blob: 18ca490afa5697f9e345338ff284ea8c4ee883a3 [file] [log] [blame]
/******************************************************************************
* *
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*****************************************************************************
* Originally developed and contributed by Ittiam Systems Pvt. Ltd, Bangalore
*/
#include <stdlib.h>
#include <math.h>
#include "ixheaac_type_def.h"
#include "ixheaac_constants.h"
#include "ixheaac_basic_ops32.h"
#include "ixheaac_fft_ifft_rom.h"
#include "ixheaacd_dsp_fft32x32s.h"
#define DIG_REV(i, m, j) \
do { \
unsigned _ = (i); \
_ = ((_ & 0x33333333) << 2) | ((_ & ~0x33333333) >> 2); \
_ = ((_ & 0x0F0F0F0F) << 4) | ((_ & ~0x0F0F0F0F) >> 4); \
_ = ((_ & 0x00FF00FF) << 8) | ((_ & ~0x00FF00FF) >> 8); \
(j) = _ >> (m); \
} while (0)
FLOAT64 ixheaacd_mult32X32float(FLOAT64 a, FLOAT64 b) {
FLOAT64 result;
result = a * b;
return result;
}
FLOAT64 ixheaacd_mac32X32float(FLOAT64 a, FLOAT64 b, FLOAT64 c) {
FLOAT64 result;
result = a + b * c;
return result;
}
VOID ixheaacd_hbe_apply_ifft_7(FLOAT32 *inp, FLOAT32 *op) {
FLOAT32 x0r, x1r, x2r, x3r, x4r, x5r, x6r, x7r, x8r;
FLOAT32 x0i, x1i, x2i, x3i, x4i, x5i, x6i, x7i, x8i;
FLOAT32 y0r, y1r, y2r, y3r, y4r, y5r, y6r, y7r, y8r;
FLOAT32 y0i, y1i, y2i, y3i, y4i, y5i, y6i, y7i, y8i;
x0r = inp[0];
x0i = inp[1];
x1r = inp[2] + inp[12];
x1i = inp[3] + inp[13];
x2r = inp[2] - inp[12];
x2i = inp[3] - inp[13];
x3r = inp[4] + inp[10];
x3i = inp[5] + inp[11];
x4r = inp[4] - inp[10];
x4i = inp[5] - inp[11];
x5r = inp[8] + inp[6];
x5i = inp[9] + inp[7];
x6r = inp[8] - inp[6];
x6i = inp[9] - inp[7];
y0r = x0r;
y0i = x0i;
y1r = x1r + x3r + x5r;
y1i = x1i + x3i + x5i;
y2r = x1r - x3r;
y2i = x1i - x3i;
y3r = x5r - x1r;
y3i = x5i - x1i;
y4r = x3r - x5r;
y4i = x3i - x5i;
y5r = x2r + x4r + x6r;
y5i = x2i + x4i + x6i;
y6r = x2r - x4r;
y6i = x2i - x4i;
y7r = x6r - x2r;
y7i = x6i - x2i;
y8r = x4r - x6r;
y8i = x4i - x6i;
x0r = y0r + y1r;
x0i = y0i + y1i;
x1r = y0r + C70 * y1r;
x1i = y0i + C70 * y1i;
x2r = C71 * y2r;
x2i = C71 * y2i;
x3r = C72 * y3r;
x3i = C72 * y3i;
x4r = C73 * y4r;
x4i = C73 * y4i;
x5r = C74 * y5i;
x5i = -C74 * y5r;
x6r = C75 * y6i;
x6i = -C75 * y6r;
x7r = C76 * y7i;
x7i = -C76 * y7r;
x8r = C77 * y8i;
x8i = -C77 * y8r;
y0r = x0r;
y0i = x0i;
y1r = x1r + x2r + x4r;
y1i = x1i + x2i + x4i;
y2r = x1r - x2r - x3r;
y2i = x1i - x2i - x3i;
y3r = x1r + x3r - x4r;
y3i = x1i + x3i - x4i;
y4r = x5r + x6r + x8r;
y4i = x5i + x6i + x8i;
y5r = x5r - x6r - x7r;
y5i = x5i - x6i - x7i;
y6r = x5r + x7r - x8r;
y6i = x5i + x7i - x8i;
x0r = y0r;
x0i = y0i;
x1r = y1r + y4r;
x1i = y1i + y4i;
x2r = y3r + y6r;
x2i = y3i + y6i;
x3r = y2r - y5r;
x3i = y2i - y5i;
x4r = y2r + y5r;
x4i = y2i + y5i;
x5r = y3r - y6r;
x5i = y3i - y6i;
x6r = y1r - y4r;
x6i = y1i - y4i;
op[0] = x0r;
op[1] = x0i;
op[2] = x1r;
op[3] = x1i;
op[4] = x2r;
op[5] = x2i;
op[6] = x3r;
op[7] = x3i;
op[8] = x4r;
op[9] = x4i;
op[10] = x5r;
op[11] = x5i;
op[12] = x6r;
op[13] = x6i;
return;
}
VOID ixheaacd_hbe_apply_fft_3(FLOAT32 *inp, FLOAT32 *op, WORD32 i_sign) {
FLOAT32 add_r, sub_r;
FLOAT32 add_i, sub_i;
FLOAT32 X01r, X01i, temp;
FLOAT32 p1, p2, p3, p4;
FLOAT64 sinmu;
sinmu = -0.866025403784439 * (FLOAT64)i_sign;
X01r = inp[0] + inp[2];
X01i = inp[1] + inp[3];
add_r = inp[2] + inp[4];
add_i = inp[3] + inp[5];
sub_r = inp[2] - inp[4];
sub_i = inp[3] - inp[5];
p1 = add_r / (FLOAT32)2.0;
p4 = add_i / (FLOAT32)2.0;
p2 = (FLOAT32)((FLOAT64)sub_i * sinmu);
p3 = (FLOAT32)((FLOAT64)sub_r * sinmu);
temp = inp[0] - p1;
op[0] = X01r + inp[4];
op[1] = X01i + inp[5];
op[2] = temp + p2;
op[3] = (inp[1] - p3) - p4;
op[4] = temp - p2;
op[5] = (inp[1] + p3) - p4;
return;
}
VOID ixheaacd_hbe_apply_tw_mult_ifft(FLOAT32 *inp, FLOAT32 *op, WORD32 dim1, WORD32 dim2,
