blob: 9d0c7d1b2263b62b71219c68476a5c06b9122919 [file] [log] [blame]
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include "address.h"
#include "context.h"
#include "fors.h"
#include "hash.h"
#include "merkle.h"
#include "nistapi.h"
#include "params.h"
#include "randombytes.h"
#include "thash.h"
#include "utils.h"
#include "wots.h"
/*
* Returns the length of a secret key, in bytes
*/
size_t crypto_sign_secretkeybytes(void) {
return CRYPTO_SECRETKEYBYTES;
}
/*
* Returns the length of a public key, in bytes
*/
size_t crypto_sign_publickeybytes(void) {
return CRYPTO_PUBLICKEYBYTES;
}
/*
* Returns the length of a signature, in bytes
*/
size_t crypto_sign_bytes(void) {
return CRYPTO_BYTES;
}
/*
* Returns the length of the seed required to generate a key pair, in bytes
*/
size_t crypto_sign_seedbytes(void) {
return CRYPTO_SEEDBYTES;
}
/*
* Generates an SPX key pair given a seed of length
* Format sk: [SK_SEED || SK_PRF || PUB_SEED || root]
* Format pk: [PUB_SEED || root]
*/
int crypto_sign_seed_keypair(uint8_t *pk, uint8_t *sk,
const uint8_t *seed) {
spx_ctx ctx;
/* Initialize SK_SEED, SK_PRF and PUB_SEED from seed. */
memcpy(sk, seed, CRYPTO_SEEDBYTES);
memcpy(pk, sk + 2 * SPX_N, SPX_N);
memcpy(ctx.pub_seed, pk, SPX_N);
memcpy(ctx.sk_seed, sk, SPX_N);
/* This hook allows the hash function instantiation to do whatever
preparation or computation it needs, based on the public seed. */
initialize_hash_function(&ctx);
/* Compute root node of the top-most subtree. */
merkle_gen_root(sk + 3 * SPX_N, &ctx);
// cleanup
free_hash_function(&ctx);
memcpy(pk + SPX_N, sk + 3 * SPX_N, SPX_N);
return 0;
}
/*
* Generates an SPX key pair.
* Format sk: [SK_SEED || SK_PRF || PUB_SEED || root]
* Format pk: [PUB_SEED || root]
*/
int crypto_sign_keypair(uint8_t *pk, uint8_t *sk) {
uint8_t seed[CRYPTO_SEEDBYTES];
randombytes(seed, CRYPTO_SEEDBYTES);
crypto_sign_seed_keypair(pk, sk, seed);
return 0;
}
/**
* Returns an array containing a detached signature.
*/
int crypto_sign_signature(uint8_t *sig, size_t *siglen,
const uint8_t *m, size_t mlen, const uint8_t *sk) {
spx_ctx ctx;
const uint8_t *sk_prf = sk + SPX_N;
const uint8_t *pk = sk + 2 * SPX_N;
uint8_t optrand[SPX_N];
uint8_t mhash[SPX_FORS_MSG_BYTES];
uint8_t root[SPX_N];
uint32_t i;
uint64_t tree;
uint32_t idx_leaf;
uint32_t wots_addr[8] = {0};
uint32_t tree_addr[8] = {0};
memcpy(ctx.sk_seed, sk, SPX_N);
memcpy(ctx.pub_seed, pk, SPX_N);
/* This hook allows the hash function instantiation to do whatever
preparation or computation it needs, based on the public seed. */
initialize_hash_function(&ctx);
set_type(wots_addr, SPX_ADDR_TYPE_WOTS);
set_type(tree_addr, SPX_ADDR_TYPE_HASHTREE);
/* Optionally, signing can be made non-deterministic using optrand.
This can help counter side-channel attacks that would benefit from
getting a large number of traces when the signer uses the same nodes. */
randombytes(optrand, SPX_N);
/* Compute the digest randomization value. */
gen_message_random(sig, sk_prf, optrand, m, mlen, &ctx);
/* Derive the message digest and leaf index from R, PK and M. */
hash_message(mhash, &tree, &idx_leaf, sig, pk, m, mlen, &ctx);
sig += SPX_N;
set_tree_addr(wots_addr, tree);
set_keypair_addr(wots_addr, idx_leaf);
/* Sign the message hash using FORS. */
fors_sign(sig, root, mhash, &ctx, wots_addr);
sig += SPX_FORS_BYTES;
for (i = 0; i < SPX_D; i++) {
set_layer_addr(tree_addr, i);
set_tree_addr(tree_addr, tree);
copy_subtree_addr(wots_addr, tree_addr);
set_keypair_addr(wots_addr, idx_leaf);
merkle_sign(sig, root, &ctx, wots_addr, tree_addr, idx_leaf);
sig += SPX_WOTS_BYTES + SPX_TREE_HEIGHT * SPX_N;
/* Update the indices for the next layer. */
idx_leaf = (tree & ((1 << SPX_TREE_HEIGHT) - 1));
tree = tree >> SPX_TREE_HEIGHT;
}
free_hash_function(&ctx);
*siglen = SPX_BYTES;
return 0;
}
/**
* Verifies a detached signature and message under a given public key.
