blob: e9192862efa9a18c00c8c4af03c6b703537e5d5e [file] [log] [blame]
/**
* \file sha3_xkcp.c
* \brief Implementation of the OQS SHA3 API using the XKCP low interface.
* The high level keccak_absorb, squeezeblocks, etc. are based on fips202.c
* from PQClean (https://github.com/PQClean/PQClean/tree/master/common)
*
* SPDX-License-Identifier: MIT
*/
#include "sha3.h"
#include "xkcp_dispatch.h"
#include <oqs/common.h>
#if OQS_USE_PTHREADS
#include <pthread.h>
#endif
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#define KECCAK_CTX_ALIGNMENT 32
#define _KECCAK_CTX_BYTES (200+sizeof(uint64_t))
#define KECCAK_CTX_BYTES (KECCAK_CTX_ALIGNMENT * \
((_KECCAK_CTX_BYTES + KECCAK_CTX_ALIGNMENT - 1)/KECCAK_CTX_ALIGNMENT))
#if OQS_USE_PTHREADS
static pthread_once_t dispatch_once_control = PTHREAD_ONCE_INIT;
#endif
static KeccakInitFn *Keccak_Initialize_ptr = NULL;
static KeccakAddByteFn *Keccak_AddByte_ptr = NULL;
static KeccakAddBytesFn *Keccak_AddBytes_ptr = NULL;
static KeccakPermuteFn *Keccak_Permute_ptr = NULL;
static KeccakExtractBytesFn *Keccak_ExtractBytes_ptr = NULL;
static KeccakFastLoopAbsorbFn *Keccak_FastLoopAbsorb_ptr = NULL;
static void Keccak_Dispatch(void) {
// TODO: Simplify this when we have a Windows-compatible AVX2 implementation of SHA3
#if defined(OQS_DIST_X86_64_BUILD)
#if defined(OQS_ENABLE_SHA3_xkcp_low_avx2)
if (OQS_CPU_has_extension(OQS_CPU_EXT_AVX2)) {
Keccak_Initialize_ptr = &KeccakP1600_Initialize_avx2;
Keccak_AddByte_ptr = &KeccakP1600_AddByte_avx2;
Keccak_AddBytes_ptr = &KeccakP1600_AddBytes_avx2;
Keccak_Permute_ptr = &KeccakP1600_Permute_24rounds_avx2;
Keccak_ExtractBytes_ptr = &KeccakP1600_ExtractBytes_avx2;
Keccak_FastLoopAbsorb_ptr = &KeccakF1600_FastLoop_Absorb_avx2;
} else {
Keccak_Initialize_ptr = &KeccakP1600_Initialize_plain64;
Keccak_AddByte_ptr = &KeccakP1600_AddByte_plain64;
Keccak_AddBytes_ptr = &KeccakP1600_AddBytes_plain64;
Keccak_Permute_ptr = &KeccakP1600_Permute_24rounds_plain64;
Keccak_ExtractBytes_ptr = &KeccakP1600_ExtractBytes_plain64;
Keccak_FastLoopAbsorb_ptr = &KeccakF1600_FastLoop_Absorb_plain64;
}
#else // Windows
Keccak_Initialize_ptr = &KeccakP1600_Initialize_plain64;
Keccak_AddByte_ptr = &KeccakP1600_AddByte_plain64;
Keccak_AddBytes_ptr = &KeccakP1600_AddBytes_plain64;
Keccak_Permute_ptr = &KeccakP1600_Permute_24rounds_plain64;
Keccak_ExtractBytes_ptr = &KeccakP1600_ExtractBytes_plain64;
Keccak_FastLoopAbsorb_ptr = &KeccakF1600_FastLoop_Absorb_plain64;
#endif
#else
Keccak_Initialize_ptr = &KeccakP1600_Initialize;
Keccak_AddByte_ptr = &KeccakP1600_AddByte;
Keccak_AddBytes_ptr = &KeccakP1600_AddBytes;
Keccak_Permute_ptr = &KeccakP1600_Permute_24rounds;
Keccak_ExtractBytes_ptr = &KeccakP1600_ExtractBytes;
Keccak_FastLoopAbsorb_ptr = &KeccakF1600_FastLoop_Absorb;
#endif
}
/*************************************************
* Name: keccak_inc_reset
*
* Description: Initializes the incremental Keccak state to zero.
