blob: e56dd17f89894052fe71611aeb531847ccb6d969 [file] [log] [blame]
/*
* Copyright 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cmath>
#include "ultrahdr/gainmapmath.h"
namespace ultrahdr {
////////////////////////////////////////////////////////////////////////////////
// Framework
float getReferenceDisplayPeakLuminanceInNits(uhdr_color_transfer_t transfer) {
switch (transfer) {
case UHDR_CT_LINEAR:
return kPqMaxNits;
case UHDR_CT_HLG:
return kHlgMaxNits;
case UHDR_CT_PQ:
return kPqMaxNits;
case UHDR_CT_SRGB:
return kSdrWhiteNits;
case UHDR_CT_UNSPECIFIED:
return -1.0f;
}
return -1.0f;
}
////////////////////////////////////////////////////////////////////////////////
// Use Shepard's method for inverse distance weighting.
float ShepardsIDW::euclideanDistance(float x1, float x2, float y1, float y2) {
return sqrt(((y2 - y1) * (y2 - y1)) + (x2 - x1) * (x2 - x1));
}
void ShepardsIDW::fillShepardsIDW(float* weights, int incR, int incB) {
for (int y = 0; y < mMapScaleFactor; y++) {
for (int x = 0; x < mMapScaleFactor; x++) {
float pos_x = ((float)x) / mMapScaleFactor;
float pos_y = ((float)y) / mMapScaleFactor;
int curr_x = floor(pos_x);
int curr_y = floor(pos_y);
int next_x = curr_x + incR;
int next_y = curr_y + incB;
float e1_distance = euclideanDistance(pos_x, curr_x, pos_y, curr_y);
int index = y * mMapScaleFactor * 4 + x * 4;
if (e1_distance == 0) {
weights[index++] = 1.f;
weights[index++] = 0.f;
weights[index++] = 0.f;
weights[index++] = 0.f;
} else {
float e1_weight = 1.f / e1_distance;
float e2_distance = euclideanDistance(pos_x, curr_x, pos_y, next_y);
float e2_weight = 1.f / e2_distance;
float e3_distance = euclideanDistance(pos_x, next_x, pos_y, curr_y);
float e3_weight = 1.f / e3_distance;
float e4_distance = euclideanDistance(pos_x, next_x, pos_y, next_y);
float e4_weight = 1.f / e4_distance;
float total_weight = e1_weight + e2_weight + e3_weight + e4_weight;
weights[index++] = e1_weight / total_weight;
weights[index++] = e2_weight / total_weight;
weights[index++] = e3_weight / total_weight;
weights[index++] = e4_weight / total_weight;
}
}
}
}
////////////////////////////////////////////////////////////////////////////////
// sRGB transformations
// See IEC 61966-2-1/Amd 1:2003, Equation F.7.
static const float kSrgbR = 0.2126f, kSrgbG = 0.7152f, kSrgbB = 0.0722f;
float srgbLuminance(Color e) { return kSrgbR * e.r + kSrgbG * e.g + kSrgbB * e.b; }
// See ITU-R BT.709-6, Section 3.
// Uses the same coefficients for deriving luma signal as
// IEC 61966-2-1/Amd 1:2003 states for luminance, so we reuse the luminance
// function above.
static const float kSrgbCb = 1.8556f, kSrgbCr = 1.5748f;
Color srgbRgbToYuv(Color e_gamma) {
float y_gamma = srgbLuminance(e_gamma);
return {{{y_gamma, (e_gamma.b - y_gamma) / kSrgbCb, (e_gamma.r - y_gamma) / kSrgbCr}}};
}
// See ITU-R BT.709-6, Section 3.
// Same derivation to BT.2100's YUV->RGB, below. Similar to srgbRgbToYuv, we
// can reuse the luminance coefficients since they are the same.
static const float kSrgbGCb = kSrgbB * kSrgbCb / kSrgbG;
static const float kSrgbGCr = kSrgbR * kSrgbCr / kSrgbG;
Color srgbYuvToRgb(Color e_gamma) {
return {{{clampPixelFloat(e_gamma.y + kSrgbCr * e_gamma.v),
clampPixelFloat(e_gamma.y - kSrgbGCb * e_gamma.u - kSrgbGCr * e_gamma.v),
clampPixelFloat(e_gamma.y + kSrgbCb * e_gamma.u)}}};
}
// See IEC 61966-2-1/Amd 1:2003, Equations F.5 and F.6.
float srgbInvOetf(float e_gamma) {
if (e_gamma <= 0.04045f) {
return e_gamma / 12.92f;
} else {
return pow((e_gamma + 0.055f) / 1.055f, 2.4);
}
}
Color srgbInvOetf(Color e_gamma) {
return {{{srgbInvOetf(e_gamma.r), srgbInvOetf(e_gamma.g), srgbInvOetf(e_gamma.b)}}};
}
// See IEC 61966-2-1, Equations F.5 and F.6.
float srgbInvOetfLUT(float e_gamma) {
int32_t value = static_cast<int32_t>(e_gamma * (kSrgbInvOETFNumEntries - 1) + 0.5);
// TODO() : Remove once conversion modules have appropriate clamping in place
value = CLIP3(value, 0, kSrgbInvOETFNumEntries - 1);
static LookUpTable kSrgbLut(kSrgbInvOETFNumEntries, static_cast<float (*)(float)>(srgbInvOetf));
return kSrgbLut.getTable()[value];
}
Color srgbInvOetfLUT(Color e_gamma) {
return {{{srgbInvOetfLUT(e_gamma.r), srgbInvOetfLUT(e_gamma.g), srgbInvOetfLUT(e_gamma.b)}}};
}
float srgbOetf(float e) {
constexpr float kThreshold = 0.0031308;
constexpr float kLowSlope = 12.92;
constexpr float kHighOffset = 0.055;
constexpr float kPowerExponent = 1.0 / 2.4;
if (e <= kThreshold) {
return kLowSlope * e;
}
return (1.0 + kHighOffset) * std::pow(e, kPowerExponent) - kHighOffset;
}
Color srgbOetf(Color e) { return {{{srgbOetf(e.r), srgbOetf(e.g), srgbOetf(e.b)}}}; }
////////////////////////////////////////////////////////////////////////////////
// Display-P3 transformations
// See SMPTE EG 432-1, Equation 7-8.
static const float kP3R = 0.20949f, kP3G = 0.72160f, kP3B = 0.06891f;
float p3Luminance(Color e) { return kP3R * e.r + kP3G * e.g + kP3B * e.b; }
// See ITU-R BT.601-7, Sections 2.5.1 and 2.5.2.
// Unfortunately, calculation of luma signal differs from calculation of
// luminance for Display-P3, so we can't reuse p3Luminance here.
static const float kP3YR = 0.299f, kP3YG = 0.587f, kP3YB = 0.114f;
static const float kP3Cb = 1.772f, kP3Cr = 1.402f;
Color p3RgbToYuv(Color e_gamma) {
float y_gamma = kP3YR * e_gamma.r + kP3YG * e_gamma.g + kP3YB * e_gamma.b;
return {{{y_gamma, (e_gamma.b - y_gamma) / kP3Cb, (e_gamma.r - y_gamma) / kP3Cr}}};
}
// See ITU-R BT.601-7, Sections 2.5.1 and 2.5.2.
// Same derivation to BT.2100's YUV->RGB, below. Similar to p3RgbToYuv, we must
// use luma signal coefficients rather than the luminance coefficients.
static const float kP3GCb = kP3YB * kP3Cb / kP3YG;
static const float kP3GCr = kP3YR * kP3Cr / kP3YG;
Color p3YuvToRgb(Color e_gamma) {
return {{{clampPixelFloat(e_gamma.y + kP3Cr * e_gamma.v),
clampPixelFloat(e_gamma.y - kP3GCb * e_gamma.u - kP3GCr * e_gamma.v),
clampPixelFloat(e_gamma.y + kP3Cb * e_gamma.u)}}};
}
////////////////////////////////////////////////////////////////////////////////
// BT.2100 transformations - according to ITU-R BT.2100-2
// See ITU-R BT.2100-2, Table 5, HLG Reference OOTF
static const float kBt2100R = 0.2627f, kBt2100G = 0.6780f, kBt2100B = 0.0593f;
float bt2100Luminance(Color e) { return kBt2100R * e.r + kBt2100G * e.g + kBt2100B * e.b; }
// See ITU-R BT.2100-2, Table 6, Derivation of colour difference signals.
// BT.2100 uses the same coefficients for calculating luma signal and luminance,
// so we reuse the luminance function here.
static const float kBt2100Cb = 1.8814f, kBt2100Cr = 1.4746f;
Color bt2100RgbToYuv(Color e_gamma) {
float y_gamma = bt2100Luminance(e_gamma);
return {{{y_gamma, (e_gamma.b - y_gamma) / kBt2100Cb, (e_gamma.r - y_gamma) / kBt2100Cr}}};
}
// See ITU-R BT.2100-2, Table 6, Derivation of colour difference signals.
//
// Similar to bt2100RgbToYuv above, we can reuse the luminance coefficients.
//
// Derived by inversing bt2100RgbToYuv. The derivation for R and B are pretty
// straight forward; we just invert the formulas for U and V above. But deriving
// the formula for G is a bit more complicated:
//
// Start with equation for luminance:
// Y = kBt2100R * R + kBt2100G * G + kBt2100B * B
// Solve for G:
// G = (Y - kBt2100R * R - kBt2100B * B) / kBt2100B
// Substitute equations for R and B in terms YUV:
// G = (Y - kBt2100R * (Y + kBt2100Cr * V) - kBt2100B * (Y + kBt2100Cb * U)) / kBt2100B
// Simplify:
// G = Y * ((1 - kBt2100R - kBt2100B) / kBt2100G)
// + U * (kBt2100B * kBt2100Cb / kBt2100G)
// + V * (kBt2100R * kBt2100Cr / kBt2100G)
//
// We then get the following coeficients for calculating G from YUV:
//
// Coef for Y = (1 - kBt2100R - kBt2100B) / kBt2100G = 1
// Coef for U = kBt2100B * kBt2100Cb / kBt2100G = kBt2100GCb = ~0.1645
// Coef for V = kBt2100R * kBt2100Cr / kBt2100G = kBt2100GCr = ~0.5713
static const float kBt2100GCb = kBt2100B * kBt2100Cb / kBt2100G;
static const float kBt2100GCr = kBt2100R * kBt2100Cr / kBt2100G;
Color bt2100YuvToRgb(Color e_gamma) {
return {{{clampPixelFloat(e_gamma.y + kBt2100Cr * e_gamma.v),
clampPixelFloat(e_gamma.y - kBt2100GCb * e_gamma.u - kBt2100GCr * e_gamma.v),
clampPixelFloat(e_gamma.y + kBt2100Cb * e_gamma.u)}}};
}
// See ITU-R BT.2100-2, Table 5, HLG Reference OETF.
