blob: 550a6e434867385746b29b79fe0a57f48e5eb30e [file] [log] [blame]
/*
* Falcon signature generation.
*
* ==========================(LICENSE BEGIN)============================
*
* Copyright (c) 2017-2019 Falcon Project
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ===========================(LICENSE END)=============================
*
* @author Thomas Pornin <[email protected]>
*/
#include "inner.h"
#include "macrof.h"
#include "macrofx4.h"
#include "util.h"
#include <arm_neon.h>
#include <stdio.h>
/* =================================================================== */
/*
* Compute degree N from logarithm 'logn'.
*/
#define MKN(logn) ((size_t)1 << (logn))
/* =================================================================== */
/*
* Binary case:
* N = 2^logn
* phi = X^N+1
*/
/*
* Get the size of the LDL tree for an input with polynomials of size
* 2^logn. The size is expressed in the number of elements.
*/
static inline unsigned
ffLDL_treesize(unsigned logn) {
/*
* For logn = 0 (polynomials are constant), the "tree" is a
* single element. Otherwise, the tree node has size 2^logn, and
* has two child trees for size logn-1 each. Thus, treesize s()
* must fulfill these two relations:
*
* s(0) = 1
* s(logn) = (2^logn) + 2*s(logn-1)
*/
return (logn + 1) << logn;
}
/*
* Inner function for ffLDL_fft(). It expects the matrix to be both
* auto-adjoint and quasicyclic; also, it uses the source operands
* as modifiable temporaries.
*
* tmp[] must have room for at least one polynomial.
*/
static void
ffLDL_fft_inner(fpr *restrict tree,
fpr *restrict g0, fpr *restrict g1, unsigned logn, fpr *restrict tmp) {
size_t n, hn;
n = MKN(logn);
if (n == 1) {
tree[0] = g0[0];
return;
}
hn = n >> 1;
/*
* The LDL decomposition yields L (which is written in the tree)
* and the diagonal of D. Since d00 = g0, we just write d11
* into tmp.
*/
PQCLEAN_FALCONPADDED512_AARCH64_poly_LDLmv_fft(tmp, tree, g0, g1, g0, logn);
/*
* Split d00 (currently in g0) and d11 (currently in tmp). We
* reuse g0 and g1 as temporary storage spaces:
* d00 splits into g1, g1+hn
* d11 splits into g0, g0+hn
*/
PQCLEAN_FALCONPADDED512_AARCH64_poly_split_fft(g1, g1 + hn, g0, logn);
PQCLEAN_FALCONPADDED512_AARCH64_poly_split_fft(g0, g0 + hn, tmp, logn);
/*
* Each split result is the first row of a new auto-adjoint
* quasicyclic matrix for the next recursive step.
*/
ffLDL_fft_inner(tree + n,
g1, g1 + hn, logn - 1, tmp);
ffLDL_fft_inner(tree + n + ffLDL_treesize(logn - 1),
g0, g0 + hn, logn - 1, tmp);
}
/*
* Compute the ffLDL tree of an auto-adjoint matrix G. The matrix
* is provided as three polynomials (FFT representation).
*
* The "tree" array is filled with the computed tree, of size
* (logn+1)*(2^logn) elements (see ffLDL_treesize()).
*
* Input arrays MUST NOT overlap, except possibly the three unmodified
* arrays g00, g01 and g11. tmp[] should have room for at least three
* polynomials of 2^logn elements each.
*/
static void
ffLDL_fft(fpr *restrict tree, const fpr *restrict g00,
const fpr *restrict g01, const fpr *restrict g11,
unsigned logn, fpr *restrict tmp) {
size_t n, hn;
fpr *d00, *d11;
n = MKN(logn);
if (n == 1) {
tree[0] = g00[0];
return;
}
hn = n >> 1;
d00 = tmp;
d11 = tmp + n;
tmp += n << 1;
memcpy(d00, g00, n * sizeof * g00);
PQCLEAN_FALCONPADDED512_AARCH64_poly_LDLmv_fft(d11, tree, g00, g01, g11, logn);
PQCLEAN_FALCONPADDED512_AARCH64_poly_split_fft(tmp, tmp + hn, d00, logn);
PQCLEAN_FALCONPADDED512_AARCH64_poly_split_fft(d00, d00 + hn, d11, logn);
memcpy(d11, tmp, n * sizeof * tmp);
ffLDL_fft_inner(tree + n, d11, d11 + hn, logn - 1, tmp);
ffLDL_fft_inner(tree + n + ffLDL_treesize(logn - 1), d00, d00 + hn, logn - 1, tmp);
}
/*
* Normalize an ffLDL tree: each leaf of value x is replaced with
* sigma / sqrt(x).