*
* Arguments: - uint64_t *s: pointer to input/output incremental state
* First 25 values represent Keccak state.
* 26th value represents either the number of absorbed bytes
* that have not been permuted, or not-yet-squeezed bytes.
**************************************************/
static void keccak_inc_reset(uint64_t *s) {
#if OQS_USE_PTHREADS
pthread_once(&dispatch_once_control, Keccak_Dispatch);
#else
if (Keccak_Initialize_ptr == NULL) {
Keccak_Dispatch();
}
#endif
(*Keccak_Initialize_ptr)(s);
s[25] = 0;
}
/*************************************************
* Name: keccak_inc_absorb
*
* Description: Incremental keccak absorb
* Preceded by keccak_inc_reset, succeeded by keccak_inc_finalize
*
* Arguments: - uint64_t *s: pointer to input/output incremental state
* First 25 values represent Keccak state.
* 26th value represents either the number of absorbed bytes
* that have not been permuted, or not-yet-squeezed bytes.
* - uint32_t r: rate in bytes (e.g., 168 for SHAKE128)
* - const uint8_t *m: pointer to input to be absorbed into s
* - size_t mlen: length of input in bytes
**************************************************/
static void keccak_inc_absorb(uint64_t *s, uint32_t r, const uint8_t *m,
size_t mlen) {
uint64_t c = r - s[25];
if (s[25] && mlen >= c) {
(*Keccak_AddBytes_ptr)(s, m, (unsigned int)s[25], (unsigned int)c);
(*Keccak_Permute_ptr)(s);
mlen -= c;
m += c;
s[25] = 0;
}
#ifdef KeccakF1600_FastLoop_supported
if (mlen >= r) {
c = (*Keccak_FastLoop_Absorb_ptr)(s, r / 8, m, mlen);
mlen -= c;
m += c;
}
#else
while (mlen >= r) {
(*Keccak_AddBytes_ptr)(s, m, 0, r);
(*Keccak_Permute_ptr)(s);
mlen -= r;
m += r;
}
#endif
(*Keccak_AddBytes_ptr)(s, m, (unsigned int)s[25], (unsigned int)mlen);
s[25] += mlen;
}
/*************************************************
* Name: keccak_inc_finalize
*
* Description: Finalizes Keccak absorb phase, prepares for squeezing
*
* Arguments: - uint64_t *s: pointer to input/output incremental state
* First 25 values represent Keccak state.
* 26th value represents either the number of absorbed bytes
* that have not been permuted, or not-yet-squeezed bytes.
* - uint32_t r: rate in bytes (e.g., 168 for SHAKE128)
* - uint8_t p: domain-separation byte for different
* Keccak-derived functions
**************************************************/
static void keccak_inc_finalize(uint64_t *s, uint32_t r, uint8_t p) {
/* After keccak_inc_absorb, we are guaranteed that s[25] < r,
so we can always use one more byte for p in the current state. */
(*Keccak_AddByte_ptr)(s, p, (unsigned int)s[25]);
(*Keccak_AddByte_ptr)(s, 0x80, (unsigned int)(r - 1));
s[25] = 0;
}
/*************************************************
* Name: keccak_inc_squeeze
*
* Description: Incremental Keccak squeeze; can be called on byte-level
*
* Arguments: - uint8_t *h: pointer to output bytes
* - size_t outlen: number of bytes to be squeezed
* - uint64_t *s: pointer to input/output incremental state
* First 25 values represent Keccak state.
* 26th value represents either the number of absorbed bytes
* that have not been permuted, or not-yet-squeezed bytes.
