| /* |
| * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische |
| * Universitaet Berlin. See the accompanying file "COPYRIGHT" for |
| * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE. |
| */ |
| |
| /* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/short_term.c,v 1.2 1994/05/10 20:18:47 jutta Exp $ */ |
| |
| #include <stdio.h> |
| #include <assert.h> |
| |
| #include "private.h" |
| |
| #include "gsm.h" |
| #include "proto.h" |
| |
| /* |
| * SHORT TERM ANALYSIS FILTERING SECTION |
| */ |
| |
| /* 4.2.8 */ |
| |
| static void Decoding_of_the_coded_Log_Area_Ratios P2((LARc,LARpp), |
| word * LARc, /* coded log area ratio [0..7] IN */ |
| word * LARpp) /* out: decoded .. */ |
| { |
| register word temp1 /* , temp2 */; |
| register long ltmp; /* for GSM_ADD */ |
| |
| /* This procedure requires for efficient implementation |
| * two tables. |
| * |
| * INVA[1..8] = integer( (32768 * 8) / real_A[1..8]) |
| * MIC[1..8] = minimum value of the LARc[1..8] |
| */ |
| |
| /* Compute the LARpp[1..8] |
| */ |
| |
| /* for (i = 1; i <= 8; i++, B++, MIC++, INVA++, LARc++, LARpp++) { |
| * |
| * temp1 = GSM_ADD( *LARc, *MIC ) << 10; |
| * temp2 = *B << 1; |
| * temp1 = GSM_SUB( temp1, temp2 ); |
| * |
| * assert(*INVA != MIN_WORD); |
| * |
| * temp1 = GSM_MULT_R( *INVA, temp1 ); |
| * *LARpp = GSM_ADD( temp1, temp1 ); |
| * } |
| */ |
| |
| #undef STEP |
| #define STEP( B_TIMES_TWO, MIC, INVA ) \ |
| temp1 = GSM_ADD( *LARc++, MIC ) << 10; \ |
| temp1 = GSM_SUB( temp1, B_TIMES_TWO ); \ |
| temp1 = GSM_MULT_R( INVA, temp1 ); \ |
| *LARpp++ = GSM_ADD( temp1, temp1 ); |
| |
| STEP( 0, -32, 13107 ); |
| STEP( 0, -32, 13107 ); |
| STEP( 4096, -16, 13107 ); |
| STEP( -5120, -16, 13107 ); |
| |
| STEP( 188, -8, 19223 ); |
| STEP( -3584, -8, 17476 ); |
| STEP( -682, -4, 31454 ); |
| STEP( -2288, -4, 29708 ); |
| |
| /* NOTE: the addition of *MIC is used to restore |
| * the sign of *LARc. |
| */ |
| } |
| |
| /* 4.2.9 */ |
| /* Computation of the quantized reflection coefficients |
| */ |
| |
| /* 4.2.9.1 Interpolation of the LARpp[1..8] to get the LARp[1..8] |
| */ |
| |
| /* |
| * Within each frame of 160 analyzed speech samples the short term |
| * analysis and synthesis filters operate with four different sets of |
| * coefficients, derived from the previous set of decoded LARs(LARpp(j-1)) |
| * and the actual set of decoded LARs (LARpp(j)) |
| * |
| * (Initial value: LARpp(j-1)[1..8] = 0.) |
| */ |
| |
| static void Coefficients_0_12 P3((LARpp_j_1, LARpp_j, LARp), |
| register word * LARpp_j_1, |
| register word * LARpp_j, |
| register word * LARp) |
| { |
| register int i; |
| register longword ltmp; |
| |
| for (i = 1; i <= 8; i++, LARp++, LARpp_j_1++, LARpp_j++) { |
| *LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 )); |
| *LARp = GSM_ADD( *LARp, SASR( *LARpp_j_1, 1)); |