const FLOAT32 *tw) {
FLOAT32 accu1, accu2;
WORD32 i, j;
WORD32 step_val = (dim2 - 1) << 1;
for (i = 0; i < (dim2); i++) {
op[0] = inp[0];
op[1] = inp[1];
op += 2;
inp += 2;
}
for (j = 0; j < (dim1 - 1); j++) {
op[0] = inp[0];
op[1] = inp[1];
inp += 2;
op += 2;
for (i = 0; i < (dim2 - 1); i++) {
CPLX_MPY_IFFT(accu1, accu2, inp[2 * i + 0], inp[2 * i + 1], tw[2 * i + 1], tw[2 * i]);
op[2 * i + 0] = accu1;
op[2 * i + 1] = accu2;
}
inp += step_val;
op += step_val;
tw += (dim2 - 1) * 2;
}
}
VOID ixheaacd_hbe_apply_tw_mult_fft(FLOAT32 *inp, FLOAT32 *op, WORD32 dim1, WORD32 dim2,
const FLOAT32 *tw) {
FLOAT32 accu1, accu2;
WORD32 i, j;
WORD32 step_val = (dim2 - 1) << 1;
for (i = 0; i < (dim2); i++) {
op[0] = inp[0];
op[1] = inp[1];
op += 2;
inp += 2;
}
for (j = 0; j < (dim1 - 1); j++) {
op[0] = inp[0];
op[1] = inp[1];
inp += 2;
op += 2;
for (i = 0; i < (dim2 - 1); i++) {
CPLX_MPY_FFT(accu1, accu2, inp[2 * i + 0], inp[2 * i + 1], tw[2 * i + 1], tw[2 * i]);
op[2 * i + 0] = accu1;
op[2 * i + 1] = accu2;
}
inp += step_val;
op += step_val;
tw += (dim2 - 1) * 2;
}
}
VOID ixheaacd_hbe_apply_cfftn(FLOAT32 re[], FLOAT32 *scratch, WORD32 n_pass, WORD32 i_sign) {
WORD32 i, j, k, n_stages, h2;
FLOAT32 x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
WORD32 del, nodespacing, in_loop_cnt;
WORD32 not_power_4;
WORD32 dig_rev_shift;
WORD32 mpass = n_pass;
WORD32 npoints = n_pass;
const FLOAT64 *ptr_w;
FLOAT32 *ptr_x = scratch;
FLOAT32 *y = scratch + (2 * n_pass);
FLOAT32 *ptr_y = y;
dig_rev_shift = ixheaac_norm32(mpass) + 1 - 16;
n_stages = 30 - ixheaac_norm32(mpass);
not_power_4 = n_stages & 1;
n_stages = n_stages >> 1;
ptr_w = ixheaac_twid_tbl_fft_double;
ptr_x = re;
if (i_sign == -1) {
for (i = 0; i < npoints; i += 4) {
FLOAT32 *inp = ptr_x;
FLOAT32 tmk;
DIG_REV(i, dig_rev_shift, h2);
if (not_power_4) {
h2 += 1;
h2 &= ~1;
}
inp += (h2);
x0r = *inp;
x0i = *(inp + 1);
inp += (npoints >> 1);
x1r = *inp;
x1i = *(inp + 1);
inp += (npoints >> 1);
x2r = *inp;
x2i = *(inp + 1);
inp += (npoints >> 1);
x3r = *inp;
x3i = *(inp + 1);
x0r = x0r + x2r;
x0i = x0i + x2i;
tmk = x0r - x2r;
x2r = tmk - x2r;
tmk = x0i - x2i;
x2i = tmk - x2i;
x1r = x1r + x3r;
x1i = x1i + x3i;
tmk = x1r - x3r;
x3r = tmk - x3r;
tmk = x1i - x3i;
x3i = tmk - x3i;
x0r = x0r + x1r;
x0i = x0i + x1i;
tmk = x0r - x1r;
x1r = tmk - x1r;
tmk = x0i - x1i;
x1i = tmk - x1i;
x2r = x2r + x3i;
x2i = x2i - x3r;
tmk = x2r - x3i;
x3i = tmk - x3i;
tmk = x2i + x3r;
x3r = tmk + x3r;
*ptr_y++ = x0r;
*ptr_y++ = x0i;
*ptr_y++ = x2r;
*ptr_y++ = x2i;
*ptr_y++ = x1r;
*ptr_y++ = x1i;
*ptr_y++ = x3i;
*ptr_y++ = x3r;
}
ptr_y -= 2 * npoints;
del = 4;
nodespacing = 64;
in_loop_cnt = npoints >> 4;
for (i = n_stages - 1; i > 0; i--) {
const FLOAT64 *twiddles = ptr_w;
FLOAT32 *data = ptr_y;
FLOAT64 W1, W2, W3, W4, W5, W6;
WORD32 sec_loop_cnt;
for (k = in_loop_cnt; k != 0; k--) {
x0r = (*data);
x0i = (*(data + 1));
data += (del << 1);
x1r = (*data);
x1i = (*(data + 1));
data += (del << 1);
x2r = (*data);
x2i = (*(data + 1));
data += (del << 1);
x3r = (*data);
x3i = (*(data + 1));
data -= 3 * (del << 1);
x0r = x0r + x2r;
x0i = x0i + x2i;
x2r = x0r - (x2r * 2);
x2i = x0i - (x2i * 2);
x1r = x1r + x3r;
x1i = x1i + x3i;
x3r = x1r - (x3r * 2);
x3i = x1i - (x3i * 2);
x0r = x0r + x1r;
x0i = x0i + x1i;
x1r = x0r - (x1r * 2);
x1i = x0i - (x1i * 2);
x2r = x2r + x3i;
x2i = x2i - x3r;
x3i = x2r - (x3i * 2);
x3r = x2i + (x3r * 2);
*data = x0r;
*(data + 1) = x0i;
data += (del << 1);
*data = x2r;
*(data + 1) = x2i;
data += (del << 1);
*data = x1r;
*(data + 1) = x1i;
data += (del << 1);
*data = x3i;
*(data + 1) = x3r;
data += (del << 1);
}
data = ptr_y + 2;
sec_loop_cnt = (nodespacing * del);