static const float kHlgA = 0.17883277f, kHlgB = 0.28466892f, kHlgC = 0.55991073;
float hlgOetf(float e) {
if (e <= 1.0f / 12.0f) {
return sqrt(3.0f * e);
} else {
return kHlgA * log(12.0f * e - kHlgB) + kHlgC;
}
}
Color hlgOetf(Color e) { return {{{hlgOetf(e.r), hlgOetf(e.g), hlgOetf(e.b)}}}; }
float hlgOetfLUT(float e) {
int32_t value = static_cast<int32_t>(e * (kHlgOETFNumEntries - 1) + 0.5);
// TODO() : Remove once conversion modules have appropriate clamping in place
value = CLIP3(value, 0, kHlgOETFNumEntries - 1);
static LookUpTable kHlgLut(kHlgOETFNumEntries, static_cast<float (*)(float)>(hlgOetf));
return kHlgLut.getTable()[value];
}
Color hlgOetfLUT(Color e) { return {{{hlgOetfLUT(e.r), hlgOetfLUT(e.g), hlgOetfLUT(e.b)}}}; }
// See ITU-R BT.2100-2, Table 5, HLG Reference EOTF.
float hlgInvOetf(float e_gamma) {
if (e_gamma <= 0.5f) {
return pow(e_gamma, 2.0f) / 3.0f;
} else {
return (exp((e_gamma - kHlgC) / kHlgA) + kHlgB) / 12.0f;
}
}
Color hlgInvOetf(Color e_gamma) {
return {{{hlgInvOetf(e_gamma.r), hlgInvOetf(e_gamma.g), hlgInvOetf(e_gamma.b)}}};
}
float hlgInvOetfLUT(float e_gamma) {
int32_t value = static_cast<int32_t>(e_gamma * (kHlgInvOETFNumEntries - 1) + 0.5);
// TODO() : Remove once conversion modules have appropriate clamping in place
value = CLIP3(value, 0, kHlgInvOETFNumEntries - 1);
static LookUpTable kHlgInvLut(kHlgInvOETFNumEntries, static_cast<float (*)(float)>(hlgInvOetf));
return kHlgInvLut.getTable()[value];
}
Color hlgInvOetfLUT(Color e_gamma) {
return {{{hlgInvOetfLUT(e_gamma.r), hlgInvOetfLUT(e_gamma.g), hlgInvOetfLUT(e_gamma.b)}}};
}
// 1.2f + 0.42 * log(kHlgMaxNits / 1000)
static const float kOotfGamma = 1.2f;
Color hlgOotf(Color e, LuminanceFn luminance) {
float y = luminance(e);
return e * std::pow(y, kOotfGamma - 1.0f);
}
Color hlgOotfApprox(Color e, [[maybe_unused]] LuminanceFn luminance) {
return {{{std::pow(e.r, kOotfGamma), std::pow(e.g, kOotfGamma), std::pow(e.b, kOotfGamma)}}};
}
Color hlgInverseOotf(Color e, LuminanceFn luminance) {
float y = luminance(e);
return e * std::pow(y, (1.0f / kOotfGamma) - 1.0f);
}
Color hlgInverseOotfApprox(Color e) {
return {{{std::pow(e.r, 1.0f / kOotfGamma), std::pow(e.g, 1.0f / kOotfGamma),
std::pow(e.b, 1.0f / kOotfGamma)}}};
}
// See ITU-R BT.2100-2, Table 4, Reference PQ OETF.
static const float kPqM1 = 2610.0f / 16384.0f, kPqM2 = 2523.0f / 4096.0f * 128.0f;
static const float kPqC1 = 3424.0f / 4096.0f, kPqC2 = 2413.0f / 4096.0f * 32.0f,
kPqC3 = 2392.0f / 4096.0f * 32.0f;
float pqOetf(float e) {
if (e <= 0.0f) return 0.0f;
return pow((kPqC1 + kPqC2 * pow(e, kPqM1)) / (1 + kPqC3 * pow(e, kPqM1)), kPqM2);
}
Color pqOetf(Color e) { return {{{pqOetf(e.r), pqOetf(e.g), pqOetf(e.b)}}}; }
float pqOetfLUT(float e) {
int32_t value = static_cast<int32_t>(e * (kPqOETFNumEntries - 1) + 0.5);
// TODO() : Remove once conversion modules have appropriate clamping in place
value = CLIP3(value, 0, kPqOETFNumEntries - 1);
static LookUpTable kPqLut(kPqOETFNumEntries, static_cast<float (*)(float)>(pqOetf));
return kPqLut.getTable()[value];
}
Color pqOetfLUT(Color e) { return {{{pqOetfLUT(e.r), pqOetfLUT(e.g), pqOetfLUT(e.b)}}}; }
float pqInvOetf(float e_gamma) {
float val = pow(e_gamma, (1 / kPqM2));
return pow((((std::max)(val - kPqC1, 0.0f)) / (kPqC2 - kPqC3 * val)), 1 / kPqM1);
}
Color pqInvOetf(Color e_gamma) {
return {{{pqInvOetf(e_gamma.r), pqInvOetf(e_gamma.g), pqInvOetf(e_gamma.b)}}};
}
float pqInvOetfLUT(float e_gamma) {
int32_t value = static_cast<int32_t>(e_gamma * (kPqInvOETFNumEntries - 1) + 0.5);
// TODO() : Remove once conversion modules have appropriate clamping in place
value = CLIP3(value, 0, kPqInvOETFNumEntries - 1);
static LookUpTable kPqInvLut(kPqInvOETFNumEntries, static_cast<float (*)(float)>(pqInvOetf));
return kPqInvLut.getTable()[value];
}
Color pqInvOetfLUT(Color e_gamma) {
return {{{pqInvOetfLUT(e_gamma.r), pqInvOetfLUT(e_gamma.g), pqInvOetfLUT(e_gamma.b)}}};
}
////////////////////////////////////////////////////////////////////////////////
// Color access functions
Color getYuv4abPixel(uhdr_raw_image_t* image, size_t x, size_t y, int h_factor, int v_factor) {
uint8_t* luma_data = reinterpret_cast<uint8_t*>(image->planes[UHDR_PLANE_Y]);
size_t luma_stride = image->stride[UHDR_PLANE_Y];
uint8_t* cb_data = reinterpret_cast<uint8_t*>(image->planes[UHDR_PLANE_U]);
size_t cb_stride = image->stride[UHDR_PLANE_U];
uint8_t* cr_data = reinterpret_cast<uint8_t*>(image->planes[UHDR_PLANE_V]);
size_t cr_stride = image->stride[UHDR_PLANE_V];
size_t pixel_y_idx = x + y * luma_stride;
size_t pixel_cb_idx = x / h_factor + (y / v_factor) * cb_stride;
size_t pixel_cr_idx = x / h_factor + (y / v_factor) * cr_stride;
uint8_t y_uint = luma_data[pixel_y_idx];
uint8_t u_uint = cb_data[pixel_cb_idx];
uint8_t v_uint = cr_data[pixel_cr_idx];
// 128 bias for UV given we are using jpeglib; see:
// https://github.com/kornelski/libjpeg/blob/master/structure.doc
return {
{{static_cast<float>(y_uint) * (1 / 255.0f), static_cast<float>(u_uint - 128) * (1 / 255.0f),
static_cast<float>(v_uint - 128) * (1 / 255.0f)}}};
}
Color getYuv444Pixel(uhdr_raw_image_t* image, size_t x, size_t y) {
return getYuv4abPixel(image, x, y, 1, 1);
}
Color getYuv422Pixel(uhdr_raw_image_t* image, size_t x, size_t y) {
return getYuv4abPixel(image, x, y, 2, 1);
}
Color getYuv420Pixel(uhdr_raw_image_t* image, size_t x, size_t y) {
return getYuv4abPixel(image, x, y, 2, 2);
}
Color getYuv400Pixel(uhdr_raw_image_t* image, size_t x, size_t y) {
uint8_t* luma_data = reinterpret_cast<uint8_t*>(image->planes[UHDR_PLANE_Y]);
size_t luma_stride = image->stride[UHDR_PLANE_Y];
size_t pixel_y_idx = x + y * luma_stride;
uint8_t y_uint = luma_data[pixel_y_idx];
return {{{static_cast<float>(y_uint) * (1 / 255.0f), 0.f, 0.f}}};
}
Color getYuv444Pixel10bit(uhdr_raw_image_t* image, size_t x, size_t y) {
uint16_t* luma_data = reinterpret_cast<uint16_t*>(image->planes[UHDR_PLANE_Y]);
size_t luma_stride = image->stride[UHDR_PLANE_Y];
uint16_t* cb_data = reinterpret_cast<uint16_t*>(image->planes[UHDR_PLANE_U]);
size_t cb_stride = image->stride[UHDR_PLANE_U];
uint16_t* cr_data = reinterpret_cast<uint16_t*>(image->planes[UHDR_PLANE_V]);
size_t cr_stride = image->stride[UHDR_PLANE_V];
size_t pixel_y_idx = y * luma_stride + x;
size_t pixel_u_idx = y * cb_stride + x;
size_t pixel_v_idx = y * cr_stride + x;
uint16_t y_uint = luma_data[pixel_y_idx];
uint16_t u_uint = cb_data[pixel_u_idx];
uint16_t v_uint = cr_data[pixel_v_idx];
if (image->range == UHDR_CR_FULL_RANGE) {
return {{{static_cast<float>(y_uint) / 1023.0f, static_cast<float>(u_uint) / 1023.0f - 0.5f,
static_cast<float>(v_uint) / 1023.0f - 0.5f}}};
}
// Conversions include taking narrow-range into account.
return {{{static_cast<float>(y_uint - 64) * (1 / 876.0f),
static_cast<float>(u_uint - 64) * (1 / 896.0f) - 0.5f,
static_cast<float>(v_uint - 64) * (1 / 896.0f) - 0.5f}}};
}
Color getP010Pixel(uhdr_raw_image_t* image, size_t x, size_t y) {
uint16_t* luma_data = reinterpret_cast<uint16_t*>(image->planes[UHDR_PLANE_Y]);
size_t luma_stride = image->stride[UHDR_PLANE_Y];
uint16_t* chroma_data = reinterpret_cast<uint16_t*>(image->planes[UHDR_PLANE_UV]);
size_t chroma_stride = image->stride[UHDR_PLANE_UV];
size_t pixel_y_idx = y * luma_stride + x;
size_t pixel_u_idx = (y >> 1) * chroma_stride + (x & ~0x1);
size_t pixel_v_idx = pixel_u_idx + 1;
uint16_t y_uint = luma_data[pixel_y_idx] >> 6;
uint16_t u_uint = chroma_data[pixel_u_idx] >> 6;
uint16_t v_uint = chroma_data[pixel_v_idx] >> 6;
if (image->range == UHDR_CR_FULL_RANGE) {
return {{{static_cast<float>(y_uint) / 1023.0f, static_cast<float>(u_uint) / 1023.0f - 0.5f,
static_cast<float>(v_uint) / 1023.0f - 0.5f}}};
}
// Conversions include taking narrow-range into account.
