| /* |
| * Copyright 2021 Google LLC |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| // This file is automatically generated. Do not modify it. |
| |
| package com.google.ux.material.libmonet.hct; |
| |
| import com.google.ux.material.libmonet.utils.ColorUtils; |
| import com.google.ux.material.libmonet.utils.MathUtils; |
| |
| /** A class that solves the HCT equation. */ |
| public class HctSolver { |
| private HctSolver() {} |
| |
| static final double[][] SCALED_DISCOUNT_FROM_LINRGB = |
| new double[][] { |
| new double[] { |
| 0.001200833568784504, 0.002389694492170889, 0.0002795742885861124, |
| }, |
| new double[] { |
| 0.0005891086651375999, 0.0029785502573438758, 0.0003270666104008398, |
| }, |
| new double[] { |
| 0.00010146692491640572, 0.0005364214359186694, 0.0032979401770712076, |
| }, |
| }; |
| |
| static final double[][] LINRGB_FROM_SCALED_DISCOUNT = |
| new double[][] { |
| new double[] { |
| 1373.2198709594231, -1100.4251190754821, -7.278681089101213, |
| }, |
| new double[] { |
| -271.815969077903, 559.6580465940733, -32.46047482791194, |
| }, |
| new double[] { |
| 1.9622899599665666, -57.173814538844006, 308.7233197812385, |
| }, |
| }; |
| |
| static final double[] Y_FROM_LINRGB = new double[] {0.2126, 0.7152, 0.0722}; |
| |
| static final double[] CRITICAL_PLANES = |
| new double[] { |
| 0.015176349177441876, |
| 0.045529047532325624, |
| 0.07588174588720938, |
| 0.10623444424209313, |
| 0.13658714259697685, |
| 0.16693984095186062, |
| 0.19729253930674434, |
| 0.2276452376616281, |
| 0.2579979360165119, |
| 0.28835063437139563, |
| 0.3188300904430532, |
| 0.350925934958123, |
| 0.3848314933096426, |
| 0.42057480301049466, |
| 0.458183274052838, |
| 0.4976837250274023, |
| 0.5391024159806381, |
| 0.5824650784040898, |
| 0.6277969426914107, |
| 0.6751227633498623, |
| 0.7244668422128921, |
| 0.775853049866786, |
| 0.829304845476233, |
| 0.8848452951698498, |
| 0.942497089126609, |
| 1.0022825574869039, |
| 1.0642236851973577, |
| 1.1283421258858297, |
| 1.1946592148522128, |
| 1.2631959812511864, |
| 1.3339731595349034, |
| 1.407011200216447, |
| 1.4823302800086415, |
| 1.5599503113873272, |
| 1.6398909516233677, |
| 1.7221716113234105, |
| 1.8068114625156377, |
| 1.8938294463134073, |
| 1.9832442801866852, |
| 2.075074464868551, |
| 2.1693382909216234, |
| 2.2660538449872063, |
| 2.36523901573795, |
| 2.4669114995532007, |
| 2.5710888059345764, |
| 2.6777882626779785, |
| 2.7870270208169257, |
| 2.898822059350997, |
| 3.0131901897720907, |
| 3.1301480604002863, |
| 3.2497121605402226, |
| 3.3718988244681087, |
| 3.4967242352587946, |
| 3.624204428461639, |
| 3.754355295633311, |
| 3.887192587735158, |
| 4.022731918402185, |
| 4.160988767090289, |
| 4.301978482107941, |
| 4.445716283538092, |
| 4.592217266055746, |
| 4.741496401646282, |
| 4.893568542229298, |
| 5.048448422192488, |
| 5.20615066083972, |
| 5.3666897647573375, |
| 5.5300801301023865, |
| 5.696336044816294, |
| 5.865471690767354, |
| 6.037501145825082, |
| 6.212438385869475, |
| 6.390297286737924, |
| 6.571091626112461, |
| 6.7548350853498045, |
| 6.941541251256611, |
| 7.131223617812143, |
| 7.323895587840543, |
| 7.5195704746346665, |
| 7.7182615035334345, |
| 7.919981813454504, |
| 8.124744458384042, |
| 8.332562408825165, |
| 8.543448553206703, |
| 8.757415699253682, |
| 8.974476575321063, |