sec_loop_cnt = (sec_loop_cnt / 4) + (sec_loop_cnt / 8) - (sec_loop_cnt / 16) +
(sec_loop_cnt / 32) - (sec_loop_cnt / 64) + (sec_loop_cnt / 128) -
(sec_loop_cnt / 256);
j = nodespacing;
for (j = nodespacing; j <= sec_loop_cnt; j += nodespacing) {
W1 = *(twiddles + j);
W4 = *(twiddles + j + 257);
W2 = *(twiddles + (j << 1));
W5 = *(twiddles + (j << 1) + 257);
W3 = *(twiddles + j + (j << 1));
W6 = *(twiddles + j + (j << 1) + 257);
for (k = in_loop_cnt; k != 0; k--) {
FLOAT32 tmp;
FLOAT32 x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
data += (del << 1);
x1r = *data;
x1i = *(data + 1);
data += (del << 1);
x2r = *data;
x2i = *(data + 1);
data += (del << 1);
x3r = *data;
x3i = *(data + 1);
data -= 3 * (del << 1);
tmp = (FLOAT32)(ixheaacd_mult32X32float((FLOAT64)x1r, W1) -
ixheaacd_mult32X32float((FLOAT64)x1i, W4));
x1i = (FLOAT32)ixheaacd_mac32X32float(ixheaacd_mult32X32float((FLOAT64)x1r, W4),
(FLOAT64)x1i, W1);
x1r = tmp;
tmp = (FLOAT32)(ixheaacd_mult32X32float((FLOAT64)x2r, W2) -
ixheaacd_mult32X32float((FLOAT64)x2i, W5));
x2i = (FLOAT32)ixheaacd_mac32X32float(ixheaacd_mult32X32float((FLOAT64)x2r, W5),
(FLOAT64)x2i, W2);
x2r = tmp;
tmp = (FLOAT32)(ixheaacd_mult32X32float((FLOAT64)x3r, W3) -
ixheaacd_mult32X32float((FLOAT64)x3i, W6));
x3i = (FLOAT32)ixheaacd_mac32X32float(ixheaacd_mult32X32float((FLOAT64)x3r, W6),
(FLOAT64)x3i, W3);
x3r = tmp;
x0r = (*data);
x0i = (*(data + 1));
x0r = x0r + (x2r);
x0i = x0i + (x2i);
x2r = x0r - (x2r * 2);
x2i = x0i - (x2i * 2);
x1r = x1r + x3r;
x1i = x1i + x3i;
x3r = x1r - (x3r * 2);
x3i = x1i - (x3i * 2);
x0r = x0r + (x1r);
x0i = x0i + (x1i);
x1r = x0r - (x1r * 2);
x1i = x0i - (x1i * 2);
x2r = x2r + (x3i);
x2i = x2i - (x3r);
x3i = x2r - (x3i * 2);
x3r = x2i + (x3r * 2);
*data = x0r;
*(data + 1) = x0i;
data += (del << 1);
*data = x2r;
*(data + 1) = x2i;
data += (del << 1);
*data = x1r;
*(data + 1) = x1i;
data += (del << 1);
*data = x3i;
*(data + 1) = x3r;
data += (del << 1);
}
data -= 2 * npoints;
data += 2;
}
for (; j <= (nodespacing * del) >> 1; j += nodespacing) {
W1 = *(twiddles + j);
W4 = *(twiddles + j + 257);
W2 = *(twiddles + (j << 1));
W5 = *(twiddles + (j << 1) + 257);
W3 = *(twiddles + j + (j << 1) - 256);
W6 = *(twiddles + j + (j << 1) + 1);
for (k = in_loop_cnt; k != 0; k--) {
FLOAT32 tmp;
FLOAT32 x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
data += (del << 1);
x1r = *data;
x1i = *(data + 1);
data += (del << 1);
x2r = *data;
x2i = *(data + 1);
data += (del << 1);
x3r = *data;
x3i = *(data + 1);
data -= 3 * (del << 1);
tmp = (FLOAT32)(ixheaacd_mult32X32float((FLOAT64)x1r, W1) -
ixheaacd_mult32X32float((FLOAT64)x1i, W4));
x1i = (FLOAT32)ixheaacd_mac32X32float(ixheaacd_mult32X32float((FLOAT64)x1r, W4),
(FLOAT64)x1i, W1);
x1r = tmp;
tmp = (FLOAT32)(ixheaacd_mult32X32float((FLOAT64)x2r, W2) -
ixheaacd_mult32X32float((FLOAT64)x2i, W5));
x2i = (FLOAT32)ixheaacd_mac32X32float(ixheaacd_mult32X32float((FLOAT64)x2r, W5),
(FLOAT64)x2i, W2);
x2r = tmp;
tmp = (FLOAT32)(ixheaacd_mult32X32float((FLOAT64)x3r, W6) +
ixheaacd_mult32X32float((FLOAT64)x3i, W3));
x3i = (FLOAT32)(-ixheaacd_mult32X32float((FLOAT64)x3r, W3) +
ixheaacd_mult32X32float((FLOAT64)x3i, W6));
x3r = tmp;
x0r = (*data);
x0i = (*(data + 1));
x0r = x0r + (x2r);
x0i = x0i + (x2i);
x2r = x0r - (x2r * 2);
x2i = x0i - (x2i * 2);
x1r = x1r + x3r;
x1i = x1i + x3i;
x3r = x1r - (x3r * 2);
x3i = x1i - (x3i * 2);
x0r = x0r + (x1r);
x0i = x0i + (x1i);
x1r = x0r - (x1r * 2);
x1i = x0i - (x1i * 2);
x2r = x2r + (x3i);
x2i = x2i - (x3r);
x3i = x2r - (x3i * 2);
x3r = x2i + (x3r * 2);
*data = x0r;
*(data + 1) = x0i;
data += (del << 1);
*data = x2r;
*(data + 1) = x2i;
data += (del << 1);
*data = x1r;
*(data + 1) = x1i;
data += (del << 1);
*data = x3i;
*(data + 1) = x3r;
data += (del << 1);