return {{{static_cast<float>(y_uint - 64) * (1 / 876.0f),
static_cast<float>(u_uint - 64) * (1 / 896.0f) - 0.5f,
static_cast<float>(v_uint - 64) * (1 / 896.0f) - 0.5f}}};
}
Color getRgb888Pixel(uhdr_raw_image_t* image, size_t x, size_t y) {
uint8_t* rgbData = static_cast<uint8_t*>(image->planes[UHDR_PLANE_PACKED]);
unsigned int srcStride = image->stride[UHDR_PLANE_PACKED];
size_t offset = x * 3 + y * srcStride * 3;
Color pixel;
pixel.r = float(rgbData[offset]);
pixel.g = float(rgbData[offset + 1]);
pixel.b = float(rgbData[offset + 2]);
return pixel / 255.0f;
}
Color getRgba8888Pixel(uhdr_raw_image_t* image, size_t x, size_t y) {
uint32_t* rgbData = static_cast<uint32_t*>(image->planes[UHDR_PLANE_PACKED]);
unsigned int srcStride = image->stride[UHDR_PLANE_PACKED];
Color pixel;
pixel.r = float(rgbData[x + y * srcStride] & 0xff);
pixel.g = float((rgbData[x + y * srcStride] >> 8) & 0xff);
pixel.b = float((rgbData[x + y * srcStride] >> 16) & 0xff);
return pixel / 255.0f;
}
Color getRgba1010102Pixel(uhdr_raw_image_t* image, size_t x, size_t y) {
uint32_t* rgbData = static_cast<uint32_t*>(image->planes[UHDR_PLANE_PACKED]);
unsigned int srcStride = image->stride[UHDR_PLANE_PACKED];
Color pixel;
pixel.r = float(rgbData[x + y * srcStride] & 0x3ff);
pixel.g = float((rgbData[x + y * srcStride] >> 10) & 0x3ff);
pixel.b = float((rgbData[x + y * srcStride] >> 20) & 0x3ff);
return pixel / 1023.0f;
}
Color getRgbaF16Pixel(uhdr_raw_image_t* image, size_t x, size_t y) {
uint64_t* rgbData = static_cast<uint64_t*>(image->planes[UHDR_PLANE_PACKED]);
unsigned int srcStride = image->stride[UHDR_PLANE_PACKED];
Color pixel;
pixel.r = halfToFloat(rgbData[x + y * srcStride] & 0xffff);
pixel.g = halfToFloat((rgbData[x + y * srcStride] >> 16) & 0xffff);
pixel.b = halfToFloat((rgbData[x + y * srcStride] >> 32) & 0xffff);
return sanitizePixel(pixel);
}
static Color samplePixels(uhdr_raw_image_t* image, size_t map_scale_factor, size_t x, size_t y,
GetPixelFn get_pixel_fn) {
Color e = {{{0.0f, 0.0f, 0.0f}}};
for (size_t dy = 0; dy < map_scale_factor; ++dy) {
for (size_t dx = 0; dx < map_scale_factor; ++dx) {
e += get_pixel_fn(image, x * map_scale_factor + dx, y * map_scale_factor + dy);
}
}
return e / static_cast<float>(map_scale_factor * map_scale_factor);
}
Color sampleYuv444(uhdr_raw_image_t* image, size_t map_scale_factor, size_t x, size_t y) {
return samplePixels(image, map_scale_factor, x, y, getYuv444Pixel);
}
Color sampleYuv422(uhdr_raw_image_t* image, size_t map_scale_factor, size_t x, size_t y) {
return samplePixels(image, map_scale_factor, x, y, getYuv422Pixel);
}
Color sampleYuv420(uhdr_raw_image_t* image, size_t map_scale_factor, size_t x, size_t y) {
return samplePixels(image, map_scale_factor, x, y, getYuv420Pixel);
}
Color sampleP010(uhdr_raw_image_t* image, size_t map_scale_factor, size_t x, size_t y) {
return samplePixels(image, map_scale_factor, x, y, getP010Pixel);
}
Color sampleYuv44410bit(uhdr_raw_image_t* image, size_t map_scale_factor, size_t x, size_t y) {
return samplePixels(image, map_scale_factor, x, y, getYuv444Pixel10bit);
}
Color sampleRgba8888(uhdr_raw_image_t* image, size_t map_scale_factor, size_t x, size_t y) {
return samplePixels(image, map_scale_factor, x, y, getRgba8888Pixel);
}
Color sampleRgba1010102(uhdr_raw_image_t* image, size_t map_scale_factor, size_t x, size_t y) {
return samplePixels(image, map_scale_factor, x, y, getRgba1010102Pixel);
}
Color sampleRgbaF16(uhdr_raw_image_t* image, size_t map_scale_factor, size_t x, size_t y) {
return samplePixels(image, map_scale_factor, x, y, getRgbaF16Pixel);
}
void putRgba8888Pixel(uhdr_raw_image_t* image, size_t x, size_t y, Color& pixel) {
uint32_t* rgbData = static_cast<uint32_t*>(image->planes[UHDR_PLANE_PACKED]);
unsigned int srcStride = image->stride[UHDR_PLANE_PACKED];
pixel *= 255.0f;
pixel += 0.5f;
pixel.r = CLIP3(pixel.r, 0.0f, 255.0f);
pixel.g = CLIP3(pixel.g, 0.0f, 255.0f);
pixel.b = CLIP3(pixel.b, 0.0f, 255.0f);
int32_t r0 = int32_t(pixel.r);
int32_t g0 = int32_t(pixel.g);
int32_t b0 = int32_t(pixel.b);
rgbData[x + y * srcStride] = r0 | (g0 << 8) | (b0 << 16) | (255 << 24); // Set alpha to 1.0
}
void putRgb888Pixel(uhdr_raw_image_t* image, size_t x, size_t y, Color& pixel) {
uint8_t* rgbData = static_cast<uint8_t*>(image->planes[UHDR_PLANE_PACKED]);
unsigned int srcStride = image->stride[UHDR_PLANE_PACKED];
size_t offset = x * 3 + y * srcStride * 3;
pixel *= 255.0f;
pixel += 0.5f;
pixel.r = CLIP3(pixel.r, 0.0f, 255.0f);
pixel.g = CLIP3(pixel.g, 0.0f, 255.0f);
pixel.b = CLIP3(pixel.b, 0.0f, 255.0f);
rgbData[offset] = uint8_t(pixel.r);
rgbData[offset + 1] = uint8_t(pixel.r);
rgbData[offset + 2] = uint8_t(pixel.b);
}
void putYuv400Pixel(uhdr_raw_image_t* image, size_t x, size_t y, Color& pixel) {
uint8_t* luma_data = reinterpret_cast<uint8_t*>(image->planes[UHDR_PLANE_Y]);
size_t luma_stride = image->stride[UHDR_PLANE_Y];
pixel *= 255.0f;
pixel += 0.5f;
pixel.y = CLIP3(pixel.y, 0.0f, 255.0f);
luma_data[x + y * luma_stride] = uint8_t(pixel.y);
}
void putYuv444Pixel(uhdr_raw_image_t* image, size_t x, size_t y, Color& pixel) {
uint8_t* luma_data = reinterpret_cast<uint8_t*>(image->planes[UHDR_PLANE_Y]);
uint8_t* cb_data = reinterpret_cast<uint8_t*>(image->planes[UHDR_PLANE_U]);
uint8_t* cr_data = reinterpret_cast<uint8_t*>(image->planes[UHDR_PLANE_V]);
size_t luma_stride = image->stride[UHDR_PLANE_Y];
size_t cb_stride = image->stride[UHDR_PLANE_U];
size_t cr_stride = image->stride[UHDR_PLANE_V];
pixel *= 255.0f;
pixel += 0.5f;
pixel.y = CLIP3(pixel.y, 0.0f, 255.0f);
pixel.u = CLIP3(pixel.u, 0.0f, 255.0f);
pixel.v = CLIP3(pixel.v, 0.0f, 255.0f);
luma_data[x + y * luma_stride] = uint8_t(pixel.y);
cb_data[x + y * cb_stride] = uint8_t(pixel.u);
cr_data[x + y * cr_stride] = uint8_t(pixel.v);
}
////////////////////////////////////////////////////////////////////////////////
// Color space conversions
Color bt709ToP3(Color e) {
return {{{clampPixelFloat(0.82254f * e.r + 0.17755f * e.g + 0.00006f * e.b),
clampPixelFloat(0.03312f * e.r + 0.96684f * e.g + -0.00001f * e.b),
clampPixelFloat(0.01706f * e.r + 0.07240f * e.g + 0.91049f * e.b)}}};
}
Color bt709ToBt2100(Color e) {
return {{{clampPixelFloat(0.62740f * e.r + 0.32930f * e.g + 0.04332f * e.b),
clampPixelFloat(0.06904f * e.r + 0.91958f * e.g + 0.01138f * e.b),
clampPixelFloat(0.01636f * e.r + 0.08799f * e.g + 0.89555f * e.b)}}};
}
Color p3ToBt709(Color e) {
return {{{clampPixelFloat(1.22482f * e.r + -0.22490f * e.g + -0.00007f * e.b),
clampPixelFloat(-0.04196f * e.r + 1.04199f * e.g + 0.00001f * e.b),
clampPixelFloat(-0.01961f * e.r + -0.07865f * e.g + 1.09831f * e.b)}}};
}
Color p3ToBt2100(Color e) {
return {{{clampPixelFloat(0.75378f * e.r + 0.19862f * e.g + 0.04754f * e.b),
clampPixelFloat(0.04576f * e.r + 0.94177f * e.g + 0.01250f * e.b),
clampPixelFloat(-0.00121f * e.r + 0.01757f * e.g + 0.98359f * e.b)}}};
}
Color bt2100ToBt709(Color e) {
return {{{clampPixelFloat(1.66045f * e.r + -0.58764f * e.g + -0.07286f * e.b),
clampPixelFloat(-0.12445f * e.r + 1.13282f * e.g + -0.00837f * e.b),
clampPixelFloat(-0.01811f * e.r + -0.10057f * e.g + 1.11878f * e.b)}}};
}
Color bt2100ToP3(Color e) {
return {{{clampPixelFloat(1.34369f * e.r + -0.28223f * e.g + -0.06135f * e.b),
clampPixelFloat(-0.06533f * e.r + 1.07580f * e.g + -0.01051f * e.b),
clampPixelFloat(0.00283f * e.r + -0.01957f * e.g + 1.01679f * e.b)}}};
}
// All of these conversions are derived from the respective input YUV->RGB conversion followed by
// the RGB->YUV for the receiving encoding. They are consistent with the RGB<->YUV functions in
// gainmapmath.cpp, given that we use BT.709 encoding for sRGB and BT.601 encoding for Display-P3,
// to match DataSpace.