* - uint32_t r: rate in bytes (e.g., 168 for SHAKE128)
**************************************************/
static void keccak_inc_squeeze(uint8_t *h, size_t outlen,
uint64_t *s, uint32_t r) {
while (outlen > s[25]) {
(*Keccak_ExtractBytes_ptr)(s, h, (unsigned int)(r - s[25]), (unsigned int)s[25]);
(*Keccak_Permute_ptr)(s);
h += s[25];
outlen -= s[25];
s[25] = r;
}
(*Keccak_ExtractBytes_ptr)(s, h, (unsigned int)(r - s[25]), (unsigned int)outlen);
s[25] -= outlen;
}
/* SHA3-256 */
void OQS_SHA3_sha3_256(uint8_t *output, const uint8_t *input, size_t inlen) {
OQS_SHA3_sha3_256_inc_ctx s;
OQS_SHA3_sha3_256_inc_init(&s);
OQS_SHA3_sha3_256_inc_absorb(&s, input, inlen);
OQS_SHA3_sha3_256_inc_finalize(output, &s);
OQS_SHA3_sha3_256_inc_ctx_release(&s);
}
void OQS_SHA3_sha3_256_inc_init(OQS_SHA3_sha3_256_inc_ctx *state) {
state->ctx = OQS_MEM_aligned_alloc(KECCAK_CTX_ALIGNMENT, KECCAK_CTX_BYTES);
if (state->ctx == NULL) {
exit(111);
}
keccak_inc_reset((uint64_t *)state->ctx);
}
void OQS_SHA3_sha3_256_inc_absorb(OQS_SHA3_sha3_256_inc_ctx *state, const uint8_t *input, size_t inlen) {
keccak_inc_absorb((uint64_t *)state->ctx, OQS_SHA3_SHA3_256_RATE, input, inlen);
}
void OQS_SHA3_sha3_256_inc_finalize(uint8_t *output, OQS_SHA3_sha3_256_inc_ctx *state) {
keccak_inc_finalize((uint64_t *)state->ctx, OQS_SHA3_SHA3_256_RATE, 0x06);
keccak_inc_squeeze(output, 32, (uint64_t *)state->ctx, OQS_SHA3_SHA3_256_RATE);
}
void OQS_SHA3_sha3_256_inc_ctx_release(OQS_SHA3_sha3_256_inc_ctx *state) {
OQS_MEM_aligned_free(state->ctx);
}
void OQS_SHA3_sha3_256_inc_ctx_clone(OQS_SHA3_sha3_256_inc_ctx *dest, const OQS_SHA3_sha3_256_inc_ctx *src) {
memcpy(dest->ctx, src->ctx, KECCAK_CTX_BYTES);
}
void OQS_SHA3_sha3_256_inc_ctx_reset(OQS_SHA3_sha3_256_inc_ctx *state) {
keccak_inc_reset((uint64_t *)state->ctx);
}
/* SHA3-384 */
void OQS_SHA3_sha3_384(uint8_t *output, const uint8_t *input, size_t inlen) {
OQS_SHA3_sha3_384_inc_ctx s;
OQS_SHA3_sha3_384_inc_init(&s);
OQS_SHA3_sha3_384_inc_absorb(&s, input, inlen);
OQS_SHA3_sha3_384_inc_finalize(output, &s);
OQS_SHA3_sha3_384_inc_ctx_release(&s);
}
void OQS_SHA3_sha3_384_inc_init(OQS_SHA3_sha3_384_inc_ctx *state) {
state->ctx = OQS_MEM_aligned_alloc(KECCAK_CTX_ALIGNMENT, KECCAK_CTX_BYTES);
if (state->ctx == NULL) {
exit(111);
}
keccak_inc_reset((uint64_t *)state->ctx);
}
void OQS_SHA3_sha3_384_inc_absorb(OQS_SHA3_sha3_384_inc_ctx *state, const uint8_t *input, size_t inlen) {
keccak_inc_absorb((uint64_t *)state->ctx, OQS_SHA3_SHA3_384_RATE, input, inlen);