| 9.194643831691977, |
| 9.417930041841839, |
| 9.644347703669503, |
| 9.873909240696694, |
| 10.106627003236781, |
| 10.342513269534024, |
| 10.58158024687427, |
| 10.8238400726681, |
| 11.069304815507364, |
| 11.317986476196008, |
| 11.569896988756009, |
| 11.825048221409341, |
| 12.083451977536606, |
| 12.345119996613247, |
| 12.610063955123938, |
| 12.878295467455942, |
| 13.149826086772048, |
| 13.42466730586372, |
| 13.702830557985108, |
| 13.984327217668513, |
| 14.269168601521828, |
| 14.55736596900856, |
| 14.848930523210871, |
| 15.143873411576273, |
| 15.44220572664832, |
| 15.743938506781891, |
| 16.04908273684337, |
| 16.35764934889634, |
| 16.66964922287304, |
| 16.985093187232053, |
| 17.30399201960269, |
| 17.62635644741625, |
| 17.95219714852476, |
| 18.281524751807332, |
| 18.614349837764564, |
| 18.95068293910138, |
| 19.290534541298456, |
| 19.633915083172692, |
| 19.98083495742689, |
| 20.331304511189067, |
| 20.685334046541502, |
| 21.042933821039977, |
| 21.404114048223256, |
| 21.76888489811322, |
| 22.137256497705877, |
| 22.50923893145328, |
| 22.884842241736916, |
| 23.264076429332462, |
| 23.6469514538663, |
| 24.033477234264016, |
| 24.42366364919083, |
| 24.817520537484558, |
| 25.21505769858089, |
| 25.61628489293138, |
| 26.021211842414342, |
| 26.429848230738664, |
| 26.842203703840827, |
| 27.258287870275353, |
| 27.678110301598522, |
| 28.10168053274597, |
| 28.529008062403893, |
| 28.96010235337422, |
| 29.39497283293396, |
| 29.83362889318845, |
| 30.276079891419332, |
| 30.722335150426627, |
| 31.172403958865512, |
| 31.62629557157785, |
| 32.08401920991837, |
| 32.54558406207592, |
| 33.010999283389665, |
| 33.4802739966603, |
| 33.953417292456834, |
| 34.430438229418264, |
| 34.911345834551085, |
| 35.39614910352207, |
| 35.88485700094671, |
| 36.37747846067349, |
| 36.87402238606382, |
| 37.37449765026789, |
| 37.87891309649659, |
| 38.38727753828926, |
| 38.89959975977785, |
| 39.41588851594697, |
| 39.93615253289054, |
| 40.460400508064545, |
| 40.98864111053629, |
| 41.520882981230194, |
| 42.05713473317016, |
| 42.597404951718396, |
| 43.141702194811224, |
| 43.6900349931913, |
| 44.24241185063697, |
| 44.798841244188324, |
| 45.35933162437017, |
| 45.92389141541209, |
| 46.49252901546552, |
| 47.065252796817916, |
| 47.64207110610409, |
| 48.22299226451468, |
| 48.808024568002054, |
| 49.3971762874833, |
| 49.9904556690408, |
| 50.587870934119984, |
| 51.189430279724725, |
| 51.79514187861014, |
| 52.40501387947288, |
| 53.0190544071392, |
| 53.637271562750364, |
| 54.259673423945976, |
| 54.88626804504493, |
| 55.517063457223934, |
| 56.15206766869424, |
| 56.79128866487574, |
| 57.43473440856916, |
| 58.08241284012621, |
| 58.734331877617365, |
| 59.39049941699807, |
| 60.05092333227251, |
| 60.715611475655585, |
| 61.38457167773311, |
| 62.057811747619894, |
| 62.7353394731159, |
| 63.417162620860914, |
| 64.10328893648692, |
| 64.79372614476921, |
| 65.48848194977529, |
| 66.18756403501224, |
| 66.89098006357258, |
| 67.59873767827808, |
| 68.31084450182222, |
| 69.02730813691093, |
| 69.74813616640164, |
| 70.47333615344107, |
| 71.20291564160104, |
| 71.93688215501312, |
| 72.67524319850172, |
| 73.41800625771542, |
| 74.16517879925733, |
| 74.9167682708136, |
| 75.67278210128072, |
| 76.43322770089146, |
| 77.1981124613393, |