*/
int crypto_sign_verify(const uint8_t *sig, size_t siglen,
const uint8_t *m, size_t mlen, const uint8_t *pk) {
spx_ctx ctx;
const uint8_t *pub_root = pk + SPX_N;
uint8_t mhash[SPX_FORS_MSG_BYTES];
uint8_t wots_pk[SPX_WOTS_BYTES];
uint8_t root[SPX_N];
uint8_t leaf[SPX_N];
unsigned int i;
uint64_t tree;
uint32_t idx_leaf;
uint32_t wots_addr[8] = {0};
uint32_t tree_addr[8] = {0};
uint32_t wots_pk_addr[8] = {0};
if (siglen != SPX_BYTES) {
return -1;
}
memcpy(ctx.pub_seed, pk, SPX_N);
/* This hook allows the hash function instantiation to do whatever
preparation or computation it needs, based on the public seed. */
initialize_hash_function(&ctx);
set_type(wots_addr, SPX_ADDR_TYPE_WOTS);
set_type(tree_addr, SPX_ADDR_TYPE_HASHTREE);
set_type(wots_pk_addr, SPX_ADDR_TYPE_WOTSPK);
/* Derive the message digest and leaf index from R || PK || M. */
/* The additional SPX_N is a result of the hash domain separator. */
hash_message(mhash, &tree, &idx_leaf, sig, pk, m, mlen, &ctx);
sig += SPX_N;
/* Layer correctly defaults to 0, so no need to set_layer_addr */
set_tree_addr(wots_addr, tree);
set_keypair_addr(wots_addr, idx_leaf);
fors_pk_from_sig(root, sig, mhash, &ctx, wots_addr);
sig += SPX_FORS_BYTES;
/* For each subtree.. */
for (i = 0; i < SPX_D; i++) {
set_layer_addr(tree_addr, i);
set_tree_addr(tree_addr, tree);
copy_subtree_addr(wots_addr, tree_addr);
set_keypair_addr(wots_addr, idx_leaf);
copy_keypair_addr(wots_pk_addr, wots_addr);
/* The WOTS public key is only correct if the signature was correct. */
/* Initially, root is the FORS pk, but on subsequent iterations it is
the root of the subtree below the currently processed subtree. */
wots_pk_from_sig(wots_pk, sig, root, &ctx, wots_addr);
sig += SPX_WOTS_BYTES;
/* Compute the leaf node using the WOTS public key. */
thash(leaf, wots_pk, SPX_WOTS_LEN, &ctx, wots_pk_addr);
/* Compute the root node of this subtree. */
compute_root(root, leaf, idx_leaf, 0, sig, SPX_TREE_HEIGHT,
&ctx, tree_addr);
sig += SPX_TREE_HEIGHT * SPX_N;
/* Update the indices for the next layer. */
idx_leaf = (tree & ((1 << SPX_TREE_HEIGHT) - 1));
tree = tree >> SPX_TREE_HEIGHT;
}
// cleanup
free_hash_function(&ctx);
/* Check if the root node equals the root node in the public key. */
if (memcmp(root, pub_root, SPX_N) != 0) {
return -1;
}
return 0;
}
/**
* Returns an array containing the signature followed by the message.
*/
int crypto_sign(uint8_t *sm, size_t *smlen,
const uint8_t *m, size_t mlen,
const uint8_t *sk) {
size_t siglen;
crypto_sign_signature(sm, &siglen, m, mlen, sk);
memmove(sm + SPX_BYTES, m, mlen);
*smlen = siglen + mlen;
return 0;
}
/**
* Verifies a given signature-message pair under a given public key.
*/
int crypto_sign_open(uint8_t *m, size_t *mlen,
const uint8_t *sm, size_t smlen,
const uint8_t *pk) {
/* The API caller does not necessarily know what size a signature should be
but SPHINCS+ signatures are always exactly SPX_BYTES. */
if (smlen < SPX_BYTES) {
memset(m, 0, smlen);
*mlen = 0;
return -1;
}
*mlen = smlen - SPX_BYTES;
if (crypto_sign_verify(sm, SPX_BYTES, sm + SPX_BYTES, *mlen, pk)) {
memset(m, 0, smlen);
*mlen = 0;
return -1;
}
/* If verification was successful, move the message to the right place. */
memmove(m, sm + SPX_BYTES, *mlen);
return 0;
}