// Yuv Bt709 -> Yuv Bt601
// Y' = (1.0 * Y) + ( 0.101579 * U) + ( 0.196076 * V)
// U' = (0.0 * Y) + ( 0.989854 * U) + (-0.110653 * V)
// V' = (0.0 * Y) + (-0.072453 * U) + ( 0.983398 * V)
const std::array<float, 9> kYuvBt709ToBt601 = {
1.0f, 0.101579f, 0.196076f, 0.0f, 0.989854f, -0.110653f, 0.0f, -0.072453f, 0.983398f};
// Yuv Bt709 -> Yuv Bt2100
// Y' = (1.0 * Y) + (-0.016969 * U) + ( 0.096312 * V)
// U' = (0.0 * Y) + ( 0.995306 * U) + (-0.051192 * V)
// V' = (0.0 * Y) + ( 0.011507 * U) + ( 1.002637 * V)
const std::array<float, 9> kYuvBt709ToBt2100 = {
1.0f, -0.016969f, 0.096312f, 0.0f, 0.995306f, -0.051192f, 0.0f, 0.011507f, 1.002637f};
// Yuv Bt601 -> Yuv Bt709
// Y' = (1.0 * Y) + (-0.118188 * U) + (-0.212685 * V)
// U' = (0.0 * Y) + ( 1.018640 * U) + ( 0.114618 * V)
// V' = (0.0 * Y) + ( 0.075049 * U) + ( 1.025327 * V)
const std::array<float, 9> kYuvBt601ToBt709 = {
1.0f, -0.118188f, -0.212685f, 0.0f, 1.018640f, 0.114618f, 0.0f, 0.075049f, 1.025327f};
// Yuv Bt601 -> Yuv Bt2100
// Y' = (1.0 * Y) + (-0.128245 * U) + (-0.115879 * V)
// U' = (0.0 * Y) + ( 1.010016 * U) + ( 0.061592 * V)
// V' = (0.0 * Y) + ( 0.086969 * U) + ( 1.029350 * V)
const std::array<float, 9> kYuvBt601ToBt2100 = {
1.0f, -0.128245f, -0.115879, 0.0f, 1.010016f, 0.061592f, 0.0f, 0.086969f, 1.029350f};
// Yuv Bt2100 -> Yuv Bt709
// Y' = (1.0 * Y) + ( 0.018149 * U) + (-0.095132 * V)
// U' = (0.0 * Y) + ( 1.004123 * U) + ( 0.051267 * V)
// V' = (0.0 * Y) + (-0.011524 * U) + ( 0.996782 * V)
const std::array<float, 9> kYuvBt2100ToBt709 = {
1.0f, 0.018149f, -0.095132f, 0.0f, 1.004123f, 0.051267f, 0.0f, -0.011524f, 0.996782f};
// Yuv Bt2100 -> Yuv Bt601
// Y' = (1.0 * Y) + ( 0.117887 * U) + ( 0.105521 * V)
// U' = (0.0 * Y) + ( 0.995211 * U) + (-0.059549 * V)
// V' = (0.0 * Y) + (-0.084085 * U) + ( 0.976518 * V)
const std::array<float, 9> kYuvBt2100ToBt601 = {
1.0f, 0.117887f, 0.105521f, 0.0f, 0.995211f, -0.059549f, 0.0f, -0.084085f, 0.976518f};
Color yuvColorGamutConversion(Color e_gamma, const std::array<float, 9>& coeffs) {
const float y = e_gamma.y * std::get<0>(coeffs) + e_gamma.u * std::get<1>(coeffs) +
e_gamma.v * std::get<2>(coeffs);
const float u = e_gamma.y * std::get<3>(coeffs) + e_gamma.u * std::get<4>(coeffs) +
e_gamma.v * std::get<5>(coeffs);
const float v = e_gamma.y * std::get<6>(coeffs) + e_gamma.u * std::get<7>(coeffs) +
e_gamma.v * std::get<8>(coeffs);
return {{{y, u, v}}};
}
void transformYuv420(uhdr_raw_image_t* image, const std::array<float, 9>& coeffs) {
for (size_t y = 0; y < image->h / 2; ++y) {
for (size_t x = 0; x < image->w / 2; ++x) {
Color yuv1 = getYuv420Pixel(image, x * 2, y * 2);
Color yuv2 = getYuv420Pixel(image, x * 2 + 1, y * 2);
Color yuv3 = getYuv420Pixel(image, x * 2, y * 2 + 1);
Color yuv4 = getYuv420Pixel(image, x * 2 + 1, y * 2 + 1);
yuv1 = yuvColorGamutConversion(yuv1, coeffs);
yuv2 = yuvColorGamutConversion(yuv2, coeffs);
yuv3 = yuvColorGamutConversion(yuv3, coeffs);
yuv4 = yuvColorGamutConversion(yuv4, coeffs);
Color new_uv = (yuv1 + yuv2 + yuv3 + yuv4) / 4.0f;
size_t pixel_y1_idx = x * 2 + y * 2 * image->stride[UHDR_PLANE_Y];
size_t pixel_y2_idx = (x * 2 + 1) + y * 2 * image->stride[UHDR_PLANE_Y];
size_t pixel_y3_idx = x * 2 + (y * 2 + 1) * image->stride[UHDR_PLANE_Y];
size_t pixel_y4_idx = (x * 2 + 1) + (y * 2 + 1) * image->stride[UHDR_PLANE_Y];
uint8_t& y1_uint = reinterpret_cast<uint8_t*>(image->planes[UHDR_PLANE_Y])[pixel_y1_idx];
uint8_t& y2_uint = reinterpret_cast<uint8_t*>(image->planes[UHDR_PLANE_Y])[pixel_y2_idx];
uint8_t& y3_uint = reinterpret_cast<uint8_t*>(image->planes[UHDR_PLANE_Y])[pixel_y3_idx];
uint8_t& y4_uint = reinterpret_cast<uint8_t*>(image->planes[UHDR_PLANE_Y])[pixel_y4_idx];
size_t pixel_u_idx = x + y * image->stride[UHDR_PLANE_U];
uint8_t& u_uint = reinterpret_cast<uint8_t*>(image->planes[UHDR_PLANE_U])[pixel_u_idx];
size_t pixel_v_idx = x + y * image->stride[UHDR_PLANE_V];
uint8_t& v_uint = reinterpret_cast<uint8_t*>(image->planes[UHDR_PLANE_V])[pixel_v_idx];
y1_uint = static_cast<uint8_t>(CLIP3((yuv1.y * 255.0f + 0.5f), 0, 255));
y2_uint = static_cast<uint8_t>(CLIP3((yuv2.y * 255.0f + 0.5f), 0, 255));
y3_uint = static_cast<uint8_t>(CLIP3((yuv3.y * 255.0f + 0.5f), 0, 255));
y4_uint = static_cast<uint8_t>(CLIP3((yuv4.y * 255.0f + 0.5f), 0, 255));
u_uint = static_cast<uint8_t>(CLIP3((new_uv.u * 255.0f + 128.0f + 0.5f), 0, 255));
v_uint = static_cast<uint8_t>(CLIP3((new_uv.v * 255.0f + 128.0f + 0.5f), 0, 255));
}
}
}
void transformYuv444(uhdr_raw_image_t* image, const std::array<float, 9>& coeffs) {
for (size_t y = 0; y < image->h; ++y) {
for (size_t x = 0; x < image->w; ++x) {
Color yuv = getYuv444Pixel(image, x, y);
yuv = yuvColorGamutConversion(yuv, coeffs);
size_t pixel_y_idx = x + y * image->stride[UHDR_PLANE_Y];
uint8_t& y1_uint = reinterpret_cast<uint8_t*>(image->planes[UHDR_PLANE_Y])[pixel_y_idx];
size_t pixel_u_idx = x + y * image->stride[UHDR_PLANE_U];
uint8_t& u_uint = reinterpret_cast<uint8_t*>(image->planes[UHDR_PLANE_U])[pixel_u_idx];
size_t pixel_v_idx = x + y * image->stride[UHDR_PLANE_V];
uint8_t& v_uint = reinterpret_cast<uint8_t*>(image->planes[UHDR_PLANE_V])[pixel_v_idx];
y1_uint = static_cast<uint8_t>(CLIP3((yuv.y * 255.0f + 0.5f), 0, 255));
u_uint = static_cast<uint8_t>(CLIP3((yuv.u * 255.0f + 128.0f + 0.5f), 0, 255));
v_uint = static_cast<uint8_t>(CLIP3((yuv.v * 255.0f + 128.0f + 0.5f), 0, 255));
}
}
}
////////////////////////////////////////////////////////////////////////////////
// Gain map calculations
uint8_t encodeGain(float y_sdr, float y_hdr, uhdr_gainmap_metadata_ext_t* metadata) {
return encodeGain(y_sdr, y_hdr, metadata, log2(metadata->min_content_boost),
log2(metadata->max_content_boost));
}
uint8_t encodeGain(float y_sdr, float y_hdr, uhdr_gainmap_metadata_ext_t* metadata,
float log2MinContentBoost, float log2MaxContentBoost) {
float gain = 1.0f;
if (y_sdr > 0.0f) {
gain = y_hdr / y_sdr;
}
if (gain < metadata->min_content_boost) gain = metadata->min_content_boost;
if (gain > metadata->max_content_boost) gain = metadata->max_content_boost;
float gain_normalized =
(log2(gain) - log2MinContentBoost) / (log2MaxContentBoost - log2MinContentBoost);
float gain_normalized_gamma = powf(gain_normalized, metadata->gamma);
return static_cast<uint8_t>(gain_normalized_gamma * 255.0f);
}
float computeGain(float sdr, float hdr) {
if (sdr == 0.0f) return 0.0f; // for sdr black return no gain
if (hdr == 0.0f) { // for hdr black, return a gain large enough to attenuate the sdr pel
float offset = (1.0f / 64);
return log2(offset / (offset + sdr));
}
return log2(hdr / sdr);
}
uint8_t affineMapGain(float gainlog2, float mingainlog2, float maxgainlog2, float gamma) {
float mappedVal = (gainlog2 - mingainlog2) / (maxgainlog2 - mingainlog2);
if (gamma != 1.0f) mappedVal = pow(mappedVal, gamma);
mappedVal *= 255;
return CLIP3(mappedVal + 0.5f, 0, 255);
}
Color applyGain(Color e, float gain, uhdr_gainmap_metadata_ext_t* metadata) {
if (metadata->gamma != 1.0f) gain = pow(gain, 1.0f / metadata->gamma);
float logBoost =
log2(metadata->min_content_boost) * (1.0f - gain) + log2(metadata->max_content_boost) * gain;
float gainFactor = exp2(logBoost);
return ((e + metadata->offset_sdr) * gainFactor) - metadata->offset_hdr;
}
Color applyGain(Color e, float gain, uhdr_gainmap_metadata_ext_t* metadata, float gainmapWeight) {
if (metadata->gamma != 1.0f) gain = pow(gain, 1.0f / metadata->gamma);
float logBoost =
log2(metadata->min_content_boost) * (1.0f - gain) + log2(metadata->max_content_boost) * gain;
float gainFactor = exp2(logBoost * gainmapWeight);
return ((e + metadata->offset_sdr) * gainFactor) - metadata->offset_hdr;
}
Color applyGainLUT(Color e, float gain, GainLUT& gainLUT, uhdr_gainmap_metadata_ext_t* metadata) {
float gainFactor = gainLUT.getGainFactor(gain);
return ((e + metadata->offset_sdr) * gainFactor) - metadata->offset_hdr;