}
void OQS_SHA3_sha3_384_inc_finalize(uint8_t *output, OQS_SHA3_sha3_384_inc_ctx *state) {
keccak_inc_finalize((uint64_t *)state->ctx, OQS_SHA3_SHA3_384_RATE, 0x06);
keccak_inc_squeeze(output, 48, (uint64_t *)state->ctx, OQS_SHA3_SHA3_384_RATE);
}
void OQS_SHA3_sha3_384_inc_ctx_release(OQS_SHA3_sha3_384_inc_ctx *state) {
OQS_MEM_aligned_free(state->ctx);
}
void OQS_SHA3_sha3_384_inc_ctx_clone(OQS_SHA3_sha3_384_inc_ctx *dest, const OQS_SHA3_sha3_384_inc_ctx *src) {
memcpy(dest->ctx, src->ctx, KECCAK_CTX_BYTES);
}
void OQS_SHA3_sha3_384_inc_ctx_reset(OQS_SHA3_sha3_384_inc_ctx *state) {
keccak_inc_reset((uint64_t *)state->ctx);
}
/* SHA3-512 */
void OQS_SHA3_sha3_512(uint8_t *output, const uint8_t *input, size_t inlen) {
OQS_SHA3_sha3_512_inc_ctx s;
OQS_SHA3_sha3_512_inc_init(&s);
OQS_SHA3_sha3_512_inc_absorb(&s, input, inlen);
OQS_SHA3_sha3_512_inc_finalize(output, &s);
OQS_SHA3_sha3_512_inc_ctx_release(&s);
}
void OQS_SHA3_sha3_512_inc_init(OQS_SHA3_sha3_512_inc_ctx *state) {
state->ctx = OQS_MEM_aligned_alloc(KECCAK_CTX_ALIGNMENT, KECCAK_CTX_BYTES);
if (state->ctx == NULL) {
exit(111);
}
keccak_inc_reset((uint64_t *)state->ctx);
}
void OQS_SHA3_sha3_512_inc_absorb(OQS_SHA3_sha3_512_inc_ctx *state, const uint8_t *input, size_t inlen) {
keccak_inc_absorb((uint64_t *)state->ctx, OQS_SHA3_SHA3_512_RATE, input, inlen);
}
void OQS_SHA3_sha3_512_inc_finalize(uint8_t *output, OQS_SHA3_sha3_512_inc_ctx *state) {
keccak_inc_finalize((uint64_t *)state->ctx, OQS_SHA3_SHA3_512_RATE, 0x06);
keccak_inc_squeeze(output, 64, (uint64_t *)state->ctx, OQS_SHA3_SHA3_512_RATE);
}
void OQS_SHA3_sha3_512_inc_ctx_release(OQS_SHA3_sha3_512_inc_ctx *state) {
OQS_MEM_aligned_free(state->ctx);
}
void OQS_SHA3_sha3_512_inc_ctx_clone(OQS_SHA3_sha3_512_inc_ctx *dest, const OQS_SHA3_sha3_512_inc_ctx *src) {
memcpy(dest->ctx, src->ctx, KECCAK_CTX_BYTES);
}
void OQS_SHA3_sha3_512_inc_ctx_reset(OQS_SHA3_sha3_512_inc_ctx *state) {
keccak_inc_reset((uint64_t *)state->ctx);
}
/* SHAKE128 */
void OQS_SHA3_shake128(uint8_t *output, size_t outlen, const uint8_t *input, size_t inlen) {
OQS_SHA3_shake128_inc_ctx s;
OQS_SHA3_shake128_inc_init(&s);
OQS_SHA3_shake128_inc_absorb(&s, input, inlen);
OQS_SHA3_shake128_inc_finalize(&s);
OQS_SHA3_shake128_inc_squeeze(output, outlen, &s);
OQS_SHA3_shake128_inc_ctx_release(&s);
}
/* SHAKE128 incremental */
void OQS_SHA3_shake128_inc_init(OQS_SHA3_shake128_inc_ctx *state) {
state->ctx = OQS_MEM_aligned_alloc(KECCAK_CTX_ALIGNMENT, KECCAK_CTX_BYTES);
