| struct gsm_state * S, |
| |
| word xmaxcr, |
| word Mcr, |
| word * xMcr, /* [0..12], 3 bits IN */ |
| word * erp /* [0..39] OUT */ |
| ) |
| { |
| word exp, mant; |
| word xMp[ 13 ]; |
| |
| APCM_quantization_xmaxc_to_exp_mant( xmaxcr, &exp, &mant ); |
| APCM_inverse_quantization( xMcr, mant, exp, xMp ); |
| RPE_grid_positioning( Mcr, xMp, erp ); |
| |
| } |