*/
static void
ffLDL_binary_normalize(fpr *tree, unsigned orig_logn, unsigned logn) {
/*
* TODO: make an iterative version.
*/
size_t n;
n = MKN(logn);
if (n == 1) {
/*
* We actually store in the tree leaf the inverse of
* the value mandated by the specification: this
* saves a division both here and in the sampler.
*/
tree[0] = fpr_mul(fpr_sqrt(tree[0]), fpr_inv_sigma_9);
} else {
ffLDL_binary_normalize(tree + n, orig_logn, logn - 1);
ffLDL_binary_normalize(tree + n + ffLDL_treesize(logn - 1),
orig_logn, logn - 1);
}
}
/* =================================================================== */
/*
* The expanded private key contains:
* - The B0 matrix (four elements)
* - The ffLDL tree
*/
static inline size_t
skoff_b00(unsigned logn) {
(void)logn;
return 0;
}
static inline size_t
skoff_b01(unsigned logn) {
return MKN(logn);
}
static inline size_t
skoff_b10(unsigned logn) {
return 2 * MKN(logn);
}
static inline size_t
skoff_b11(unsigned logn) {
return 3 * MKN(logn);
}
static inline size_t
skoff_tree(unsigned logn) {
return 4 * MKN(logn);
}
/* see inner.h */
void
PQCLEAN_FALCONPADDED512_AARCH64_expand_privkey(fpr *restrict expanded_key,
const int8_t *f, const int8_t *g,
const int8_t *F, const int8_t *G,
uint8_t *restrict tmp) {
fpr *rf, *rg, *rF, *rG;
fpr *b00, *b01, *b10, *b11;
fpr *g00, *g01, *g11, *gxx;
fpr *tree;
b00 = expanded_key + skoff_b00(FALCON_LOGN);
b01 = expanded_key + skoff_b01(FALCON_LOGN);
b10 = expanded_key + skoff_b10(FALCON_LOGN);
b11 = expanded_key + skoff_b11(FALCON_LOGN);
tree = expanded_key + skoff_tree(FALCON_LOGN);
/*
* We load the private key elements directly into the B0 matrix,
* since B0 = [[g, -f], [G, -F]].
*/
rg = b00;
rf = b01;
rG = b10;
rF = b11;
PQCLEAN_FALCONPADDED512_AARCH64_smallints_to_fpr(rg, g, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_FFT(rg, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_smallints_to_fpr(rf, f, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_FFT(rf, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_poly_neg(rf, rf, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_smallints_to_fpr(rG, G, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_FFT(rG, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_smallints_to_fpr(rF, F, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_FFT(rF, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_poly_neg(rF, rF, FALCON_LOGN);
/*
* Compute the FFT for the key elements, and negate f and F.
*/
/*
* The Gram matrix is G = B·B*. Formulas are:
* g00 = b00*adj(b00) + b01*adj(b01)
* g01 = b00*adj(b10) + b01*adj(b11)
* g10 = b10*adj(b00) + b11*adj(b01)
* g11 = b10*adj(b10) + b11*adj(b11)
*
* For historical reasons, this implementation uses
* g00, g01 and g11 (upper triangle).
*/
g00 = (fpr *)tmp;
g01 = g00 + FALCON_N;
g11 = g01 + FALCON_N;
gxx = g11 + FALCON_N;
PQCLEAN_FALCONPADDED512_AARCH64_poly_mulselfadj_fft(g00, b00, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_poly_mulselfadj_add_fft(g00, g00, b01, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_poly_muladj_fft(g01, b00, b10, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_poly_muladj_add_fft(g01, g01, b01, b11, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_poly_mulselfadj_fft(g11, b10, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_poly_mulselfadj_add_fft(g11, g11, b11, FALCON_LOGN);
/*
* Compute the Falcon tree.
*/
ffLDL_fft(tree, g00, g01, g11, FALCON_LOGN, gxx);
/*
* Normalize tree.