| 77.96744375590167, |
| 78.74122893956174, |
| 79.51947534912904, |
| 80.30219030335869, |
| 81.08938110306934, |
| 81.88105503125999, |
| 82.67721935322541, |
| 83.4778813166706, |
| 84.28304815182372, |
| 85.09272707154808, |
| 85.90692527145302, |
| 86.72564993000343, |
| 87.54890820862819, |
| 88.3767072518277, |
| 89.2090541872801, |
| 90.04595612594655, |
| 90.88742016217518, |
| 91.73345337380438, |
| 92.58406282226491, |
| 93.43925555268066, |
| 94.29903859396902, |
| 95.16341895893969, |
| 96.03240364439274, |
| 96.9059996312159, |
| 97.78421388448044, |
| 98.6670533535366, |
| 99.55452497210776, |
| }; |
| |
| /** |
| * Sanitizes a small enough angle in radians. |
| * |
| * @param angle An angle in radians; must not deviate too much from 0. |
| * @return A coterminal angle between 0 and 2pi. |
| */ |
| static double sanitizeRadians(double angle) { |
| return (angle + Math.PI * 8) % (Math.PI * 2); |
| } |
| |
| /** |
| * Delinearizes an RGB component, returning a floating-point number. |
| * |
| * @param rgbComponent 0.0 <= rgb_component <= 100.0, represents linear R/G/B channel |
| * @return 0.0 <= output <= 255.0, color channel converted to regular RGB space |
| */ |
| static double trueDelinearized(double rgbComponent) { |
| double normalized = rgbComponent / 100.0; |
| double delinearized = 0.0; |
| if (normalized <= 0.0031308) { |
| delinearized = normalized * 12.92; |
| } else { |
| delinearized = 1.055 * Math.pow(normalized, 1.0 / 2.4) - 0.055; |
| } |
| return delinearized * 255.0; |
| } |
| |
| static double chromaticAdaptation(double component) { |
| double af = Math.pow(Math.abs(component), 0.42); |
| return MathUtils.signum(component) * 400.0 * af / (af + 27.13); |
| } |
| |
| /** |
| * Returns the hue of a linear RGB color in CAM16. |
| * |
| * @param linrgb The linear RGB coordinates of a color. |
| * @return The hue of the color in CAM16, in radians. |
| */ |
| static double hueOf(double[] linrgb) { |
| double[] scaledDiscount = MathUtils.matrixMultiply(linrgb, SCALED_DISCOUNT_FROM_LINRGB); |
| double rA = chromaticAdaptation(scaledDiscount[0]); |
| double gA = chromaticAdaptation(scaledDiscount[1]); |
| double bA = chromaticAdaptation(scaledDiscount[2]); |
| // redness-greenness |
| double a = (11.0 * rA + -12.0 * gA + bA) / 11.0; |
| // yellowness-blueness |
| double b = (rA + gA - 2.0 * bA) / 9.0; |
| return Math.atan2(b, a); |
| } |
| |
| static boolean areInCyclicOrder(double a, double b, double c) { |
| double deltaAB = sanitizeRadians(b - a); |
| double deltaAC = sanitizeRadians(c - a); |
| return deltaAB < deltaAC; |
| } |
| |
| /** |
| * Solves the lerp equation. |
| * |
| * @param source The starting number. |
| * @param mid The number in the middle. |
| * @param target The ending number. |
| * @return A number t such that lerp(source, target, t) = mid. |
| */ |
| static double intercept(double source, double mid, double target) { |
| return (mid - source) / (target - source); |
| } |
| |
| static double[] lerpPoint(double[] source, double t, double[] target) { |
| return new double[] { |
| source[0] + (target[0] - source[0]) * t, |
| source[1] + (target[1] - source[1]) * t, |
| source[2] + (target[2] - source[2]) * t, |
| }; |
| } |
| |
| /** |
| * Intersects a segment with a plane. |
| * |
| * @param source The coordinates of point A. |