}
data -= 2 * npoints;
data += 2;
}
for (; j <= sec_loop_cnt * 2; j += nodespacing) {
W1 = *(twiddles + j);
W4 = *(twiddles + j + 257);
W2 = *(twiddles + (j << 1) - 256);
W5 = *(twiddles + (j << 1) + 1);
W3 = *(twiddles + j + (j << 1) - 256);
W6 = *(twiddles + j + (j << 1) + 1);
for (k = in_loop_cnt; k != 0; k--) {
FLOAT32 tmp;
FLOAT32 x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
data += (del << 1);
x1r = *data;
x1i = *(data + 1);
data += (del << 1);
x2r = *data;
x2i = *(data + 1);
data += (del << 1);
x3r = *data;
x3i = *(data + 1);
data -= 3 * (del << 1);
tmp = (FLOAT32)(ixheaacd_mult32X32float((FLOAT64)x1r, W1) -
ixheaacd_mult32X32float((FLOAT64)x1i, W4));
x1i = (FLOAT32)ixheaacd_mac32X32float(ixheaacd_mult32X32float(x1r, W4), x1i, W1);
x1r = tmp;
tmp = (FLOAT32)(ixheaacd_mult32X32float((FLOAT64)x2r, W5) +
ixheaacd_mult32X32float((FLOAT64)x2i, W2));
x2i = (FLOAT32)(-ixheaacd_mult32X32float(x2r, W2) + ixheaacd_mult32X32float(x2i, W5));
x2r = tmp;
tmp = (FLOAT32)(ixheaacd_mult32X32float((FLOAT64)x3r, W6) +
ixheaacd_mult32X32float((FLOAT64)x3i, W3));
x3i = (FLOAT32)(-ixheaacd_mult32X32float((FLOAT64)x3r, W3) +
ixheaacd_mult32X32float((FLOAT64)x3i, W6));
x3r = tmp;
x0r = (*data);
x0i = (*(data + 1));
x0r = x0r + (x2r);
x0i = x0i + (x2i);
x2r = x0r - (x2r * 2);
x2i = x0i - (x2i * 2);
x1r = x1r + x3r;
x1i = x1i + x3i;
x3r = x1r - (x3r * 2);
x3i = x1i - (x3i * 2);
x0r = x0r + (x1r);
x0i = x0i + (x1i);
x1r = x0r - (x1r * 2);
x1i = x0i - (x1i * 2);
x2r = x2r + (x3i);
x2i = x2i - (x3r);
x3i = x2r - (x3i * 2);
x3r = x2i + (x3r * 2);
*data = x0r;
*(data + 1) = x0i;
data += (del << 1);
*data = x2r;
*(data + 1) = x2i;
data += (del << 1);
*data = x1r;
*(data + 1) = x1i;
data += (del << 1);
*data = x3i;
*(data + 1) = x3r;
data += (del << 1);
}
data -= 2 * npoints;
data += 2;
}
for (; j < nodespacing * del; j += nodespacing) {
W1 = *(twiddles + j);
W4 = *(twiddles + j + 257);
W2 = *(twiddles + (j << 1) - 256);
W5 = *(twiddles + (j << 1) + 1);
W3 = *(twiddles + j + (j << 1) - 512);
W6 = *(twiddles + j + (j << 1) - 512 + 257);
for (k = in_loop_cnt; k != 0; k--) {
FLOAT32 tmp;
FLOAT32 x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
data += (del << 1);
x1r = *data;
x1i = *(data + 1);
data += (del << 1);
x2r = *data;
x2i = *(data + 1);
data += (del << 1);
x3r = *data;
x3i = *(data + 1);
data -= 3 * (del << 1);
tmp = (FLOAT32)(ixheaacd_mult32X32float((FLOAT64)x1r, W1) -
ixheaacd_mult32X32float((FLOAT64)x1i, W4));
x1i = (FLOAT32)ixheaacd_mac32X32float(ixheaacd_mult32X32float((FLOAT64)x1r, W4),
(FLOAT64)x1i, W1);
x1r = tmp;
tmp = (FLOAT32)(ixheaacd_mult32X32float((FLOAT64)x2r, W5) +
ixheaacd_mult32X32float((FLOAT64)x2i, W2));
x2i = (FLOAT32)(-ixheaacd_mult32X32float((FLOAT64)x2r, W2) +
ixheaacd_mult32X32float((FLOAT64)x2i, W5));
x2r = tmp;
tmp = (FLOAT32)(-ixheaacd_mult32X32float((FLOAT64)x3r, W3) +
ixheaacd_mult32X32float((FLOAT64)x3i, W6));
x3i = (FLOAT32)ixheaacd_mac32X32float(ixheaacd_mult32X32float((FLOAT64)x3r, W6),
(FLOAT64)x3i, W3);
x3r = tmp;
x0r = (*data);
x0i = (*(data + 1));
x0r = x0r + (x2r);
x0i = x0i + (x2i);
x2r = x0r - (x2r * 2);
x2i = x0i - (x2i * 2);
x1r = x1r + x3r;
x1i = x1i - x3i;
x3r = x1r - (x3r * 2);
x3i = x1i + (x3i * 2);
x0r = x0r + (x1r);
x0i = x0i + (x1i);
x1r = x0r - (x1r * 2);
x1i = x0i - (x1i * 2);
x2r = x2r + (x3i);
x2i = x2i - (x3r);
x3i = x2r - (x3i * 2);
x3r = x2i + (x3r * 2);
*data = x0r;
*(data + 1) = x0i;
data += (del << 1);
*data = x2r;
*(data + 1) = x2i;
data += (del << 1);
*data = x1r;
*(data + 1) = x1i;
data += (del << 1);
*data = x3i;
*(data + 1) = x3r;
data += (del << 1);
}
data -= 2 * npoints;
data += 2;
}
nodespacing >>= 2;
del <<= 2;
in_loop_cnt >>= 2;
}
if (not_power_4) {
const FLOAT64 *twiddles = ptr_w;