| } |
| } |
| |
| static void Coefficients_13_26 P3((LARpp_j_1, LARpp_j, LARp), |
| register word * LARpp_j_1, |
| register word * LARpp_j, |
| register word * LARp) |
| { |
| register int i; |
| register longword ltmp; |
| for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) { |
| *LARp = GSM_ADD( SASR( *LARpp_j_1, 1), SASR( *LARpp_j, 1 )); |
| } |
| } |
| |
| static void Coefficients_27_39 P3((LARpp_j_1, LARpp_j, LARp), |
| register word * LARpp_j_1, |
| register word * LARpp_j, |
| register word * LARp) |
| { |
| register int i; |
| register longword ltmp; |
| |
| for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) { |
| *LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 )); |
| *LARp = GSM_ADD( *LARp, SASR( *LARpp_j, 1 )); |
| } |
| } |
| |
| |
| static void Coefficients_40_159 P2((LARpp_j, LARp), |
| register word * LARpp_j, |
| register word * LARp) |
| { |
| register int i; |
| |
| for (i = 1; i <= 8; i++, LARp++, LARpp_j++) |
| *LARp = *LARpp_j; |
| } |
| |
| /* 4.2.9.2 */ |
| |
| static void LARp_to_rp P1((LARp), |
| register word * LARp) /* [0..7] IN/OUT */ |
| /* |
| * The input of this procedure is the interpolated LARp[0..7] array. |
| * The reflection coefficients, rp[i], are used in the analysis |
| * filter and in the synthesis filter. |
| */ |
| { |
| register int i; |
| register word temp; |
| register longword ltmp; |
| |
| for (i = 1; i <= 8; i++, LARp++) { |
| |
| /* temp = GSM_ABS( *LARp ); |
| * |
| * if (temp < 11059) temp <<= 1; |
| * else if (temp < 20070) temp += 11059; |
| * else temp = GSM_ADD( temp >> 2, 26112 ); |
| * |
| * *LARp = *LARp < 0 ? -temp : temp; |
| */ |
| |
| if (*LARp < 0) { |
| temp = *LARp == MIN_WORD ? MAX_WORD : -(*LARp); |
| *LARp = - ((temp < 11059) ? temp << 1 |
| : ((temp < 20070) ? temp + 11059 |
| : GSM_ADD( temp >> 2, 26112 ))); |
| } else { |
| temp = *LARp; |
| *LARp = (temp < 11059) ? temp << 1 |
| : ((temp < 20070) ? temp + 11059 |
| : GSM_ADD( temp >> 2, 26112 )); |
| } |
| } |
| } |
| |
| |
| /* 4.2.10 */ |
| static void Short_term_analysis_filtering P4((S,rp,k_n,s), |
| struct gsm_state * S, |
| register word * rp, /* [0..7] IN */ |
| register int k_n, /* k_end - k_start */ |
| register word * s /* [0..n-1] IN/OUT */ |
| ) |
| /* |
| * This procedure computes the short term residual signal d[..] to be fed |
| * to the RPE-LTP loop from the s[..] signal and from the local rp[..] |
| * array (quantized reflection coefficients). As the call of this |
| * procedure can be done in many ways (see the interpolation of the LAR |
| * coefficient), it is assumed that the computation begins with index |
| * k_start (for arrays d[..] and s[..]) and stops with index k_end |
| * (k_start and k_end are defined in 4.2.9.1). This procedure also |
| * needs to keep the array u[0..7] in memory for each call. |
| */ |