| * @param coordinate The R-, G-, or B-coordinate of the plane. |
| * @param target The coordinates of point B. |
| * @param axis The axis the plane is perpendicular with. (0: R, 1: G, 2: B) |
| * @return The intersection point of the segment AB with the plane R=coordinate, G=coordinate, or |
| * B=coordinate |
| */ |
| static double[] setCoordinate(double[] source, double coordinate, double[] target, int axis) { |
| double t = intercept(source[axis], coordinate, target[axis]); |
| return lerpPoint(source, t, target); |
| } |
| |
| static boolean isBounded(double x) { |
| return 0.0 <= x && x <= 100.0; |
| } |
| |
| /** |
| * Returns the nth possible vertex of the polygonal intersection. |
| * |
| * @param y The Y value of the plane. |
| * @param n The zero-based index of the point. 0 <= n <= 11. |
| * @return The nth possible vertex of the polygonal intersection of the y plane and the RGB cube, |
| * in linear RGB coordinates, if it exists. If this possible vertex lies outside of the cube, |
| * [-1.0, -1.0, -1.0] is returned. |
| */ |
| static double[] nthVertex(double y, int n) { |
| double kR = Y_FROM_LINRGB[0]; |
| double kG = Y_FROM_LINRGB[1]; |
| double kB = Y_FROM_LINRGB[2]; |
| double coordA = n % 4 <= 1 ? 0.0 : 100.0; |
| double coordB = n % 2 == 0 ? 0.0 : 100.0; |
| if (n < 4) { |
| double g = coordA; |
| double b = coordB; |
| double r = (y - g * kG - b * kB) / kR; |
| if (isBounded(r)) { |
| return new double[] {r, g, b}; |
| } else { |
| return new double[] {-1.0, -1.0, -1.0}; |
| } |
| } else if (n < 8) { |
| double b = coordA; |
| double r = coordB; |
| double g = (y - r * kR - b * kB) / kG; |
| if (isBounded(g)) { |
| return new double[] {r, g, b}; |
| } else { |
| return new double[] {-1.0, -1.0, -1.0}; |
| } |
| } else { |
| double r = coordA; |
| double g = coordB; |
| double b = (y - r * kR - g * kG) / kB; |
| if (isBounded(b)) { |
| return new double[] {r, g, b}; |
| } else { |
| return new double[] {-1.0, -1.0, -1.0}; |
| } |
| } |
| } |
| |
| /** |
| * Finds the segment containing the desired color. |
| * |
| * @param y The Y value of the color. |
| * @param targetHue The hue of the color. |
| * @return A list of two sets of linear RGB coordinates, each corresponding to an endpoint of the |
| * segment containing the desired color. |
| */ |
| static double[][] bisectToSegment(double y, double targetHue) { |
| double[] left = new double[] {-1.0, -1.0, -1.0}; |
| double[] right = left; |
| double leftHue = 0.0; |
| double rightHue = 0.0; |
| boolean initialized = false; |
| boolean uncut = true; |
| for (int n = 0; n < 12; n++) { |
| double[] mid = nthVertex(y, n); |
| if (mid[0] < 0) { |
| continue; |
| } |
| double midHue = hueOf(mid); |
| if (!initialized) { |
| left = mid; |
| right = mid; |
| leftHue = midHue; |
| rightHue = midHue; |
| initialized = true; |
| continue; |
| } |
| if (uncut || areInCyclicOrder(leftHue, midHue, rightHue)) { |
| uncut = false; |
| if (areInCyclicOrder(leftHue, targetHue, midHue)) { |
| right = mid; |
| rightHue = midHue; |
| } else { |
| left = mid; |
| leftHue = midHue; |
| } |
| } |
| } |
| return new double[][] {left, right}; |
| } |
| |
| static double[] midpoint(double[] a, double[] b) { |
| return new double[] { |
| (a[0] + b[0]) / 2, (a[1] + b[1]) / 2, (a[2] + b[2]) / 2, |
| }; |
| } |
| |
| static int criticalPlaneBelow(double x) { |