nodespacing <<= 1;
for (j = del / 2; j != 0; j--) {
FLOAT64 W1 = *twiddles;
FLOAT64 W4 = *(twiddles + 257);
FLOAT32 tmp;
twiddles += nodespacing;
x0r = *ptr_y;
x0i = *(ptr_y + 1);
ptr_y += (del << 1);
x1r = *ptr_y;
x1i = *(ptr_y + 1);
tmp = (FLOAT32)(ixheaacd_mult32X32float((FLOAT64)x1r, W1) -
ixheaacd_mult32X32float((FLOAT64)x1i, W4));
x1i = (FLOAT32)ixheaacd_mac32X32float(ixheaacd_mult32X32float((FLOAT64)x1r, W4),
(FLOAT64)x1i, W1);
x1r = tmp;
*ptr_y = (x0r) - (x1r);
*(ptr_y + 1) = (x0i) - (x1i);
ptr_y -= (del << 1);
*ptr_y = (x0r) + (x1r);
*(ptr_y + 1) = (x0i) + (x1i);
ptr_y += 2;
}
twiddles = ptr_w;
for (j = del / 2; j != 0; j--) {
FLOAT64 W1 = *twiddles;
FLOAT64 W4 = *(twiddles + 257);
FLOAT32 tmp;
twiddles += nodespacing;
x0r = *ptr_y;
x0i = *(ptr_y + 1);
ptr_y += (del << 1);
x1r = *ptr_y;
x1i = *(ptr_y + 1);
tmp = (FLOAT32)(ixheaacd_mult32X32float((FLOAT64)x1r, W4) +
ixheaacd_mult32X32float((FLOAT64)x1i, W1));
x1i = (FLOAT32)(-ixheaacd_mult32X32float((FLOAT64)x1r, W1) +
ixheaacd_mult32X32float((FLOAT64)x1i, W4));
x1r = tmp;
*ptr_y = (x0r) - (x1r);
*(ptr_y + 1) = (x0i) - (x1i);
ptr_y -= (del << 1);
*ptr_y = (x0r) + (x1r);
*(ptr_y + 1) = (x0i) + (x1i);
ptr_y += 2;
}
}
} else {
for (i = 0; i < npoints; i += 4) {
FLOAT32 *inp = ptr_x;
DIG_REV(i, dig_rev_shift, h2);
if (not_power_4) {
h2 += 1;
h2 &= ~1;
}
inp += (h2);
x0r = *inp;
x0i = *(inp + 1);
inp += (npoints >> 1);
x1r = *inp;
x1i = *(inp + 1);
inp += (npoints >> 1);
x2r = *inp;
x2i = *(inp + 1);
inp += (npoints >> 1);
x3r = *inp;
x3i = *(inp + 1);
x0r = x0r + x2r;
x0i = x0i + x2i;
x2r = x0r - (x2r * 2);
x2i = x0i - (x2i * 2);
x1r = x1r + x3r;
x1i = x1i + x3i;
x3r = x1r - (x3r * 2);
x3i = x1i - (x3i * 2);
x0r = x0r + x1r;
x0i = x0i + x1i;
x1r = x0r - (x1r * 2);
x1i = x0i - (x1i * 2);
x2r = x2r - x3i;
x2i = x2i + x3r;
x3i = x2r + (x3i * 2);
x3r = x2i - (x3r * 2);
*ptr_y++ = x0r;
*ptr_y++ = x0i;
*ptr_y++ = x2r;
*ptr_y++ = x2i;
*ptr_y++ = x1r;
*ptr_y++ = x1i;
*ptr_y++ = x3i;
*ptr_y++ = x3r;
}
ptr_y -= 2 * npoints;
del = 4;
nodespacing = 64;
in_loop_cnt = npoints >> 4;
for (i = n_stages - 1; i > 0; i--) {
const FLOAT64 *twiddles = ptr_w;
FLOAT32 *data = ptr_y;
FLOAT64 W1, W2, W3, W4, W5, W6;
WORD32 sec_loop_cnt;
for (k = in_loop_cnt; k != 0; k--) {
x0r = (*data);
x0i = (*(data + 1));
data += (del << 1);
x1r = (*data);
x1i = (*(data + 1));
data += (del << 1);
x2r = (*data);
x2i = (*(data + 1));
data += (del << 1);
x3r = (*data);
x3i = (*(data + 1));
data -= 3 * (del << 1);
x0r = x0r + x2r;
x0i = x0i + x2i;
x2r = x0r - (x2r * 2);
x2i = x0i - (x2i * 2);
x1r = x1r + x3r;
x1i = x1i + x3i;
x3r = x1r - (x3r * 2);
x3i = x1i - (x3i * 2);
x0r = x0r + x1r;
x0i = x0i + x1i;
x1r = x0r - (x1r * 2);
x1i = x0i - (x1i * 2);
x2r = x2r - x3i;
x2i = x2i + x3r;
x3i = x2r + (x3i * 2);
x3r = x2i - (x3r * 2);
*data = x0r;
*(data + 1) = x0i;
data += (del << 1);
*data = x2r;
*(data + 1) = x2i;
data += (del << 1);
*data = x1r;
*(data + 1) = x1i;
data += (del << 1);
*data = x3i;
*(data + 1) = x3r;
data += (del << 1);
}
data = ptr_y + 2;
sec_loop_cnt = (nodespacing * del);
sec_loop_cnt = (sec_loop_cnt / 4) + (sec_loop_cnt / 8) - (sec_loop_cnt / 16) +
(sec_loop_cnt / 32) - (sec_loop_cnt / 64) + (sec_loop_cnt / 128) -
(sec_loop_cnt / 256);
j = nodespacing;
for (j = nodespacing; j <= sec_loop_cnt; j += nodespacing) {
W1 = *(twiddles + j);
W4 = *(twiddles + j + 257);
W2 = *(twiddles + (j << 1));
W5 = *(twiddles + (j << 1) + 257);
W3 = *(twiddles + j + (j << 1));
W6 = *(twiddles + j + (j << 1) + 257);
for (k = in_loop_cnt; k != 0; k--) {
FLOAT32 tmp;
FLOAT32 x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
data += (del << 1);
x1r = *data;
x1i = *(data + 1);
data += (del << 1);
x2r = *data;
x2i = *(data + 1);
data += (del << 1);