*/
ffLDL_binary_normalize(tree, FALCON_LOGN, FALCON_LOGN);
}
typedef int (*samplerZ)(void *ctx, fpr mu, fpr sigma);
/*
* Perform Fast Fourier Sampling for target vector t. The Gram matrix
* is provided (G = [[g00, g01], [adj(g01), g11]]). The sampled vector
* is written over (t0,t1). The Gram matrix is modified as well. The
* tmp[] buffer must have room for four polynomials.
*/
static void
ffSampling_fft_dyntree(samplerZ samp, void *samp_ctx,
fpr *restrict t0, fpr *restrict t1,
fpr *restrict g00, fpr *restrict g01, fpr *restrict g11,
unsigned orig_logn, unsigned logn, fpr *restrict tmp) {
size_t n, hn;
fpr *z0, *z1;
/*
* Deepest level: the LDL tree leaf value is just g00 (the
* array has length only 1 at this point); we normalize it
* with regards to sigma, then use it for sampling.
*/
if (logn == 0) {
fpr leaf;
leaf = g00[0];
leaf = fpr_mul(fpr_sqrt(leaf), fpr_inv_sigma_9);
t0[0] = fpr_of(samp(samp_ctx, t0[0], leaf));
t1[0] = fpr_of(samp(samp_ctx, t1[0], leaf));
return;
}
n = (size_t)1 << logn;
hn = n >> 1;
/*
* Decompose G into LDL. We only need d00 (identical to g00),
* d11, and l10; we do that in place.
*/
PQCLEAN_FALCONPADDED512_AARCH64_poly_LDL_fft(g00, g01, g11, logn);
/*
* Split d00 and d11 and expand them into half-size quasi-cyclic
* Gram matrices. We also save l10 in tmp[].
*/
PQCLEAN_FALCONPADDED512_AARCH64_poly_split_fft(tmp, tmp + hn, g00, logn);
memcpy(g00, tmp, n * sizeof * tmp);
PQCLEAN_FALCONPADDED512_AARCH64_poly_split_fft(tmp, tmp + hn, g11, logn);
memcpy(g11, tmp, n * sizeof * tmp);
memcpy(tmp, g01, n * sizeof * g01);
memcpy(g01, g00, hn * sizeof * g00);
memcpy(g01 + hn, g11, hn * sizeof * g00);
/*
* The half-size Gram matrices for the recursive LDL tree
* building are now:
* - left sub-tree: g00, g00+hn, g01
* - right sub-tree: g11, g11+hn, g01+hn
* l10 is in tmp[].
*/
/*
* We split t1 and use the first recursive call on the two
* halves, using the right sub-tree. The result is merged
* back into tmp + 2*n.
*/
z1 = tmp + n;
PQCLEAN_FALCONPADDED512_AARCH64_poly_split_fft(z1, z1 + hn, t1, logn);
ffSampling_fft_dyntree(samp, samp_ctx, z1, z1 + hn,
g11, g11 + hn, g01 + hn, orig_logn, logn - 1, z1 + n);
PQCLEAN_FALCONPADDED512_AARCH64_poly_merge_fft(tmp + (n << 1), z1, z1 + hn, logn);
/*
* Compute tb0 = t0 + (t1 - z1) * l10.
* At that point, l10 is in tmp, t1 is unmodified, and z1 is
* in tmp + (n << 1). The buffer in z1 is free.
*
* In the end, z1 is written over t1, and tb0 is in t0.
*/
PQCLEAN_FALCONPADDED512_AARCH64_poly_sub(z1, t1, tmp + (n << 1), logn);
memcpy(t1, tmp + (n << 1), n * sizeof * tmp);
PQCLEAN_FALCONPADDED512_AARCH64_poly_mul_add_fft(t0, t0, tmp, z1, logn);
/*
* Second recursive invocation, on the split tb0 (currently in t0)
* and the left sub-tree.
*/
z0 = tmp;
PQCLEAN_FALCONPADDED512_AARCH64_poly_split_fft(z0, z0 + hn, t0, logn);
ffSampling_fft_dyntree(samp, samp_ctx, z0, z0 + hn,
g00, g00 + hn, g01, orig_logn, logn - 1, z0 + n);
PQCLEAN_FALCONPADDED512_AARCH64_poly_merge_fft(t0, z0, z0 + hn, logn);
}
/*
* Perform Fast Fourier Sampling for target vector t and LDL tree T.
* tmp[] must have size for at least two polynomials of size 2^logn.