if (state->ctx == NULL) {
exit(111);
}
keccak_inc_reset((uint64_t *)state->ctx);
}
void OQS_SHA3_shake128_inc_absorb(OQS_SHA3_shake128_inc_ctx *state, const uint8_t *input, size_t inlen) {
keccak_inc_absorb((uint64_t *)state->ctx, OQS_SHA3_SHAKE128_RATE, input, inlen);
}
void OQS_SHA3_shake128_inc_finalize(OQS_SHA3_shake128_inc_ctx *state) {
keccak_inc_finalize((uint64_t *)state->ctx, OQS_SHA3_SHAKE128_RATE, 0x1F);
}
void OQS_SHA3_shake128_inc_squeeze(uint8_t *output, size_t outlen, OQS_SHA3_shake128_inc_ctx *state) {
keccak_inc_squeeze(output, outlen, (uint64_t *)state->ctx, OQS_SHA3_SHAKE128_RATE);
}
void OQS_SHA3_shake128_inc_ctx_clone(OQS_SHA3_shake128_inc_ctx *dest, const OQS_SHA3_shake128_inc_ctx *src) {
memcpy(dest->ctx, src->ctx, KECCAK_CTX_BYTES);
}
void OQS_SHA3_shake128_inc_ctx_release(OQS_SHA3_shake128_inc_ctx *state) {
OQS_MEM_aligned_free(state->ctx);
}
void OQS_SHA3_shake128_inc_ctx_reset(OQS_SHA3_shake128_inc_ctx *state) {
keccak_inc_reset((uint64_t *)state->ctx);
}
/* SHAKE256 */
void OQS_SHA3_shake256(uint8_t *output, size_t outlen, const uint8_t *input, size_t inlen) {
OQS_SHA3_shake256_inc_ctx s;
OQS_SHA3_shake256_inc_init(&s);
OQS_SHA3_shake256_inc_absorb(&s, input, inlen);
OQS_SHA3_shake256_inc_finalize(&s);
OQS_SHA3_shake256_inc_squeeze(output, outlen, &s);
OQS_SHA3_shake256_inc_ctx_release(&s);
}
/* SHAKE256 incremental */
void OQS_SHA3_shake256_inc_init(OQS_SHA3_shake256_inc_ctx *state) {
state->ctx = OQS_MEM_aligned_alloc(KECCAK_CTX_ALIGNMENT, KECCAK_CTX_BYTES);
if (state->ctx == NULL) {
exit(111);
}
keccak_inc_reset((uint64_t *)state->ctx);
}
void OQS_SHA3_shake256_inc_absorb(OQS_SHA3_shake256_inc_ctx *state, const uint8_t *input, size_t inlen) {
keccak_inc_absorb((uint64_t *)state->ctx, OQS_SHA3_SHAKE256_RATE, input, inlen);
}
void OQS_SHA3_shake256_inc_finalize(OQS_SHA3_shake256_inc_ctx *state) {
keccak_inc_finalize((uint64_t *)state->ctx, OQS_SHA3_SHAKE256_RATE, 0x1F);
}
void OQS_SHA3_shake256_inc_squeeze(uint8_t *output, size_t outlen, OQS_SHA3_shake256_inc_ctx *state) {
keccak_inc_squeeze(output, outlen, state->ctx, OQS_SHA3_SHAKE256_RATE);
}
void OQS_SHA3_shake256_inc_ctx_release(OQS_SHA3_shake256_inc_ctx *state) {
OQS_MEM_aligned_free(state->ctx);
}
void OQS_SHA3_shake256_inc_ctx_clone(OQS_SHA3_shake256_inc_ctx *dest, const OQS_SHA3_shake256_inc_ctx *src) {
memcpy(dest->ctx, src->ctx, KECCAK_CTX_BYTES);
}
void OQS_SHA3_shake256_inc_ctx_reset(OQS_SHA3_shake256_inc_ctx *state) {
keccak_inc_reset((uint64_t *)state->ctx);
}