x3r = *data;
x3i = *(data + 1);
data -= 3 * (del << 1);
tmp = (FLOAT32)(((FLOAT64)x1r * W1) + ((FLOAT64)x1i * W4));
x1i = (FLOAT32)(-((FLOAT64)x1r * W4) + (FLOAT64)x1i * W1);
x1r = tmp;
tmp = (FLOAT32)(((FLOAT64)x2r * W2) + ((FLOAT64)x2i * W5));
x2i = (FLOAT32)(-((FLOAT64)x2r * W5) + (FLOAT64)x2i * W2);
x2r = tmp;
tmp = (FLOAT32)(((FLOAT64)x3r * W3) + ((FLOAT64)x3i * W6));
x3i = (FLOAT32)(-((FLOAT64)x3r * W6) + (FLOAT64)x3i * W3);
x3r = tmp;
x0r = (*data);
x0i = (*(data + 1));
x0r = x0r + (x2r);
x0i = x0i + (x2i);
x2r = x0r - (x2r * 2);
x2i = x0i - (x2i * 2);
x1r = x1r + x3r;
x1i = x1i + x3i;
x3r = x1r - (x3r * 2);
x3i = x1i - (x3i * 2);
x0r = x0r + (x1r);
x0i = x0i + (x1i);
x1r = x0r - (x1r * 2);
x1i = x0i - (x1i * 2);
x2r = x2r - (x3i);
x2i = x2i + (x3r);
x3i = x2r + (x3i * 2);
x3r = x2i - (x3r * 2);
*data = x0r;
*(data + 1) = x0i;
data += (del << 1);
*data = x2r;
*(data + 1) = x2i;
data += (del << 1);
*data = x1r;
*(data + 1) = x1i;
data += (del << 1);
*data = x3i;
*(data + 1) = x3r;
data += (del << 1);
}
data -= 2 * npoints;
data += 2;
}
for (; j <= (nodespacing * del) >> 1; j += nodespacing) {
W1 = *(twiddles + j);
W4 = *(twiddles + j + 257);
W2 = *(twiddles + (j << 1));
W5 = *(twiddles + (j << 1) + 257);
W3 = *(twiddles + j + (j << 1) - 256);
W6 = *(twiddles + j + (j << 1) + 1);
for (k = in_loop_cnt; k != 0; k--) {
FLOAT32 tmp;
FLOAT32 x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
data += (del << 1);
x1r = *data;
x1i = *(data + 1);
data += (del << 1);
x2r = *data;
x2i = *(data + 1);
data += (del << 1);
x3r = *data;
x3i = *(data + 1);
data -= 3 * (del << 1);
tmp = (FLOAT32)(((FLOAT64)x1r * W1) + ((FLOAT64)x1i * W4));
x1i = (FLOAT32)(-((FLOAT64)x1r * W4) + (FLOAT64)x1i * W1);
x1r = tmp;
tmp = (FLOAT32)(((FLOAT64)x2r * W2) + ((FLOAT64)x2i * W5));
x2i = (FLOAT32)(-((FLOAT64)x2r * W5) + (FLOAT64)x2i * W2);
x2r = tmp;
tmp = (FLOAT32)(((FLOAT64)x3r * W6) - ((FLOAT64)x3i * W3));
x3i = (FLOAT32)(((FLOAT64)x3r * W3) + ((FLOAT64)x3i * W6));
x3r = tmp;
x0r = (*data);
x0i = (*(data + 1));
x0r = x0r + (x2r);
x0i = x0i + (x2i);
x2r = x0r - (x2r * 2);
x2i = x0i - (x2i * 2);
x1r = x1r + x3r;
x1i = x1i + x3i;
x3r = x1r - (x3r * 2);
x3i = x1i - (x3i * 2);
x0r = x0r + (x1r);
x0i = x0i + (x1i);
x1r = x0r - (x1r * 2);
x1i = x0i - (x1i * 2);
x2r = x2r - (x3i);
x2i = x2i + (x3r);
x3i = x2r + (x3i * 2);
x3r = x2i - (x3r * 2);
*data = x0r;
*(data + 1) = x0i;
data += (del << 1);
*data = x2r;
*(data + 1) = x2i;
data += (del << 1);
*data = x1r;
*(data + 1) = x1i;
data += (del << 1);
*data = x3i;
*(data + 1) = x3r;
data += (del << 1);
}
data -= 2 * npoints;
data += 2;
}
for (; j <= sec_loop_cnt * 2; j += nodespacing) {
W1 = *(twiddles + j);
W4 = *(twiddles + j + 257);
W2 = *(twiddles + (j << 1) - 256);
W5 = *(twiddles + (j << 1) + 1);
W3 = *(twiddles + j + (j << 1) - 256);
W6 = *(twiddles + j + (j << 1) + 1);
for (k = in_loop_cnt; k != 0; k--) {
FLOAT32 tmp;
FLOAT32 x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
data += (del << 1);
x1r = *data;
x1i = *(data + 1);
data += (del << 1);
x2r = *data;
x2i = *(data + 1);
data += (del << 1);
x3r = *data;
x3i = *(data + 1);
data -= 3 * (del << 1);
tmp = (FLOAT32)(((FLOAT64)x1r * W1) + ((FLOAT64)x1i * W4));
x1i = (FLOAT32)(-((FLOAT64)x1r * W4) + (FLOAT64)x1i * W1);
x1r = tmp;
tmp = (FLOAT32)(((FLOAT64)x2r * W5) - ((FLOAT64)x2i * W2));
x2i = (FLOAT32)(((FLOAT64)x2r * W2) + ((FLOAT64)x2i * W5));
x2r = tmp;
tmp = (FLOAT32)(((FLOAT64)x3r * W6) - ((FLOAT64)x3i * W3));
x3i = (FLOAT32)(((FLOAT64)x3r * W3) + ((FLOAT64)x3i * W6));
x3r = tmp;
x0r = (*data);
x0i = (*(data + 1));
x0r = x0r + (x2r);
x0i = x0i + (x2i);
x2r = x0r - (x2r * 2);
x2i = x0i - (x2i * 2);
x1r = x1r + x3r;
x1i = x1i + x3i;
x3r = x1r - (x3r * 2);