*/
static void
ffSampling_fft(samplerZ samp, void *samp_ctx,
fpr *restrict z0, fpr *restrict z1,
const fpr *restrict tree,
const fpr *restrict t0, const fpr *restrict t1, unsigned logn,
fpr *restrict tmp) {
size_t n, hn;
const fpr *tree0, *tree1;
/*
* When logn == 2, we inline the last two recursion levels.
*/
if (logn == 2) {
fpr x0, x1, y0, y1, w0, w1, w2, w3, sigma;
fpr a_re, a_im, b_re, b_im, c_re, c_im;
tree0 = tree + 4;
tree1 = tree + 8;
/*
* We split t1 into w*, then do the recursive invocation,
* with output in w*. We finally merge back into z1.
*/
// Split
a_re = t1[0];
a_im = t1[2];
b_re = t1[1];
b_im = t1[3];
c_re = fpr_add(a_re, b_re);
c_im = fpr_add(a_im, b_im);
w0 = fpr_half(c_re);
w1 = fpr_half(c_im);
c_re = fpr_sub(a_re, b_re);
c_im = fpr_sub(a_im, b_im);
w2 = fpr_mul(fpr_add(c_re, c_im), fpr_invsqrt8);
w3 = fpr_mul(fpr_sub(c_im, c_re), fpr_invsqrt8);
// Sampling
x0 = w2;
x1 = w3;
sigma = tree1[3];
w2 = fpr_of(samp(samp_ctx, x0, sigma));
w3 = fpr_of(samp(samp_ctx, x1, sigma));
a_re = fpr_sub(x0, w2);
a_im = fpr_sub(x1, w3);
b_re = tree1[0];
b_im = tree1[1];
c_re = fpr_sub(fpr_mul(a_re, b_re), fpr_mul(a_im, b_im));
c_im = fpr_add(fpr_mul(a_re, b_im), fpr_mul(a_im, b_re));
x0 = fpr_add(c_re, w0);
x1 = fpr_add(c_im, w1);
sigma = tree1[2];
w0 = fpr_of(samp(samp_ctx, x0, sigma));
w1 = fpr_of(samp(samp_ctx, x1, sigma));
// Merge
a_re = w0;
a_im = w1;
b_re = w2;
b_im = w3;
c_re = fpr_mul(fpr_sub(b_re, b_im), fpr_invsqrt2);
c_im = fpr_mul(fpr_add(b_re, b_im), fpr_invsqrt2);
z1[0] = w0 = fpr_add(a_re, c_re);
z1[2] = w2 = fpr_add(a_im, c_im);
z1[1] = w1 = fpr_sub(a_re, c_re);
z1[3] = w3 = fpr_sub(a_im, c_im);
/*
* Compute tb0 = t0 + (t1 - z1) * L. Value tb0 ends up in w*.
*/
w0 = fpr_sub(t1[0], w0);
w1 = fpr_sub(t1[1], w1);
w2 = fpr_sub(t1[2], w2);
w3 = fpr_sub(t1[3], w3);
a_re = w0;
a_im = w2;
b_re = tree[0];
b_im = tree[2];
w0 = fpr_sub(fpr_mul(a_re, b_re), fpr_mul(a_im, b_im));
w2 = fpr_add(fpr_mul(a_re, b_im), fpr_mul(a_im, b_re));
a_re = w1;
a_im = w3;
b_re = tree[1];
b_im = tree[3];
w1 = fpr_sub(fpr_mul(a_re, b_re), fpr_mul(a_im, b_im));
w3 = fpr_add(fpr_mul(a_re, b_im), fpr_mul(a_im, b_re));
w0 = fpr_add(w0, t0[0]);
w1 = fpr_add(w1, t0[1]);
w2 = fpr_add(w2, t0[2]);
w3 = fpr_add(w3, t0[3]);
/*
* Second recursive invocation.