| return (int) Math.floor(x - 0.5); |
| } |
| |
| static int criticalPlaneAbove(double x) { |
| return (int) Math.ceil(x - 0.5); |
| } |
| |
| /** |
| * Finds a color with the given Y and hue on the boundary of the cube. |
| * |
| * @param y The Y value of the color. |
| * @param targetHue The hue of the color. |
| * @return The desired color, in linear RGB coordinates. |
| */ |
| static double[] bisectToLimit(double y, double targetHue) { |
| double[][] segment = bisectToSegment(y, targetHue); |
| double[] left = segment[0]; |
| double leftHue = hueOf(left); |
| double[] right = segment[1]; |
| for (int axis = 0; axis < 3; axis++) { |
| if (left[axis] != right[axis]) { |
| int lPlane = -1; |
| int rPlane = 255; |
| if (left[axis] < right[axis]) { |
| lPlane = criticalPlaneBelow(trueDelinearized(left[axis])); |
| rPlane = criticalPlaneAbove(trueDelinearized(right[axis])); |
| } else { |
| lPlane = criticalPlaneAbove(trueDelinearized(left[axis])); |
| rPlane = criticalPlaneBelow(trueDelinearized(right[axis])); |
| } |
| for (int i = 0; i < 8; i++) { |
| if (Math.abs(rPlane - lPlane) <= 1) { |
| break; |
| } else { |
| int mPlane = (int) Math.floor((lPlane + rPlane) / 2.0); |
| double midPlaneCoordinate = CRITICAL_PLANES[mPlane]; |
| double[] mid = setCoordinate(left, midPlaneCoordinate, right, axis); |
| double midHue = hueOf(mid); |
| if (areInCyclicOrder(leftHue, targetHue, midHue)) { |
| right = mid; |
| rPlane = mPlane; |
| } else { |
| left = mid; |
| leftHue = midHue; |
| lPlane = mPlane; |
| } |
| } |
| } |
| } |
| } |
| return midpoint(left, right); |
| } |
| |
| static double inverseChromaticAdaptation(double adapted) { |
| double adaptedAbs = Math.abs(adapted); |
| double base = Math.max(0, 27.13 * adaptedAbs / (400.0 - adaptedAbs)); |
| return MathUtils.signum(adapted) * Math.pow(base, 1.0 / 0.42); |
| } |
| |
| /** |
| * Finds a color with the given hue, chroma, and Y. |
| * |
| * @param hueRadians The desired hue in radians. |
| * @param chroma The desired chroma. |
| * @param y The desired Y. |
| * @return The desired color as a hexadecimal integer, if found; 0 otherwise. |
| */ |
| static int findResultByJ(double hueRadians, double chroma, double y) { |
| // Initial estimate of j. |
| double j = Math.sqrt(y) * 11.0; |
| // =========================================================== |
| // Operations inlined from Cam16 to avoid repeated calculation |
| // =========================================================== |
| ViewingConditions viewingConditions = ViewingConditions.DEFAULT; |
| double tInnerCoeff = 1 / Math.pow(1.64 - Math.pow(0.29, viewingConditions.getN()), 0.73); |
| double eHue = 0.25 * (Math.cos(hueRadians + 2.0) + 3.8); |
| double p1 = eHue * (50000.0 / 13.0) * viewingConditions.getNc() * viewingConditions.getNcb(); |
| double hSin = Math.sin(hueRadians); |
| double hCos = Math.cos(hueRadians); |
| for (int iterationRound = 0; iterationRound < 5; iterationRound++) { |
| // =========================================================== |
| // Operations inlined from Cam16 to avoid repeated calculation |
| // =========================================================== |
| double jNormalized = j / 100.0; |
| double alpha = chroma == 0.0 || j == 0.0 ? 0.0 : chroma / Math.sqrt(jNormalized); |
| double t = Math.pow(alpha * tInnerCoeff, 1.0 / 0.9); |
| double ac = |