}
Color applyGain(Color e, Color gain, uhdr_gainmap_metadata_ext_t* metadata) {
if (metadata->gamma != 1.0f) {
gain.r = pow(gain.r, 1.0f / metadata->gamma);
gain.g = pow(gain.g, 1.0f / metadata->gamma);
gain.b = pow(gain.b, 1.0f / metadata->gamma);
}
float logBoostR = log2(metadata->min_content_boost) * (1.0f - gain.r) +
log2(metadata->max_content_boost) * gain.r;
float logBoostG = log2(metadata->min_content_boost) * (1.0f - gain.g) +
log2(metadata->max_content_boost) * gain.g;
float logBoostB = log2(metadata->min_content_boost) * (1.0f - gain.b) +
log2(metadata->max_content_boost) * gain.b;
float gainFactorR = exp2(logBoostR);
float gainFactorG = exp2(logBoostG);
float gainFactorB = exp2(logBoostB);
return {{{((e.r + metadata->offset_sdr) * gainFactorR) - metadata->offset_hdr,
((e.g + metadata->offset_sdr) * gainFactorG) - metadata->offset_hdr,
((e.b + metadata->offset_sdr) * gainFactorB) - metadata->offset_hdr}}};
}
Color applyGain(Color e, Color gain, uhdr_gainmap_metadata_ext_t* metadata, float gainmapWeight) {
if (metadata->gamma != 1.0f) {
gain.r = pow(gain.r, 1.0f / metadata->gamma);
gain.g = pow(gain.g, 1.0f / metadata->gamma);
gain.b = pow(gain.b, 1.0f / metadata->gamma);
}
float logBoostR = log2(metadata->min_content_boost) * (1.0f - gain.r) +
log2(metadata->max_content_boost) * gain.r;
float logBoostG = log2(metadata->min_content_boost) * (1.0f - gain.g) +
log2(metadata->max_content_boost) * gain.g;
float logBoostB = log2(metadata->min_content_boost) * (1.0f - gain.b) +
log2(metadata->max_content_boost) * gain.b;
float gainFactorR = exp2(logBoostR * gainmapWeight);
float gainFactorG = exp2(logBoostG * gainmapWeight);
float gainFactorB = exp2(logBoostB * gainmapWeight);
return {{{((e.r + metadata->offset_sdr) * gainFactorR) - metadata->offset_hdr,
((e.g + metadata->offset_sdr) * gainFactorG) - metadata->offset_hdr,
((e.b + metadata->offset_sdr) * gainFactorB) - metadata->offset_hdr}}};
}
Color applyGainLUT(Color e, Color gain, GainLUT& gainLUT, uhdr_gainmap_metadata_ext_t* metadata) {
float gainFactorR = gainLUT.getGainFactor(gain.r);
float gainFactorG = gainLUT.getGainFactor(gain.g);
float gainFactorB = gainLUT.getGainFactor(gain.b);
return {{{((e.r + metadata->offset_sdr) * gainFactorR) - metadata->offset_hdr,
((e.g + metadata->offset_sdr) * gainFactorG) - metadata->offset_hdr,
((e.b + metadata->offset_sdr) * gainFactorB) - metadata->offset_hdr}}};
}
// TODO: do we need something more clever for filtering either the map or images
// to generate the map?
static size_t clamp(const size_t& val, const size_t& low, const size_t& high) {
return val < low ? low : (high < val ? high : val);
}
static float mapUintToFloat(uint8_t map_uint) { return static_cast<float>(map_uint) / 255.0f; }
static float pythDistance(float x_diff, float y_diff) {
return sqrt(pow(x_diff, 2.0f) + pow(y_diff, 2.0f));
}
// TODO: If map_scale_factor is guaranteed to be an integer, then remove the following.
float sampleMap(uhdr_raw_image_t* map, float map_scale_factor, size_t x, size_t y) {
float x_map = static_cast<float>(x) / map_scale_factor;
float y_map = static_cast<float>(y) / map_scale_factor;
size_t x_lower = static_cast<size_t>(floor(x_map));
size_t x_upper = x_lower + 1;
size_t y_lower = static_cast<size_t>(floor(y_map));
size_t y_upper = y_lower + 1;
x_lower = clamp(x_lower, 0, map->w - 1);
x_upper = clamp(x_upper, 0, map->w - 1);
y_lower = clamp(y_lower, 0, map->h - 1);
y_upper = clamp(y_upper, 0, map->h - 1);
// Use Shepard's method for inverse distance weighting. For more information:
// en.wikipedia.org/wiki/Inverse_distance_weighting#Shepard's_method
uint8_t* data = reinterpret_cast<uint8_t*>(map->planes[UHDR_PLANE_Y]);
size_t stride = map->stride[UHDR_PLANE_Y];
float e1 = mapUintToFloat(data[x_lower + y_lower * stride]);
float e1_dist =
pythDistance(x_map - static_cast<float>(x_lower), y_map - static_cast<float>(y_lower));
if (e1_dist == 0.0f) return e1;
float e2 = mapUintToFloat(data[x_lower + y_upper * stride]);
float e2_dist =
pythDistance(x_map - static_cast<float>(x_lower), y_map - static_cast<float>(y_upper));
if (e2_dist == 0.0f) return e2;
float e3 = mapUintToFloat(data[x_upper + y_lower * stride]);
float e3_dist =
pythDistance(x_map - static_cast<float>(x_upper), y_map - static_cast<float>(y_lower));
if (e3_dist == 0.0f) return e3;
float e4 = mapUintToFloat(data[x_upper + y_upper * stride]);
float e4_dist =
pythDistance(x_map - static_cast<float>(x_upper), y_map - static_cast<float>(y_upper));
if (e4_dist == 0.0f) return e2;
float e1_weight = 1.0f / e1_dist;
float e2_weight = 1.0f / e2_dist;
float e3_weight = 1.0f / e3_dist;
float e4_weight = 1.0f / e4_dist;
float total_weight = e1_weight + e2_weight + e3_weight + e4_weight;
return e1 * (e1_weight / total_weight) + e2 * (e2_weight / total_weight) +
e3 * (e3_weight / total_weight) + e4 * (e4_weight / total_weight);
}
float sampleMap(uhdr_raw_image_t* map, size_t map_scale_factor, size_t x, size_t y,
ShepardsIDW& weightTables) {
// TODO: If map_scale_factor is guaranteed to be an integer power of 2, then optimize the
// following by computing log2(map_scale_factor) once and then using >> log2(map_scale_factor)
size_t x_lower = x / map_scale_factor;
size_t x_upper = x_lower + 1;
size_t y_lower = y / map_scale_factor;
size_t y_upper = y_lower + 1;
x_lower = std::min(x_lower, (size_t)map->w - 1);
x_upper = std::min(x_upper, (size_t)map->w - 1);
y_lower = std::min(y_lower, (size_t)map->h - 1);
y_upper = std::min(y_upper, (size_t)map->h - 1);
uint8_t* data = reinterpret_cast<uint8_t*>(map->planes[UHDR_PLANE_Y]);
size_t stride = map->stride[UHDR_PLANE_Y];
float e1 = mapUintToFloat(data[x_lower + y_lower * stride]);
float e2 = mapUintToFloat(data[x_lower + y_upper * stride]);
float e3 = mapUintToFloat(data[x_upper + y_lower * stride]);
float e4 = mapUintToFloat(data[x_upper + y_upper * stride]);
// TODO: If map_scale_factor is guaranteed to be an integer power of 2, then optimize the
// following by using & (map_scale_factor - 1)
size_t offset_x = x % map_scale_factor;
size_t offset_y = y % map_scale_factor;
float* weights = weightTables.mWeights;
if (x_lower == x_upper && y_lower == y_upper)
weights = weightTables.mWeightsC;
else if (x_lower == x_upper)
weights = weightTables.mWeightsNR;
else if (y_lower == y_upper)
weights = weightTables.mWeightsNB;
weights += offset_y * map_scale_factor * 4 + offset_x * 4;
return e1 * weights[0] + e2 * weights[1] + e3 * weights[2] + e4 * weights[3];
}
Color sampleMap3Channel(uhdr_raw_image_t* map, float map_scale_factor, size_t x, size_t y,
bool has_alpha) {
float x_map = static_cast<float>(x) / map_scale_factor;
float y_map = static_cast<float>(y) / map_scale_factor;
size_t x_lower = static_cast<size_t>(floor(x_map));
size_t x_upper = x_lower + 1;
size_t y_lower = static_cast<size_t>(floor(y_map));
size_t y_upper = y_lower + 1;
x_lower = std::min(x_lower, (size_t)map->w - 1);
x_upper = std::min(x_upper, (size_t)map->w - 1);
y_lower = std::min(y_lower, (size_t)map->h - 1);
y_upper = std::min(y_upper, (size_t)map->h - 1);
int factor = has_alpha ? 4 : 3;
uint8_t* data = reinterpret_cast<uint8_t*>(map->planes[UHDR_PLANE_PACKED]);
size_t stride = map->stride[UHDR_PLANE_PACKED];
float r1 = mapUintToFloat(data[(x_lower + y_lower * stride) * factor]);
float r2 = mapUintToFloat(data[(x_lower + y_upper * stride) * factor]);
float r3 = mapUintToFloat(data[(x_upper + y_lower * stride) * factor]);
float r4 = mapUintToFloat(data[(x_upper + y_upper * stride) * factor]);
float g1 = mapUintToFloat(data[(x_lower + y_lower * stride) * factor + 1]);
float g2 = mapUintToFloat(data[(x_lower + y_upper * stride) * factor + 1]);
float g3 = mapUintToFloat(data[(x_upper + y_lower * stride) * factor + 1]);
float g4 = mapUintToFloat(data[(x_upper + y_upper * stride) * factor + 1]);