*/
// Split
a_re = w0;
a_im = w2;
b_re = w1;
b_im = w3;
c_re = fpr_add(a_re, b_re);
c_im = fpr_add(a_im, b_im);
w0 = fpr_half(c_re);
w1 = fpr_half(c_im);
c_re = fpr_sub(a_re, b_re);
c_im = fpr_sub(a_im, b_im);
w2 = fpr_mul(fpr_add(c_re, c_im), fpr_invsqrt8);
w3 = fpr_mul(fpr_sub(c_im, c_re), fpr_invsqrt8);
// Sampling
x0 = w2;
x1 = w3;
sigma = tree0[3];
w2 = y0 = fpr_of(samp(samp_ctx, x0, sigma));
w3 = y1 = fpr_of(samp(samp_ctx, x1, sigma));
a_re = fpr_sub(x0, y0);
a_im = fpr_sub(x1, y1);
b_re = tree0[0];
b_im = tree0[1];
c_re = fpr_sub(fpr_mul(a_re, b_re), fpr_mul(a_im, b_im));
c_im = fpr_add(fpr_mul(a_re, b_im), fpr_mul(a_im, b_re));
x0 = fpr_add(c_re, w0);
x1 = fpr_add(c_im, w1);
sigma = tree0[2];
w0 = fpr_of(samp(samp_ctx, x0, sigma));
w1 = fpr_of(samp(samp_ctx, x1, sigma));
// Merge
a_re = w0;
a_im = w1;
b_re = w2;
b_im = w3;
c_re = fpr_mul(fpr_sub(b_re, b_im), fpr_invsqrt2);
c_im = fpr_mul(fpr_add(b_re, b_im), fpr_invsqrt2);
z0[0] = fpr_add(a_re, c_re);
z0[2] = fpr_add(a_im, c_im);
z0[1] = fpr_sub(a_re, c_re);
z0[3] = fpr_sub(a_im, c_im);
return;
}
/*
* Case logn == 1 is reachable only when using Falcon-2 (the
* smallest size for which Falcon is mathematically defined, but
* of course way too insecure to be of any use).
*/
if (logn == 1) {
fpr x0, x1, y0, y1, sigma;
fpr a_re, a_im, b_re, b_im, c_re, c_im;
x0 = t1[0];
x1 = t1[1];
sigma = tree[3];
z1[0] = y0 = fpr_of(samp(samp_ctx, x0, sigma));
z1[1] = y1 = fpr_of(samp(samp_ctx, x1, sigma));
a_re = fpr_sub(x0, y0);
a_im = fpr_sub(x1, y1);
b_re = tree[0];
b_im = tree[1];
c_re = fpr_sub(fpr_mul(a_re, b_re), fpr_mul(a_im, b_im));
c_im = fpr_add(fpr_mul(a_re, b_im), fpr_mul(a_im, b_re));
x0 = fpr_add(c_re, t0[0]);
x1 = fpr_add(c_im, t0[1]);
sigma = tree[2];
z0[0] = fpr_of(samp(samp_ctx, x0, sigma));
z0[1] = fpr_of(samp(samp_ctx, x1, sigma));
return;
}
/*
* General recursive case (logn >= 2).
*/
n = (size_t)1 << logn;
hn = n >> 1;
tree0 = tree + n;
tree1 = tree + n + ffLDL_treesize(logn - 1);
/*
* We split t1 into z1 (reused as temporary storage), then do
* the recursive invocation, with output in tmp. We finally
* merge back into z1.
*/
PQCLEAN_FALCONPADDED512_AARCH64_poly_split_fft(z1, z1 + hn, t1, logn);
ffSampling_fft(samp, samp_ctx, tmp, tmp + hn,
tree1, z1, z1 + hn, logn - 1, tmp + n);
PQCLEAN_FALCONPADDED512_AARCH64_poly_merge_fft(z1, tmp, tmp + hn, logn);
/*
* Compute tb0 = t0 + (t1 - z1) * L. Value tb0 ends up in tmp[].
*/
PQCLEAN_FALCONPADDED512_AARCH64_poly_sub(tmp, t1, z1, logn);
PQCLEAN_FALCONPADDED512_AARCH64_poly_mul_add_fft(tmp, t0, tmp, tree, logn);
/*
* Second recursive invocation.
*/
PQCLEAN_FALCONPADDED512_AARCH64_poly_split_fft(z0, z0 + hn, tmp, logn);
ffSampling_fft(samp, samp_ctx, tmp, tmp + hn,
tree0, z0, z0 + hn, logn - 1, tmp + n);
PQCLEAN_FALCONPADDED512_AARCH64_poly_merge_fft(z0, tmp, tmp + hn, logn);
}
/*
* Compute a signature: the signature contains two vectors, s1 and s2.
* The s1 vector is not returned. The squared norm of (s1,s2) is
* computed, and if it is short enough, then s2 is returned into the
* s2[] buffer, and 1 is returned; otherwise, s2[] is untouched and 0 is
* returned; the caller should then try again. This function uses an
* expanded key.
*
* tmp[] must have room for at least six polynomials.