| { |
| register word * u = S->u; |
| register int i; |
| register word di, zzz, ui, sav, rpi; |
| register longword ltmp; |
| |
| for (; k_n--; s++) { |
| |
| di = sav = *s; |
| |
| for (i = 0; i < 8; i++) { /* YYY */ |
| |
| ui = u[i]; |
| rpi = rp[i]; |
| u[i] = sav; |
| |
| zzz = GSM_MULT_R(rpi, di); |
| sav = GSM_ADD( ui, zzz); |
| |
| zzz = GSM_MULT_R(rpi, ui); |
| di = GSM_ADD( di, zzz ); |
| } |
| |
| *s = di; |
| } |
| } |
| |
| #if defined(USE_FLOAT_MUL) && defined(FAST) |
| |
| static void Fast_Short_term_analysis_filtering P4((S,rp,k_n,s), |
| struct gsm_state * S, |
| register word * rp, /* [0..7] IN */ |
| register int k_n, /* k_end - k_start */ |
| register word * s /* [0..n-1] IN/OUT */ |
| ) |
| { |
| register word * u = S->u; |
| register int i; |
| |
| float uf[8], |
| rpf[8]; |
| |
| register float scalef = 3.0517578125e-5; |
| register float sav, di, temp; |
| |
| for (i = 0; i < 8; ++i) { |
| uf[i] = u[i]; |
| rpf[i] = rp[i] * scalef; |
| } |
| for (; k_n--; s++) { |
| sav = di = *s; |
| for (i = 0; i < 8; ++i) { |
| register float rpfi = rpf[i]; |
| register float ufi = uf[i]; |
| |
| uf[i] = sav; |
| temp = rpfi * di + ufi; |
| di += rpfi * ufi; |
| sav = temp; |
| } |
| *s = di; |
| } |
| for (i = 0; i < 8; ++i) u[i] = uf[i]; |
| } |
| #endif /* ! (defined (USE_FLOAT_MUL) && defined (FAST)) */ |
| |
| static void Short_term_synthesis_filtering P5((S,rrp,k,wt,sr), |
| struct gsm_state * S, |
| register word * rrp, /* [0..7] IN */ |
| register int k, /* k_end - k_start */ |
| register word * wt, /* [0..k-1] IN */ |
| register word * sr /* [0..k-1] OUT */ |
| ) |
| { |
| register word * v = S->v; |
| register int i; |
| register word sri, tmp1, tmp2; |
| register longword ltmp; /* for GSM_ADD & GSM_SUB */ |
| |
| while (k--) { |
| sri = *wt++; |
| for (i = 8; i--;) { |
| |
| /* sri = GSM_SUB( sri, gsm_mult_r( rrp[i], v[i] ) ); |
| */ |
| tmp1 = rrp[i]; |
| tmp2 = v[i]; |
| tmp2 = ( tmp1 == MIN_WORD && tmp2 == MIN_WORD |
| ? MAX_WORD |
| : 0x0FFFF & (( (longword)tmp1 * (longword)tmp2 |
| + 16384) >> 15)) ; |
| |
| sri = GSM_SUB( sri, tmp2 ); |
| |
| /* v[i+1] = GSM_ADD( v[i], gsm_mult_r( rrp[i], sri ) ); |
| */ |
| tmp1 = ( tmp1 == MIN_WORD && sri == MIN_WORD |
| ? MAX_WORD |
| : 0x0FFFF & (( (longword)tmp1 * (longword)sri |
| + 16384) >> 15)) ; |
| |
| v[i+1] = GSM_ADD( v[i], tmp1); |
| } |
| *sr++ = v[0] = sri; |
| } |
| } |
| |
| |
| #if defined(FAST) && defined(USE_FLOAT_MUL) |
| |
| static void Fast_Short_term_synthesis_filtering P5((S,rrp,k,wt,sr), |
| struct gsm_state * S, |
| register word * rrp, /* [0..7] IN */ |
| register int k, /* k_end - k_start */ |
| register word * wt, /* [0..k-1] IN */ |
| register word * sr /* [0..k-1] OUT */ |
| ) |
| { |
| register word * v = S->v; |
| register int i; |
| |
| float va[9], rrpa[8]; |
| register float scalef = 3.0517578125e-5, temp; |