float b1 = mapUintToFloat(data[(x_lower + y_lower * stride) * factor + 2]);
float b2 = mapUintToFloat(data[(x_lower + y_upper * stride) * factor + 2]);
float b3 = mapUintToFloat(data[(x_upper + y_lower * stride) * factor + 2]);
float b4 = mapUintToFloat(data[(x_upper + y_upper * stride) * factor + 2]);
Color rgb1 = {{{r1, g1, b1}}};
Color rgb2 = {{{r2, g2, b2}}};
Color rgb3 = {{{r3, g3, b3}}};
Color rgb4 = {{{r4, g4, b4}}};
// Use Shepard's method for inverse distance weighting. For more information:
// en.wikipedia.org/wiki/Inverse_distance_weighting#Shepard's_method
float e1_dist =
pythDistance(x_map - static_cast<float>(x_lower), y_map - static_cast<float>(y_lower));
if (e1_dist == 0.0f) return rgb1;
float e2_dist =
pythDistance(x_map - static_cast<float>(x_lower), y_map - static_cast<float>(y_upper));
if (e2_dist == 0.0f) return rgb2;
float e3_dist =
pythDistance(x_map - static_cast<float>(x_upper), y_map - static_cast<float>(y_lower));
if (e3_dist == 0.0f) return rgb3;
float e4_dist =
pythDistance(x_map - static_cast<float>(x_upper), y_map - static_cast<float>(y_upper));
if (e4_dist == 0.0f) return rgb4;
float e1_weight = 1.0f / e1_dist;
float e2_weight = 1.0f / e2_dist;
float e3_weight = 1.0f / e3_dist;
float e4_weight = 1.0f / e4_dist;
float total_weight = e1_weight + e2_weight + e3_weight + e4_weight;
return rgb1 * (e1_weight / total_weight) + rgb2 * (e2_weight / total_weight) +
rgb3 * (e3_weight / total_weight) + rgb4 * (e4_weight / total_weight);
}
Color sampleMap3Channel(uhdr_raw_image_t* map, size_t map_scale_factor, size_t x, size_t y,
ShepardsIDW& weightTables, bool has_alpha) {
// TODO: If map_scale_factor is guaranteed to be an integer power of 2, then optimize the
// following by computing log2(map_scale_factor) once and then using >> log2(map_scale_factor)
size_t x_lower = x / map_scale_factor;
size_t x_upper = x_lower + 1;
size_t y_lower = y / map_scale_factor;
size_t y_upper = y_lower + 1;
x_lower = std::min(x_lower, (size_t)map->w - 1);
x_upper = std::min(x_upper, (size_t)map->w - 1);
y_lower = std::min(y_lower, (size_t)map->h - 1);
y_upper = std::min(y_upper, (size_t)map->h - 1);
int factor = has_alpha ? 4 : 3;
uint8_t* data = reinterpret_cast<uint8_t*>(map->planes[UHDR_PLANE_PACKED]);
size_t stride = map->stride[UHDR_PLANE_PACKED];
float r1 = mapUintToFloat(data[(x_lower + y_lower * stride) * factor]);
float r2 = mapUintToFloat(data[(x_lower + y_upper * stride) * factor]);
float r3 = mapUintToFloat(data[(x_upper + y_lower * stride) * factor]);
float r4 = mapUintToFloat(data[(x_upper + y_upper * stride) * factor]);
float g1 = mapUintToFloat(data[(x_lower + y_lower * stride) * factor + 1]);
float g2 = mapUintToFloat(data[(x_lower + y_upper * stride) * factor + 1]);
float g3 = mapUintToFloat(data[(x_upper + y_lower * stride) * factor + 1]);
float g4 = mapUintToFloat(data[(x_upper + y_upper * stride) * factor + 1]);
float b1 = mapUintToFloat(data[(x_lower + y_lower * stride) * factor + 2]);
float b2 = mapUintToFloat(data[(x_lower + y_upper * stride) * factor + 2]);
float b3 = mapUintToFloat(data[(x_upper + y_lower * stride) * factor + 2]);
float b4 = mapUintToFloat(data[(x_upper + y_upper * stride) * factor + 2]);
Color rgb1 = {{{r1, g1, b1}}};
Color rgb2 = {{{r2, g2, b2}}};
Color rgb3 = {{{r3, g3, b3}}};
Color rgb4 = {{{r4, g4, b4}}};
// TODO: If map_scale_factor is guaranteed to be an integer power of 2, then optimize the
// following by using & (map_scale_factor - 1)
size_t offset_x = x % map_scale_factor;
size_t offset_y = y % map_scale_factor;
float* weights = weightTables.mWeights;
if (x_lower == x_upper && y_lower == y_upper)
weights = weightTables.mWeightsC;
else if (x_lower == x_upper)
weights = weightTables.mWeightsNR;
else if (y_lower == y_upper)
weights = weightTables.mWeightsNB;
weights += offset_y * map_scale_factor * 4 + offset_x * 4;
return rgb1 * weights[0] + rgb2 * weights[1] + rgb3 * weights[2] + rgb4 * weights[3];
}
////////////////////////////////////////////////////////////////////////////////
// function selectors
// TODO: confirm we always want to convert like this before calculating
// luminance.
ColorTransformFn getGamutConversionFn(uhdr_color_gamut_t dst_gamut, uhdr_color_gamut_t src_gamut) {
switch (dst_gamut) {
case UHDR_CG_BT_709:
switch (src_gamut) {
case UHDR_CG_BT_709:
return identityConversion;
case UHDR_CG_DISPLAY_P3:
return p3ToBt709;
case UHDR_CG_BT_2100:
return bt2100ToBt709;
case UHDR_CG_UNSPECIFIED:
return nullptr;
}
break;
case UHDR_CG_DISPLAY_P3:
switch (src_gamut) {
case UHDR_CG_BT_709:
return bt709ToP3;
case UHDR_CG_DISPLAY_P3:
return identityConversion;
case UHDR_CG_BT_2100:
return bt2100ToP3;
case UHDR_CG_UNSPECIFIED:
return nullptr;
}
break;
case UHDR_CG_BT_2100:
switch (src_gamut) {
case UHDR_CG_BT_709:
return bt709ToBt2100;
case UHDR_CG_DISPLAY_P3:
return p3ToBt2100;
case UHDR_CG_BT_2100:
return identityConversion;
case UHDR_CG_UNSPECIFIED:
return nullptr;
}
break;
case UHDR_CG_UNSPECIFIED:
return nullptr;
}
return nullptr;
}
ColorTransformFn getYuvToRgbFn(uhdr_color_gamut_t gamut) {
switch (gamut) {
case UHDR_CG_BT_709:
return srgbYuvToRgb;
case UHDR_CG_DISPLAY_P3:
return p3YuvToRgb;
case UHDR_CG_BT_2100:
return bt2100YuvToRgb;
case UHDR_CG_UNSPECIFIED:
return nullptr;
}
return nullptr;
}
LuminanceFn getLuminanceFn(uhdr_color_gamut_t gamut) {
switch (gamut) {
case UHDR_CG_BT_709:
return srgbLuminance;
case UHDR_CG_DISPLAY_P3:
return p3Luminance;
case UHDR_CG_BT_2100:
return bt2100Luminance;
case UHDR_CG_UNSPECIFIED:
return nullptr;
}
return nullptr;
}
ColorTransformFn getInverseOetfFn(uhdr_color_transfer_t transfer) {
switch (transfer) {
case UHDR_CT_LINEAR:
return identityConversion;
case UHDR_CT_HLG:
#if USE_HLG_INVOETF_LUT
return hlgInvOetfLUT;
#else
return hlgInvOetf;
#endif
case UHDR_CT_PQ:
#if USE_PQ_INVOETF_LUT
return pqInvOetfLUT;
#else
return pqInvOetf;
#endif
case UHDR_CT_SRGB:
#if USE_SRGB_INVOETF_LUT
return srgbInvOetfLUT;
#else
return srgbInvOetf;
#endif
case UHDR_CT_UNSPECIFIED:
return nullptr;
}
return nullptr;
}
SceneToDisplayLuminanceFn getOotfFn(uhdr_color_transfer_t transfer) {
switch (transfer) {
case UHDR_CT_LINEAR:
return identityOotf;
case UHDR_CT_HLG:
return hlgOotfApprox;
case UHDR_CT_PQ:
return identityOotf;
case UHDR_CT_SRGB:
return identityOotf;
case UHDR_CT_UNSPECIFIED:
return nullptr;
}
return nullptr;
}
GetPixelFn getPixelFn(uhdr_img_fmt_t format) {
switch (format) {
case UHDR_IMG_FMT_24bppYCbCr444:
return getYuv444Pixel;
case UHDR_IMG_FMT_16bppYCbCr422:
return getYuv422Pixel;
case UHDR_IMG_FMT_12bppYCbCr420:
return getYuv420Pixel;
case UHDR_IMG_FMT_24bppYCbCrP010:
return getP010Pixel;
case UHDR_IMG_FMT_30bppYCbCr444:
return getYuv444Pixel10bit;
case UHDR_IMG_FMT_32bppRGBA8888:
return getRgba8888Pixel;
case UHDR_IMG_FMT_32bppRGBA1010102:
return getRgba1010102Pixel;
case UHDR_IMG_FMT_64bppRGBAHalfFloat:
return getRgbaF16Pixel;
case UHDR_IMG_FMT_8bppYCbCr400:
return getYuv400Pixel;
case UHDR_IMG_FMT_24bppRGB888:
return getRgb888Pixel;
default:
return nullptr;
}
return nullptr;
}
PutPixelFn putPixelFn(uhdr_img_fmt_t format) {
switch (format) {
case UHDR_IMG_FMT_24bppYCbCr444:
return putYuv444Pixel;
case UHDR_IMG_FMT_32bppRGBA8888:
return putRgba8888Pixel;
case UHDR_IMG_FMT_8bppYCbCr400:
return putYuv400Pixel;
case UHDR_IMG_FMT_24bppRGB888:
return putRgb888Pixel;
default:
return nullptr;
}
return nullptr;
}
SamplePixelFn getSamplePixelFn(uhdr_img_fmt_t format) {
switch (format) {
case UHDR_IMG_FMT_24bppYCbCr444:
return sampleYuv444;
case UHDR_IMG_FMT_16bppYCbCr422:
return sampleYuv422;
case UHDR_IMG_FMT_12bppYCbCr420:
return sampleYuv420;
case UHDR_IMG_FMT_24bppYCbCrP010:
return sampleP010;
case UHDR_IMG_FMT_30bppYCbCr444:
return sampleYuv44410bit;
case UHDR_IMG_FMT_32bppRGBA8888:
return sampleRgba8888;
case UHDR_IMG_FMT_32bppRGBA1010102:
return sampleRgba1010102;
case UHDR_IMG_FMT_64bppRGBAHalfFloat:
return sampleRgbaF16;
default:
return nullptr;
}
return nullptr;
}
////////////////////////////////////////////////////////////////////////////////
// common utils
bool isPixelFormatRgb(uhdr_img_fmt_t format) {
return format == UHDR_IMG_FMT_64bppRGBAHalfFloat || format == UHDR_IMG_FMT_32bppRGBA8888 ||
format == UHDR_IMG_FMT_32bppRGBA1010102;
}
uint32_t colorToRgba1010102(Color e_gamma) {
uint32_t r = CLIP3((e_gamma.r * 1023 + 0.5f), 0.0f, 1023.0f);
uint32_t g = CLIP3((e_gamma.g * 1023 + 0.5f), 0.0f, 1023.0f);
uint32_t b = CLIP3((e_gamma.b * 1023 + 0.5f), 0.0f, 1023.0f);
return (r | (g << 10) | (b << 20) | (0x3 << 30)); // Set alpha to 1.0
}
uint64_t colorToRgbaF16(Color e_gamma) {
return (uint64_t)floatToHalf(e_gamma.r) | (((uint64_t)floatToHalf(e_gamma.g)) << 16) |
(((uint64_t)floatToHalf(e_gamma.b)) << 32) | (((uint64_t)floatToHalf(1.0f)) << 48);
}
std::unique_ptr<uhdr_raw_image_ext_t> convert_raw_input_to_ycbcr(uhdr_raw_image_t* src,
bool chroma_sampling_enabled) {
std::unique_ptr<uhdr_raw_image_ext_t> dst = nullptr;
Color (*rgbToyuv)(Color) = nullptr;
if (src->fmt == UHDR_IMG_FMT_32bppRGBA1010102 || src->fmt == UHDR_IMG_FMT_32bppRGBA8888) {
if (src->cg == UHDR_CG_BT_709) {
rgbToyuv = srgbRgbToYuv;
} else if (src->cg == UHDR_CG_BT_2100) {
rgbToyuv = bt2100RgbToYuv;
} else if (src->cg == UHDR_CG_DISPLAY_P3) {
rgbToyuv = p3RgbToYuv;
} else {
return dst;
}
}
if (src->fmt == UHDR_IMG_FMT_32bppRGBA1010102 && chroma_sampling_enabled) {
dst = std::make_unique<uhdr_raw_image_ext_t>(UHDR_IMG_FMT_24bppYCbCrP010, src->cg, src->ct,
UHDR_CR_FULL_RANGE, src->w, src->h, 64);
uint32_t* rgbData = static_cast<uint32_t*>(src->planes[UHDR_PLANE_PACKED]);
unsigned int srcStride = src->stride[UHDR_PLANE_PACKED];
uint16_t* yData = static_cast<uint16_t*>(dst->planes[UHDR_PLANE_Y]);
uint16_t* uData = static_cast<uint16_t*>(dst->planes[UHDR_PLANE_UV]);
uint16_t* vData = uData + 1;
for (size_t i = 0; i < dst->h; i += 2) {
for (size_t j = 0; j < dst->w; j += 2) {
Color pixel[4];
pixel[0].r = float(rgbData[srcStride * i + j] & 0x3ff);
pixel[0].g = float((rgbData[srcStride * i + j] >> 10) & 0x3ff);
pixel[0].b = float((rgbData[srcStride * i + j] >> 20) & 0x3ff);
pixel[1].r = float(rgbData[srcStride * i + j + 1] & 0x3ff);
pixel[1].g = float((rgbData[srcStride * i + j + 1] >> 10) & 0x3ff);
pixel[1].b = float((rgbData[srcStride * i + j + 1] >> 20) & 0x3ff);
pixel[2].r = float(rgbData[srcStride * (i + 1) + j] & 0x3ff);
pixel[2].g = float((rgbData[srcStride * (i + 1) + j] >> 10) & 0x3ff);
pixel[2].b = float((rgbData[srcStride * (i + 1) + j] >> 20) & 0x3ff);
pixel[3].r = float(rgbData[srcStride * (i + 1) + j + 1] & 0x3ff);
pixel[3].g = float((rgbData[srcStride * (i + 1) + j + 1] >> 10) & 0x3ff);
pixel[3].b = float((rgbData[srcStride * (i + 1) + j + 1] >> 20) & 0x3ff);
for (int k = 0; k < 4; k++) {
// Now we only support the RGB input being full range
pixel[k] /= 1023.0f;
pixel[k] = (*rgbToyuv)(pixel[k]);
pixel[k].y = (pixel[k].y * 1023.0f) + 0.5f;
pixel[k].y = CLIP3(pixel[k].y, 0.0f, 1023.0f);
}
yData[dst->stride[UHDR_PLANE_Y] * i + j] = uint16_t(pixel[0].y) << 6;
yData[dst->stride[UHDR_PLANE_Y] * i + j + 1] = uint16_t(pixel[1].y) << 6;
yData[dst->stride[UHDR_PLANE_Y] * (i + 1) + j] = uint16_t(pixel[2].y) << 6;
yData[dst->stride[UHDR_PLANE_Y] * (i + 1) + j + 1] = uint16_t(pixel[3].y) << 6;
pixel[0].u = (pixel[0].u + pixel[1].u + pixel[2].u + pixel[3].u) / 4;
pixel[0].v = (pixel[0].v + pixel[1].v + pixel[2].v + pixel[3].v) / 4;
pixel[0].u = (pixel[0].u * 1023.0f) + 512.0f + 0.5f;
pixel[0].v = (pixel[0].v * 1023.0f) + 512.0f + 0.5f;
pixel[0].u = CLIP3(pixel[0].u, 0.0f, 1023.0f);
pixel[0].v = CLIP3(pixel[0].v, 0.0f, 1023.0f);
uData[dst->stride[UHDR_PLANE_UV] * (i / 2) + j] = uint16_t(pixel[0].u) << 6;
vData[dst->stride[UHDR_PLANE_UV] * (i / 2) + j] = uint16_t(pixel[0].v) << 6;
}
}
} else if (src->fmt == UHDR_IMG_FMT_32bppRGBA1010102) {
dst = std::make_unique<uhdr_raw_image_ext_t>(UHDR_IMG_FMT_30bppYCbCr444, src->cg, src->ct,
UHDR_CR_FULL_RANGE, src->w, src->h, 64);
uint32_t* rgbData = static_cast<uint32_t*>(src->planes[UHDR_PLANE_PACKED]);
unsigned int srcStride = src->stride[UHDR_PLANE_PACKED];
uint16_t* yData = static_cast<uint16_t*>(dst->planes[UHDR_PLANE_Y]);
uint16_t* uData = static_cast<uint16_t*>(dst->planes[UHDR_PLANE_U]);
uint16_t* vData = static_cast<uint16_t*>(dst->planes[UHDR_PLANE_V]);
for (size_t i = 0; i < dst->h; i++) {
for (size_t j = 0; j < dst->w; j++) {
Color pixel;
pixel.r = float(rgbData[srcStride * i + j] & 0x3ff);
pixel.g = float((rgbData[srcStride * i + j] >> 10) & 0x3ff);
pixel.b = float((rgbData[srcStride * i + j] >> 20) & 0x3ff);
// Now we only support the RGB input being full range
pixel /= 1023.0f;
pixel = (*rgbToyuv)(pixel);
pixel.y = (pixel.y * 1023.0f) + 0.5f;
pixel.y = CLIP3(pixel.y, 0.0f, 1023.0f);
yData[dst->stride[UHDR_PLANE_Y] * i + j] = uint16_t(pixel.y);
pixel.u = (pixel.u * 1023.0f) + 512.0f + 0.5f;
pixel.v = (pixel.v * 1023.0f) + 512.0f + 0.5f;
pixel.u = CLIP3(pixel.u, 0.0f, 1023.0f);
pixel.v = CLIP3(pixel.v, 0.0f, 1023.0f);
uData[dst->stride[UHDR_PLANE_U] * i + j] = uint16_t(pixel.u);
vData[dst->stride[UHDR_PLANE_V] * i + j] = uint16_t(pixel.v);
}
}
} else if (src->fmt == UHDR_IMG_FMT_32bppRGBA8888 && chroma_sampling_enabled) {
dst = std::make_unique<uhdr_raw_image_ext_t>(UHDR_IMG_FMT_12bppYCbCr420, src->cg, src->ct,
UHDR_CR_FULL_RANGE, src->w, src->h, 64);
uint32_t* rgbData = static_cast<uint32_t*>(src->planes[UHDR_PLANE_PACKED]);
unsigned int srcStride = src->stride[UHDR_PLANE_PACKED];
uint8_t* yData = static_cast<uint8_t*>(dst->planes[UHDR_PLANE_Y]);
uint8_t* uData = static_cast<uint8_t*>(dst->planes[UHDR_PLANE_U]);
uint8_t* vData = static_cast<uint8_t*>(dst->planes[UHDR_PLANE_V]);
for (size_t i = 0; i < dst->h; i += 2) {
for (size_t j = 0; j < dst->w; j += 2) {
Color pixel[4];
pixel[0].r = float(rgbData[srcStride * i + j] & 0xff);
pixel[0].g = float((rgbData[srcStride * i + j] >> 8) & 0xff);
pixel[0].b = float((rgbData[srcStride * i + j] >> 16) & 0xff);
pixel[1].r = float(rgbData[srcStride * i + (j + 1)] & 0xff);
pixel[1].g = float((rgbData[srcStride * i + (j + 1)] >> 8) & 0xff);
pixel[1].b = float((rgbData[srcStride * i + (j + 1)] >> 16) & 0xff);
pixel[2].r = float(rgbData[srcStride * (i + 1) + j] & 0xff);
pixel[2].g = float((rgbData[srcStride * (i + 1) + j] >> 8) & 0xff);
pixel[2].b = float((rgbData[srcStride * (i + 1) + j] >> 16) & 0xff);
pixel[3].r = float(rgbData[srcStride * (i + 1) + (j + 1)] & 0xff);
pixel[3].g = float((rgbData[srcStride * (i + 1) + (j + 1)] >> 8) & 0xff);
pixel[3].b = float((rgbData[srcStride * (i + 1) + (j + 1)] >> 16) & 0xff);
for (int k = 0; k < 4; k++) {
// Now we only support the RGB input being full range
pixel[k] /= 255.0f;
pixel[k] = (*rgbToyuv)(pixel[k]);
pixel[k].y = pixel[k].y * 255.0f + 0.5f;
pixel[k].y = CLIP3(pixel[k].y, 0.0f, 255.0f);
}
yData[dst->stride[UHDR_PLANE_Y] * i + j] = uint8_t(pixel[0].y);
yData[dst->stride[UHDR_PLANE_Y] * i + j + 1] = uint8_t(pixel[1].y);
yData[dst->stride[UHDR_PLANE_Y] * (i + 1) + j] = uint8_t(pixel[2].y);
yData[dst->stride[UHDR_PLANE_Y] * (i + 1) + j + 1] = uint8_t(pixel[3].y);
pixel[0].u = (pixel[0].u + pixel[1].u + pixel[2].u + pixel[3].u) / 4;
pixel[0].v = (pixel[0].v + pixel[1].v + pixel[2].v + pixel[3].v) / 4;
pixel[0].u = pixel[0].u * 255.0f + 0.5f + 128.0f;
pixel[0].v = pixel[0].v * 255.0f + 0.5f + 128.0f;
pixel[0].u = CLIP3(pixel[0].u, 0.0f, 255.0f);
pixel[0].v = CLIP3(pixel[0].v, 0.0f, 255.0f);
uData[dst->stride[UHDR_PLANE_U] * (i / 2) + (j / 2)] = uint8_t(pixel[0].u);
vData[dst->stride[UHDR_PLANE_V] * (i / 2) + (j / 2)] = uint8_t(pixel[0].v);
}
}
} else if (src->fmt == UHDR_IMG_FMT_32bppRGBA8888) {
dst = std::make_unique<uhdr_raw_image_ext_t>(UHDR_IMG_FMT_24bppYCbCr444, src->cg, src->ct,
UHDR_CR_FULL_RANGE, src->w, src->h, 64);
uint32_t* rgbData = static_cast<uint32_t*>(src->planes[UHDR_PLANE_PACKED]);