x3i = x1i - (x3i * 2);
x0r = x0r + (x1r);
x0i = x0i + (x1i);
x1r = x0r - (x1r * 2);
x1i = x0i - (x1i * 2);
x2r = x2r - (x3i);
x2i = x2i + (x3r);
x3i = x2r + (x3i * 2);
x3r = x2i - (x3r * 2);
*data = x0r;
*(data + 1) = x0i;
data += (del << 1);
*data = x2r;
*(data + 1) = x2i;
data += (del << 1);
*data = x1r;
*(data + 1) = x1i;
data += (del << 1);
*data = x3i;
*(data + 1) = x3r;
data += (del << 1);
}
data -= 2 * npoints;
data += 2;
}
for (; j < nodespacing * del; j += nodespacing) {
W1 = *(twiddles + j);
W4 = *(twiddles + j + 257);
W2 = *(twiddles + (j << 1) - 256);
W5 = *(twiddles + (j << 1) + 1);
W3 = *(twiddles + j + (j << 1) - 512);
W6 = *(twiddles + j + (j << 1) - 512 + 257);
for (k = in_loop_cnt; k != 0; k--) {
FLOAT32 tmp;
FLOAT32 x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
data += (del << 1);
x1r = *data;
x1i = *(data + 1);
data += (del << 1);
x2r = *data;
x2i = *(data + 1);
data += (del << 1);
x3r = *data;
x3i = *(data + 1);
data -= 3 * (del << 1);
tmp = (FLOAT32)(((FLOAT64)x1r * W1) + ((FLOAT64)x1i * W4));
x1i = (FLOAT32)(-((FLOAT64)x1r * W4) + (FLOAT64)x1i * W1);
x1r = tmp;
tmp = (FLOAT32)(((FLOAT64)x2r * W5) - ((FLOAT64)x2i * W2));
x2i = (FLOAT32)(((FLOAT64)x2r * W2) + ((FLOAT64)x2i * W5));
x2r = tmp;
tmp = (FLOAT32)(-((FLOAT64)x3r * W3) - ((FLOAT64)x3i * W6));
x3i = (FLOAT32)(-((FLOAT64)x3r * W6) + (FLOAT64)x3i * W3);
x3r = tmp;
x0r = (*data);
x0i = (*(data + 1));
x0r = x0r + (x2r);
x0i = x0i + (x2i);
x2r = x0r - (x2r * 2);
x2i = x0i - (x2i * 2);
x1r = x1r + x3r;
x1i = x1i - x3i;
x3r = x1r - (x3r * 2);
x3i = x1i + (x3i * 2);
x0r = x0r + (x1r);
x0i = x0i + (x1i);
x1r = x0r - (x1r * 2);
x1i = x0i - (x1i * 2);
x2r = x2r - (x3i);
x2i = x2i + (x3r);
x3i = x2r + (x3i * 2);
x3r = x2i - (x3r * 2);
*data = x0r;
*(data + 1) = x0i;
data += (del << 1);
*data = x2r;
*(data + 1) = x2i;
data += (del << 1);
*data = x1r;
*(data + 1) = x1i;
data += (del << 1);
*data = x3i;
*(data + 1) = x3r;
data += (del << 1);
}
data -= 2 * npoints;
data += 2;
}
nodespacing >>= 2;
del <<= 2;
in_loop_cnt >>= 2;
}
if (not_power_4) {
const FLOAT64 *twiddles = ptr_w;
nodespacing <<= 1;
for (j = del / 2; j != 0; j--) {
FLOAT64 W1 = *twiddles;
FLOAT64 W4 = *(twiddles + 257);
FLOAT32 tmp;
twiddles += nodespacing;
x0r = *ptr_y;
x0i = *(ptr_y + 1);
ptr_y += (del << 1);
x1r = *ptr_y;
x1i = *(ptr_y + 1);
tmp = (FLOAT32)(((FLOAT64)x1r * W1) + ((FLOAT64)x1i * W4));
x1i = (FLOAT32)(-((FLOAT64)x1r * W4) + (FLOAT64)x1i * W1);
x1r = tmp;
*ptr_y = (x0r) - (x1r);
*(ptr_y + 1) = (x0i) - (x1i);
ptr_y -= (del << 1);
*ptr_y = (x0r) + (x1r);
*(ptr_y + 1) = (x0i) + (x1i);
ptr_y += 2;
}
twiddles = ptr_w;
for (j = del / 2; j != 0; j--) {
FLOAT64 W1 = *twiddles;
FLOAT64 W4 = *(twiddles + 257);
FLOAT32 tmp;
twiddles += nodespacing;
x0r = *ptr_y;
x0i = *(ptr_y + 1);
ptr_y += (del << 1);
x1r = *ptr_y;
x1i = *(ptr_y + 1);
tmp = (FLOAT32)(((FLOAT64)x1r * W4) - ((FLOAT64)x1i * W1));
x1i = (FLOAT32)(((FLOAT64)x1r * W1) + ((FLOAT64)x1i * W4));
x1r = tmp;
*ptr_y = (x0r) - (x1r);
*(ptr_y + 1) = (x0i) - (x1i);
ptr_y -= (del << 1);
*ptr_y = (x0r) + (x1r);
*(ptr_y + 1) = (x0i) + (x1i);
ptr_y += 2;
}
}
}
for (i = 0; i < n_pass; i++) {
re[2 * i + 0] = y[2 * i + 0];
re[2 * i + 1] = y[2 * i + 1];
}
}
VOID ixheaacd_hbe_apply_cfftn_gen(FLOAT32 re[], FLOAT32 *scratch, WORD32 n_pass,
WORD32 i_sign) {
WORD32 i, j;
WORD32 m_points = n_pass;
FLOAT32 *x, *y, *re3;
FLOAT32 *ptr_x, *ptr_y;
ptr_x = x = scratch;
scratch += 2 * m_points;
ptr_y = y = scratch;
scratch += 4 * m_points;
re3 = scratch;
scratch += 2 * m_points;
WORD32 cnfac;
WORD32 mpass = n_pass;
cnfac = 0;
while (mpass % 3 == 0) {
mpass /= 3;
cnfac++;
}
for (i = 0; i < 3 * cnfac; i++) {
for (j = 0; j < mpass; j++) {
re3[2 * j + 0] = re[6 * j + 2 * i + 0];