*/
static int
do_sign_tree(samplerZ samp, void *samp_ctx, int16_t *s2,
const fpr *restrict expanded_key,
const uint16_t *hm, fpr *restrict tmp) {
fpr *t0, *t1, *tx, *ty;
const fpr *b00, *b01, *b10, *b11, *tree;
fpr ni;
int16_t *s1tmp, *s2tmp;
t0 = tmp;
t1 = t0 + FALCON_N;
b00 = expanded_key + skoff_b00(FALCON_LOGN);
b01 = expanded_key + skoff_b01(FALCON_LOGN);
b10 = expanded_key + skoff_b10(FALCON_LOGN);
b11 = expanded_key + skoff_b11(FALCON_LOGN);
tree = expanded_key + skoff_tree(FALCON_LOGN);
/*
* Set the target vector to [hm, 0] (hm is the hashed message).
*/
PQCLEAN_FALCONPADDED512_AARCH64_poly_fpr_of_s16(t0, hm, FALCON_N);
/*
* Apply the lattice basis to obtain the real target
* vector (after normalization with regards to modulus).
*/
PQCLEAN_FALCONPADDED512_AARCH64_FFT(t0, FALCON_LOGN);
ni = fpr_inverse_of_q;
PQCLEAN_FALCONPADDED512_AARCH64_poly_mul_fft(t1, t0, b01, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_poly_mulconst(t1, t1, fpr_neg(ni), FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_poly_mul_fft(t0, t0, b11, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_poly_mulconst(t0, t0, ni, FALCON_LOGN);
tx = t1 + FALCON_N;
ty = tx + FALCON_N;
/*
* Apply sampling. Output is written back in [tx, ty].
*/
ffSampling_fft(samp, samp_ctx, tx, ty, tree, t0, t1, FALCON_LOGN, ty + FALCON_N);
/*
* Get the lattice point corresponding to that tiny vector.
*/
PQCLEAN_FALCONPADDED512_AARCH64_poly_mul_fft(t0, tx, b00, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_poly_mul_add_fft(t0, t0, ty, b10, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_iFFT(t0, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_poly_mul_fft(t1, tx, b01, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_poly_mul_add_fft(t1, t1, ty, b11, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_iFFT(t1, FALCON_LOGN);
/*
* Compute the signature.
*/
/*
* With "normal" degrees (e.g. 512 or 1024), it is very
* improbable that the computed vector is not short enough;
* however, it may happen in practice for the very reduced
* versions (e.g. degree 16 or below). In that case, the caller
* will loop, and we must not write anything into s2[] because
* s2[] may overlap with the hashed message hm[] and we need
* hm[] for the next iteration.
*/
s1tmp = (int16_t *)tx;
s2tmp = (int16_t *)tmp;
if (PQCLEAN_FALCONPADDED512_AARCH64_is_short_tmp(s1tmp, s2tmp, (int16_t *) hm, t0, t1)) {
memcpy(s2, s2tmp, FALCON_N * sizeof * s2);
memcpy(tmp, s1tmp, FALCON_N * sizeof * s1tmp);
return 1;
}
return 0;
}
/*
* Compute a signature: the signature contains two vectors, s1 and s2.
* The s1 vector is not returned. The squared norm of (s1,s2) is
* computed, and if it is short enough, then s2 is returned into the
* s2[] buffer, and 1 is returned; otherwise, s2[] is untouched and 0 is
* returned; the caller should then try again.
*
* tmp[] must have room for at least nine polynomials.
*/
static int
do_sign_dyn(samplerZ samp, void *samp_ctx, int16_t *s2,
const int8_t *restrict f, const int8_t *restrict g,
const int8_t *restrict F, const int8_t *restrict G,
const uint16_t *hm, fpr *restrict tmp) {
fpr *t0, *t1, *tx, *ty;
fpr *b00, *b01, *b10, *b11, *g00, *g01, *g11;
fpr ni;
int16_t *s1tmp, *s2tmp;
/*
* Lattice basis is B = [[g, -f], [G, -F]]. We convert it to FFT.