| viewingConditions.getAw() |
| * Math.pow(jNormalized, 1.0 / viewingConditions.getC() / viewingConditions.getZ()); |
| double p2 = ac / viewingConditions.getNbb(); |
| double gamma = 23.0 * (p2 + 0.305) * t / (23.0 * p1 + 11 * t * hCos + 108.0 * t * hSin); |
| double a = gamma * hCos; |
| double b = gamma * hSin; |
| double rA = (460.0 * p2 + 451.0 * a + 288.0 * b) / 1403.0; |
| double gA = (460.0 * p2 - 891.0 * a - 261.0 * b) / 1403.0; |
| double bA = (460.0 * p2 - 220.0 * a - 6300.0 * b) / 1403.0; |
| double rCScaled = inverseChromaticAdaptation(rA); |
| double gCScaled = inverseChromaticAdaptation(gA); |
| double bCScaled = inverseChromaticAdaptation(bA); |
| double[] linrgb = |
| MathUtils.matrixMultiply( |
| new double[] {rCScaled, gCScaled, bCScaled}, LINRGB_FROM_SCALED_DISCOUNT); |
| // =========================================================== |
| // Operations inlined from Cam16 to avoid repeated calculation |
| // =========================================================== |
| if (linrgb[0] < 0 || linrgb[1] < 0 || linrgb[2] < 0) { |
| return 0; |
| } |
| double kR = Y_FROM_LINRGB[0]; |
| double kG = Y_FROM_LINRGB[1]; |
| double kB = Y_FROM_LINRGB[2]; |
| double fnj = kR * linrgb[0] + kG * linrgb[1] + kB * linrgb[2]; |
| if (fnj <= 0) { |
| return 0; |
| } |
| if (iterationRound == 4 || Math.abs(fnj - y) < 0.002) { |
| if (linrgb[0] > 100.01 || linrgb[1] > 100.01 || linrgb[2] > 100.01) { |
| return 0; |
| } |
| return ColorUtils.argbFromLinrgb(linrgb); |
| } |
| // Iterates with Newton method, |
| // Using 2 * fn(j) / j as the approximation of fn'(j) |
| j = j - (fnj - y) * j / (2 * fnj); |
| } |
| return 0; |
| } |
| |
| /** |
| * Finds an sRGB color with the given hue, chroma, and L*, if possible. |
| * |
| * @param hueDegrees The desired hue, in degrees. |
| * @param chroma The desired chroma. |
| * @param lstar The desired L*. |
| * @return A hexadecimal representing the sRGB color. The color has sufficiently close hue, |
| * chroma, and L* to the desired values, if possible; otherwise, the hue and L* will be |
| * sufficiently close, and chroma will be maximized. |
| */ |
| public static int solveToInt(double hueDegrees, double chroma, double lstar) { |
| if (chroma < 0.0001 || lstar < 0.0001 || lstar > 99.9999) { |
| return ColorUtils.argbFromLstar(lstar); |
| } |
| hueDegrees = MathUtils.sanitizeDegreesDouble(hueDegrees); |
| double hueRadians = hueDegrees / 180 * Math.PI; |
| double y = ColorUtils.yFromLstar(lstar); |
| int exactAnswer = findResultByJ(hueRadians, chroma, y); |
| if (exactAnswer != 0) { |
| return exactAnswer; |
| } |
| double[] linrgb = bisectToLimit(y, hueRadians); |
| return ColorUtils.argbFromLinrgb(linrgb); |
| } |
| |
| /** |
| * Finds an sRGB color with the given hue, chroma, and L*, if possible. |
| * |
| * @param hueDegrees The desired hue, in degrees. |
| * @param chroma The desired chroma. |
| * @param lstar The desired L*. |
| * @return A CAM16 object representing the sRGB color. The color has sufficiently close hue, |
| * chroma, and L* to the desired values, if possible; otherwise, the hue and L* will be |
| * sufficiently close, and chroma will be maximized. |
| */ |
| public static Cam16 solveToCam(double hueDegrees, double chroma, double lstar) { |
| return Cam16.fromInt(solveToInt(hueDegrees, chroma, lstar)); |
| } |
| } |
| |