| |
| for (i = 0; i < 8; ++i) { |
| va[i] = v[i]; |
| rrpa[i] = (float)rrp[i] * scalef; |
| } |
| while (k--) { |
| register float sri = *wt++; |
| for (i = 8; i--;) { |
| sri -= rrpa[i] * va[i]; |
| if (sri < -32768.) sri = -32768.; |
| else if (sri > 32767.) sri = 32767.; |
| |
| temp = va[i] + rrpa[i] * sri; |
| if (temp < -32768.) temp = -32768.; |
| else if (temp > 32767.) temp = 32767.; |
| va[i+1] = temp; |
| } |
| *sr++ = va[0] = sri; |
| } |
| for (i = 0; i < 9; ++i) v[i] = va[i]; |
| } |
| |
| #endif /* defined(FAST) && defined(USE_FLOAT_MUL) */ |
| |
| void Gsm_Short_Term_Analysis_Filter P3((S,LARc,s), |
| |
| struct gsm_state * S, |
| |
| word * LARc, /* coded log area ratio [0..7] IN */ |
| word * s /* signal [0..159] IN/OUT */ |
| ) |
| { |
| word * LARpp_j = S->LARpp[ S->j ]; |
| word * LARpp_j_1 = S->LARpp[ S->j ^= 1 ]; |
| |
| word LARp[8]; |
| |
| #undef FILTER |
| #if defined(FAST) && defined(USE_FLOAT_MUL) |
| # define FILTER (* (S->fast \ |
| ? Fast_Short_term_analysis_filtering \ |
| : Short_term_analysis_filtering )) |
| |
| #else |
| # define FILTER Short_term_analysis_filtering |
| #endif |
| |
| Decoding_of_the_coded_Log_Area_Ratios( LARc, LARpp_j ); |
| |
| Coefficients_0_12( LARpp_j_1, LARpp_j, LARp ); |
| LARp_to_rp( LARp ); |
| FILTER( S, LARp, 13, s); |
| |
| Coefficients_13_26( LARpp_j_1, LARpp_j, LARp); |
| LARp_to_rp( LARp ); |
| FILTER( S, LARp, 14, s + 13); |
| |
| Coefficients_27_39( LARpp_j_1, LARpp_j, LARp); |
| LARp_to_rp( LARp ); |
| FILTER( S, LARp, 13, s + 27); |
| |
| Coefficients_40_159( LARpp_j, LARp); |
| LARp_to_rp( LARp ); |
| FILTER( S, LARp, 120, s + 40); |
| } |
| |
| void Gsm_Short_Term_Synthesis_Filter P4((S, LARcr, wt, s), |
| struct gsm_state * S, |
| |
| word * LARcr, /* received log area ratios [0..7] IN */ |
| word * wt, /* received d [0..159] IN */ |
| |
| word * s /* signal s [0..159] OUT */ |
| ) |
| { |
| word * LARpp_j = S->LARpp[ S->j ]; |
| word * LARpp_j_1 = S->LARpp[ S->j ^=1 ]; |
| |
| word LARp[8]; |
| |
| #undef FILTER |
| #if defined(FAST) && defined(USE_FLOAT_MUL) |
| |
| # define FILTER (* (S->fast \ |
| ? Fast_Short_term_synthesis_filtering \ |
| : Short_term_synthesis_filtering )) |
| #else |
| # define FILTER Short_term_synthesis_filtering |
| #endif |
| |
| Decoding_of_the_coded_Log_Area_Ratios( LARcr, LARpp_j ); |
| |
| Coefficients_0_12( LARpp_j_1, LARpp_j, LARp ); |
| LARp_to_rp( LARp ); |
| FILTER( S, LARp, 13, wt, s ); |
| |
| Coefficients_13_26( LARpp_j_1, LARpp_j, LARp); |
| LARp_to_rp( LARp ); |
| FILTER( S, LARp, 14, wt + 13, s + 13 ); |
| |
| Coefficients_27_39( LARpp_j_1, LARpp_j, LARp); |
| LARp_to_rp( LARp ); |
| FILTER( S, LARp, 13, wt + 27, s + 27 ); |
| |
| Coefficients_40_159( LARpp_j, LARp ); |
| LARp_to_rp( LARp ); |
| FILTER(S, LARp, 120, wt + 40, s + 40); |
| } |