*/
b00 = tmp;
b01 = b00 + FALCON_N;
b10 = b01 + FALCON_N;
b11 = b10 + FALCON_N;
t0 = b11 + FALCON_N;
t1 = t0 + FALCON_N;
PQCLEAN_FALCONPADDED512_AARCH64_smallints_to_fpr(b00, g, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_FFT(b00, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_smallints_to_fpr(b01, f, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_FFT(b01, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_poly_neg(b01, b01, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_smallints_to_fpr(b10, G, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_FFT(b10, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_smallints_to_fpr(b11, F, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_FFT(b11, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_poly_neg(b11, b11, FALCON_LOGN);
/*
* Compute the Gram matrix G = B·B*. Formulas are:
* g00 = b00*adj(b00) + b01*adj(b01)
* g01 = b00*adj(b10) + b01*adj(b11)
* g10 = b10*adj(b00) + b11*adj(b01)
* g11 = b10*adj(b10) + b11*adj(b11)
*
* For historical reasons, this implementation uses
* g00, g01 and g11 (upper triangle). g10 is not kept
* since it is equal to adj(g01).
*
* We _replace_ the matrix B with the Gram matrix, but we
* must keep b01 and b11 for computing the target vector.
*
* Memory layout:
* b00 | b01 | b10 | b11 | t0 | t1
* g00 | g01 | g11 | b01 | t0 | t1
*/
PQCLEAN_FALCONPADDED512_AARCH64_poly_muladj_fft(t1, b00, b10, FALCON_LOGN); // t1 <- b00*adj(b10)
PQCLEAN_FALCONPADDED512_AARCH64_poly_mulselfadj_fft(t0, b01, FALCON_LOGN); // t0 <- b01*adj(b01)
PQCLEAN_FALCONPADDED512_AARCH64_poly_mulselfadj_fft(b00, b00, FALCON_LOGN); // b00 <- b00*adj(b00)
PQCLEAN_FALCONPADDED512_AARCH64_poly_add(b00, b00, t0, FALCON_LOGN); // b00 <- g00
memcpy(t0, b01, FALCON_N * sizeof * b01);
PQCLEAN_FALCONPADDED512_AARCH64_poly_muladj_add_fft(b01, t1, b01, b11, FALCON_LOGN); // b01 <- b01*adj(b11)
PQCLEAN_FALCONPADDED512_AARCH64_poly_mulselfadj_fft(b10, b10, FALCON_LOGN); // b10 <- b10*adj(b10)
PQCLEAN_FALCONPADDED512_AARCH64_poly_mulselfadj_add_fft(b10, b10, b11, FALCON_LOGN); // t1 = g11 <- b11*adj(b11)
/*
* We rename variables to make things clearer. The three elements
* of the Gram matrix uses the first 3*n slots of tmp[], followed
* by b11 and b01 (in that order).
*/
g00 = b00;
g01 = b01;
g11 = b10;
b01 = t0;
t0 = b01 + FALCON_N;
t1 = t0 + FALCON_N;
/*
* Memory layout at that point:
* g00 g01 g11 b11 b01 t0 t1
*/
/*
* Set the target vector to [hm, 0] (hm is the hashed message).
*/
PQCLEAN_FALCONPADDED512_AARCH64_poly_fpr_of_s16(t0, hm, FALCON_N);
/*
* Apply the lattice basis to obtain the real target
* vector (after normalization with regards to modulus).
*/
PQCLEAN_FALCONPADDED512_AARCH64_FFT(t0, FALCON_LOGN);
ni = fpr_inverse_of_q;
PQCLEAN_FALCONPADDED512_AARCH64_poly_mul_fft(t1, t0, b01, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_poly_mulconst(t1, t1, fpr_neg(ni), FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_poly_mul_fft(t0, t0, b11, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_poly_mulconst(t0, t0, ni, FALCON_LOGN);
/*
* b01 and b11 can be discarded, so we move back (t0,t1).
* Memory layout is now:
* g00 g01 g11 t0 t1
*/
memcpy(b11, t0, FALCON_N * 2 * sizeof * t0);
t0 = g11 + FALCON_N;
t1 = t0 + FALCON_N;
/*
* Apply sampling; result is written over (t0,t1).
* t1, g00
*/
ffSampling_fft_dyntree(samp, samp_ctx,
t0, t1, g00, g01, g11, FALCON_LOGN, FALCON_LOGN, t1 + FALCON_N);
/*
* We arrange the layout back to:
* b00 b01 b10 b11 t0 t1
*
* We did not conserve the matrix basis, so we must recompute
* it now.