unsigned int srcStride = src->stride[UHDR_PLANE_PACKED];
uint8_t* yData = static_cast<uint8_t*>(dst->planes[UHDR_PLANE_Y]);
uint8_t* uData = static_cast<uint8_t*>(dst->planes[UHDR_PLANE_U]);
uint8_t* vData = static_cast<uint8_t*>(dst->planes[UHDR_PLANE_V]);
for (size_t i = 0; i < dst->h; i++) {
for (size_t j = 0; j < dst->w; j++) {
Color pixel;
pixel.r = float(rgbData[srcStride * i + j] & 0xff);
pixel.g = float((rgbData[srcStride * i + j] >> 8) & 0xff);
pixel.b = float((rgbData[srcStride * i + j] >> 16) & 0xff);
// Now we only support the RGB input being full range
pixel /= 255.0f;
pixel = (*rgbToyuv)(pixel);
pixel.y = pixel.y * 255.0f + 0.5f;
pixel.y = CLIP3(pixel.y, 0.0f, 255.0f);
yData[dst->stride[UHDR_PLANE_Y] * i + j] = uint8_t(pixel.y);
pixel.u = pixel.u * 255.0f + 0.5f + 128.0f;
pixel.v = pixel.v * 255.0f + 0.5f + 128.0f;
pixel.u = CLIP3(pixel.u, 0.0f, 255.0f);
pixel.v = CLIP3(pixel.v, 0.0f, 255.0f);
uData[dst->stride[UHDR_PLANE_U] * i + j] = uint8_t(pixel.u);
vData[dst->stride[UHDR_PLANE_V] * i + j] = uint8_t(pixel.v);
}
}
} else if (src->fmt == UHDR_IMG_FMT_12bppYCbCr420 || src->fmt == UHDR_IMG_FMT_24bppYCbCrP010) {
dst = std::make_unique<ultrahdr::uhdr_raw_image_ext_t>(src->fmt, src->cg, src->ct, src->range,
src->w, src->h, 64);
auto status = copy_raw_image(src, dst.get());
if (status.error_code != UHDR_CODEC_OK) return nullptr;
}
return dst;
}
std::unique_ptr<uhdr_raw_image_ext_t> copy_raw_image(uhdr_raw_image_t* src) {
std::unique_ptr<uhdr_raw_image_ext_t> dst = std::make_unique<ultrahdr::uhdr_raw_image_ext_t>(
src->fmt, src->cg, src->ct, src->range, src->w, src->h, 64);
auto status = copy_raw_image(src, dst.get());
if (status.error_code != UHDR_CODEC_OK) return nullptr;
return dst;
}
uhdr_error_info_t copy_raw_image(uhdr_raw_image_t* src, uhdr_raw_image_t* dst) {
if (dst->w != src->w || dst->h != src->h) {
uhdr_error_info_t status;
status.error_code = UHDR_CODEC_MEM_ERROR;
status.has_detail = 1;
snprintf(status.detail, sizeof status.detail,
"destination image dimensions %dx%d and source image dimensions %dx%d are not "
"identical for copy_raw_image",
dst->w, dst->h, src->w, src->h);
return status;
}
dst->cg = src->cg;
dst->ct = src->ct;
dst->range = src->range;
if (dst->fmt == src->fmt) {
if (src->fmt == UHDR_IMG_FMT_24bppYCbCrP010) {
size_t bpp = 2;
uint8_t* y_dst = static_cast<uint8_t*>(dst->planes[UHDR_PLANE_Y]);
uint8_t* y_src = static_cast<uint8_t*>(src->planes[UHDR_PLANE_Y]);
uint8_t* uv_dst = static_cast<uint8_t*>(dst->planes[UHDR_PLANE_UV]);
uint8_t* uv_src = static_cast<uint8_t*>(src->planes[UHDR_PLANE_UV]);
// copy y
for (size_t i = 0; i < src->h; i++) {
memcpy(y_dst, y_src, src->w * bpp);
y_dst += (dst->stride[UHDR_PLANE_Y] * bpp);
y_src += (src->stride[UHDR_PLANE_Y] * bpp);
}
// copy cbcr
for (size_t i = 0; i < src->h / 2; i++) {
memcpy(uv_dst, uv_src, src->w * bpp);
uv_dst += (dst->stride[UHDR_PLANE_UV] * bpp);
uv_src += (src->stride[UHDR_PLANE_UV] * bpp);
}
return g_no_error;
} else if (src->fmt == UHDR_IMG_FMT_12bppYCbCr420) {
uint8_t* y_dst = static_cast<uint8_t*>(dst->planes[UHDR_PLANE_Y]);
uint8_t* y_src = static_cast<uint8_t*>(src->planes[UHDR_PLANE_Y]);
uint8_t* u_dst = static_cast<uint8_t*>(dst->planes[UHDR_PLANE_U]);
uint8_t* u_src = static_cast<uint8_t*>(src->planes[UHDR_PLANE_U]);
uint8_t* v_dst = static_cast<uint8_t*>(dst->planes[UHDR_PLANE_V]);
uint8_t* v_src = static_cast<uint8_t*>(src->planes[UHDR_PLANE_V]);
// copy y
for (size_t i = 0; i < src->h; i++) {
memcpy(y_dst, y_src, src->w);
y_dst += dst->stride[UHDR_PLANE_Y];
y_src += src->stride[UHDR_PLANE_Y];
}
// copy cb & cr
for (size_t i = 0; i < src->h / 2; i++) {
memcpy(u_dst, u_src, src->w / 2);
memcpy(v_dst, v_src, src->w / 2);
u_dst += dst->stride[UHDR_PLANE_U];
v_dst += dst->stride[UHDR_PLANE_V];
u_src += src->stride[UHDR_PLANE_U];
v_src += src->stride[UHDR_PLANE_V];
}
return g_no_error;
} else if (src->fmt == UHDR_IMG_FMT_8bppYCbCr400 || src->fmt == UHDR_IMG_FMT_32bppRGBA8888 ||
src->fmt == UHDR_IMG_FMT_64bppRGBAHalfFloat ||
src->fmt == UHDR_IMG_FMT_32bppRGBA1010102 || src->fmt == UHDR_IMG_FMT_24bppRGB888) {
uint8_t* plane_dst = static_cast<uint8_t*>(dst->planes[UHDR_PLANE_PACKED]);
uint8_t* plane_src = static_cast<uint8_t*>(src->planes[UHDR_PLANE_PACKED]);
size_t bpp = 1;
if (src->fmt == UHDR_IMG_FMT_32bppRGBA1010102 || src->fmt == UHDR_IMG_FMT_32bppRGBA8888)
bpp = 4;
else if (src->fmt == UHDR_IMG_FMT_64bppRGBAHalfFloat)
bpp = 8;
else if (src->fmt == UHDR_IMG_FMT_24bppRGB888)
bpp = 3;
for (size_t i = 0; i < src->h; i++) {
memcpy(plane_dst, plane_src, src->w * bpp);
plane_dst += (bpp * dst->stride[UHDR_PLANE_PACKED]);
plane_src += (bpp * src->stride[UHDR_PLANE_PACKED]);
}
return g_no_error;
}
} else {
if (src->fmt == UHDR_IMG_FMT_24bppRGB888 && dst->fmt == UHDR_IMG_FMT_32bppRGBA8888) {
uint32_t* plane_dst = static_cast<uint32_t*>(dst->planes[UHDR_PLANE_PACKED]);
uint8_t* plane_src = static_cast<uint8_t*>(src->planes[UHDR_PLANE_PACKED]);
for (size_t i = 0; i < src->h; i++) {
uint32_t* pixel_dst = plane_dst;
uint8_t* pixel_src = plane_src;
for (size_t j = 0; j < src->w; j++) {
*pixel_dst = pixel_src[0] | (pixel_src[1] << 8) | (pixel_src[2] << 16) | (0xff << 24);
pixel_src += 3;
pixel_dst += 1;
}
plane_dst += dst->stride[UHDR_PLANE_PACKED];
plane_src += (size_t)3 * src->stride[UHDR_PLANE_PACKED];
}
return g_no_error;
}
}
uhdr_error_info_t status;
status.error_code = UHDR_CODEC_UNSUPPORTED_FEATURE;
status.has_detail = 1;
snprintf(
status.detail, sizeof status.detail,
"unsupported source / destinations color formats in copy_raw_image, src fmt %d, dst fmt %d",
src->fmt, dst->fmt);
return status;
}
// Use double type for intermediate results for better precision.
static bool floatToUnsignedFractionImpl(float v, uint32_t maxNumerator, uint32_t* numerator,
uint32_t* denominator) {
if (std::isnan(v) || v < 0 || v > maxNumerator) {
return false;
}
// Maximum denominator: makes sure that the numerator is <= maxNumerator and the denominator
// is <= UINT32_MAX.
const uint64_t maxD = (v <= 1) ? UINT32_MAX : (uint64_t)floor(maxNumerator / v);
// Find the best approximation of v as a fraction using continued fractions, see
// https://en.wikipedia.org/wiki/Continued_fraction
*denominator = 1;
uint32_t previousD = 0;
double currentV = (double)v - floor(v);
int iter = 0;
// Set a maximum number of iterations to be safe. Most numbers should
// converge in less than ~20 iterations.
// The golden ratio is the worst case and takes 39 iterations.
const int maxIter = 39;
while (iter < maxIter) {
const double numeratorDouble = (double)(*denominator) * v;
if (numeratorDouble > maxNumerator) {
return false;
}
*numerator = (uint32_t)round(numeratorDouble);
if (fabs(numeratorDouble - (*numerator)) == 0.0) {
return true;
}
currentV = 1.0 / currentV;
const double newD = previousD + floor(currentV) * (*denominator);
if (newD > maxD) {
// This is the best we can do with a denominator <= max_d.
return true;
}
previousD = *denominator;
if (newD > (double)UINT32_MAX) {
return false;
}
*denominator = (uint32_t)newD;
currentV -= floor(currentV);
++iter;
}
// Maximum number of iterations reached, return what we've found.
// For max_iter >= 39 we shouldn't get here. max_iter can be set
// to a lower value to speed up the algorithm if needed.
*numerator = (uint32_t)round((double)(*denominator) * v);
return true;
}
bool floatToSignedFraction(float v, int32_t* numerator, uint32_t* denominator) {
uint32_t positive_numerator;
if (!floatToUnsignedFractionImpl(fabs(v), INT32_MAX, &positive_numerator, denominator)) {
return false;
}
*numerator = (int32_t)positive_numerator;
if (v < 0) {
*numerator *= -1;
}
return true;
}
bool floatToUnsignedFraction(float v, uint32_t* numerator, uint32_t* denominator) {
return floatToUnsignedFractionImpl(v, UINT32_MAX, numerator, denominator);
}
} // namespace ultrahdr