*/
b00 = tmp;
b01 = b00 + FALCON_N;
b10 = b01 + FALCON_N;
b11 = b10 + FALCON_N;
memmove(b11 + FALCON_N, t0, FALCON_N * 2 * sizeof * t0);
t0 = b11 + FALCON_N;
t1 = t0 + FALCON_N;
PQCLEAN_FALCONPADDED512_AARCH64_smallints_to_fpr(b00, g, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_FFT(b00, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_smallints_to_fpr(b01, f, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_FFT(b01, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_poly_neg(b01, b01, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_smallints_to_fpr(b10, G, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_FFT(b10, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_smallints_to_fpr(b11, F, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_FFT(b11, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_poly_neg(b11, b11, FALCON_LOGN);
tx = t1 + FALCON_N;
ty = tx + FALCON_N;
/*
* Get the lattice point corresponding to that tiny vector.
*/
PQCLEAN_FALCONPADDED512_AARCH64_poly_mul_fft(tx, t0, b00, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_poly_mul_fft(ty, t0, b01, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_poly_mul_add_fft(t0, tx, t1, b10, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_poly_mul_add_fft(t1, ty, t1, b11, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_iFFT(t0, FALCON_LOGN);
PQCLEAN_FALCONPADDED512_AARCH64_iFFT(t1, FALCON_LOGN);
/*
* With "normal" degrees (e.g. 512 or 1024), it is very
* improbable that the computed vector is not short enough;
* however, it may happen in practice for the very reduced
* versions (e.g. degree 16 or below). In that case, the caller
* will loop, and we must not write anything into s2[] because
* s2[] may overlap with the hashed message hm[] and we need
* hm[] for the next iteration.
*/
s1tmp = (int16_t *)tx;
s2tmp = (int16_t *)tmp;
if (PQCLEAN_FALCONPADDED512_AARCH64_is_short_tmp(s1tmp, s2tmp, (int16_t *) hm, t0, t1)) {
memcpy(s2, s2tmp, FALCON_N * sizeof * s2);
memcpy(tmp, s1tmp, FALCON_N * sizeof * s1tmp);
return 1;
}
return 0;
}
/* see inner.h */
void
PQCLEAN_FALCONPADDED512_AARCH64_sign_tree(int16_t *sig, inner_shake256_context *rng,
const fpr *restrict expanded_key,
const uint16_t *hm, uint8_t *tmp) {
fpr *ftmp;
ftmp = (fpr *)tmp;
for (;;) {
/*
* Signature produces short vectors s1 and s2. The
* signature is acceptable only if the aggregate vector
* s1,s2 is short; we must use the same bound as the
* verifier.
*
* If the signature is acceptable, then we return only s2
* (the verifier recomputes s1 from s2, the hashed message,
* and the public key).
*/
sampler_context spc;
samplerZ samp;
void *samp_ctx;
/*
* Normal sampling. We use a fast PRNG seeded from our
* SHAKE context ('rng').
*/
spc.sigma_min = fpr_sigma_min_9;
PQCLEAN_FALCONPADDED512_AARCH64_prng_init(&spc.p, rng);
samp = PQCLEAN_FALCONPADDED512_AARCH64_sampler;
samp_ctx = &spc;
/*
* Do the actual signature.
*/
if (do_sign_tree(samp, samp_ctx, sig, expanded_key, hm, ftmp)) {
break;
}
}
}
/* see inner.h */
void
PQCLEAN_FALCONPADDED512_AARCH64_sign_dyn(int16_t *sig, inner_shake256_context *rng,
const int8_t *restrict f, const int8_t *restrict g,
const int8_t *restrict F, const int8_t *restrict G,
const uint16_t *hm, uint8_t *tmp) {
fpr *ftmp;
ftmp = (fpr *)tmp;
for (;;) {
/*
* Signature produces short vectors s1 and s2. The
* signature is acceptable only if the aggregate vector
* s1,s2 is short; we must use the same bound as the
* verifier.
*
* If the signature is acceptable, then we return only s2
* (the verifier recomputes s1 from s2, the hashed message,
* and the public key).
*/
sampler_context spc;
samplerZ samp;
void *samp_ctx;
/*
* Normal sampling. We use a fast PRNG seeded from our
* SHAKE context ('rng').
*/
spc.sigma_min = fpr_sigma_min_9;
PQCLEAN_FALCONPADDED512_AARCH64_prng_init(&spc.p, rng);
samp = PQCLEAN_FALCONPADDED512_AARCH64_sampler;
samp_ctx = &spc;
/*
* Do the actual signature.
*/
if (do_sign_dyn(samp, samp_ctx, sig, f, g, F, G, hm, ftmp)) {
break;
}
}
}