re3[2 * j + 1] = re[6 * j + 2 * i + 1];
}
ixheaacd_hbe_apply_cfftn(re3, scratch, mpass, i_sign);
for (j = 0; j < mpass; j++) {
re[6 * j + 2 * i + 0] = re3[2 * j + 0];
re[6 * j + 2 * i + 1] = re3[2 * j + 1];
}
}
{
FLOAT64 *w1r, *w1i;
FLOAT32 tmp;
w1r = (FLOAT64 *)ixheaac_twid_tbl_fft_ntwt3r;
w1i = (FLOAT64 *)ixheaac_twid_tbl_fft_ntwt3i;
if (i_sign < 0) {
for (i = 0; i < n_pass; i += 3) {
tmp = (FLOAT32)((FLOAT64)re[2 * i + 0] * (*w1r) - (FLOAT64)re[2 * i + 1] * (*w1i));
re[2 * i + 1] =
(FLOAT32)((FLOAT64)re[2 * i + 0] * (*w1i) + (FLOAT64)re[2 * i + 1] * (*w1r));
re[2 * i + 0] = tmp;
w1r++;
w1i++;
tmp = (FLOAT32)((FLOAT64)re[2 * i + 2] * (*w1r) - (FLOAT64)re[2 * i + 3] * (*w1i));
re[2 * i + 3] =
(FLOAT32)((FLOAT64)re[2 * i + 2] * (*w1i) + (FLOAT64)re[2 * i + 3] * (*w1r));
re[2 * i + 2] = tmp;
w1r++;
w1i++;
tmp = (FLOAT32)((FLOAT64)re[2 * i + 4] * (*w1r) - (FLOAT64)re[2 * i + 5] * (*w1i));
re[2 * i + 5] =
(FLOAT32)((FLOAT64)re[2 * i + 4] * (*w1i) + (FLOAT64)re[2 * i + 5] * (*w1r));
re[2 * i + 4] = tmp;
w1r += 3 * (128 / mpass - 1) + 1;
w1i += 3 * (128 / mpass - 1) + 1;
}
} else {
for (i = 0; i < n_pass; i += 3) {
tmp = (FLOAT32)((FLOAT64)re[2 * i + 0] * (*w1r) + (FLOAT64)re[2 * i + 1] * (*w1i));
re[2 * i + 1] =
(FLOAT32)(-(FLOAT64)re[2 * i + 0] * (*w1i) + (FLOAT64)re[2 * i + 1] * (*w1r));
re[2 * i + 0] = tmp;
w1r++;
w1i++;
tmp = (FLOAT32)((FLOAT64)re[2 * i + 2] * (*w1r) + (FLOAT64)re[2 * i + 3] * (*w1i));
re[2 * i + 3] =
(FLOAT32)(-(FLOAT64)re[2 * i + 2] * (*w1i) + (FLOAT64)re[2 * i + 3] * (*w1r));
re[2 * i + 2] = tmp;
w1r++;
w1i++;
tmp = (FLOAT32)((FLOAT64)re[2 * i + 4] * (*w1r) + (FLOAT64)re[2 * i + 5] * (*w1i));
re[2 * i + 5] =
(FLOAT32)(-(FLOAT64)re[2 * i + 4] * (*w1i) + (FLOAT64)re[2 * i + 5] * (*w1r));
re[2 * i + 4] = tmp;
w1r += 3 * (128 / mpass - 1) + 1;
w1i += 3 * (128 / mpass - 1) + 1;
}
}
}
for (i = 0; i < n_pass; i++) {
ptr_x[2 * i + 0] = re[2 * i + 0];
ptr_x[2 * i + 1] = re[2 * i + 1];
}
for (i = 0; i < mpass; i++) {
ixheaacd_hbe_apply_fft_3(ptr_x, ptr_y, i_sign);
ptr_x = ptr_x + 6;
ptr_y = ptr_y + 6;
}
for (i = 0; i < mpass; i++) {
re[2 * i + 0] = y[6 * i + 0];
re[2 * i + 1] = y[6 * i + 1];
}
for (i = 0; i < mpass; i++) {
re[2 * mpass + 2 * i + 0] = y[6 * i + 2];
re[2 * mpass + 2 * i + 1] = y[6 * i + 3];
}
for (i = 0; i < mpass; i++) {
re[4 * mpass + 2 * i + 0] = y[6 * i + 4];
re[4 * mpass + 2 * i + 1] = y[6 * i + 5];
}
}
VOID ixheaacd_hbe_apply_fft_288(FLOAT32 *inp, FLOAT32 *scratch, WORD32 len, WORD32 i_sign) {
FLOAT32 *op = scratch;
WORD32 mpoints = len / 96;
WORD32 fpoints = len / 3;
WORD32 ii, jj;
scratch += 2 * len;
for (ii = 0; ii < mpoints; ii++) {
for (jj = 0; jj < fpoints; jj++) {
op[2 * jj + 0] = inp[2 * mpoints * jj + 2 * ii];
op[2 * jj + 1] = inp[2 * mpoints * jj + 2 * ii + 1];
}
if (fpoints & (fpoints - 1))
ixheaacd_hbe_apply_cfftn_gen(op, scratch, fpoints, i_sign);
else
ixheaacd_hbe_apply_cfftn(op, scratch, fpoints, i_sign);
for (jj = 0; jj < fpoints; jj++) {
inp[mpoints * 2 * jj + 2 * ii + 0] = op[2 * jj + 0];
inp[mpoints * 2 * jj + 2 * ii + 1] = op[2 * jj + 1];
}
}
ixheaacd_hbe_apply_tw_mult_fft(inp, op, fpoints, mpoints, ixheaac_twid_tbl_fft_288);
for (ii = 0; ii < fpoints; ii++) {
ixheaacd_hbe_apply_fft_3(op, scratch, i_sign);
op = op + (mpoints * 2);
scratch = scratch + (mpoints * 2);
}
scratch -= fpoints * mpoints * 2;
for (jj = 0; jj < fpoints; jj++) {
inp[2 * jj + 0] = scratch[6 * jj];
inp[2 * jj + 1] = scratch[6 * jj + 1];
}
for (jj = 0; jj < fpoints; jj++) {
inp[2 * fpoints + 2 * jj + 0] = scratch[6 * jj + 2];
inp[2 * fpoints + 2 * jj + 1] = scratch[6 * jj + 3];
}
for (jj = 0; jj < fpoints; jj++) {
inp[4 * fpoints + 2 * jj + 0] = scratch[6 * jj + 4];
inp[4 * fpoints + 2 * jj + 1] = scratch[6 * jj + 5];
}
}
VOID ixheaacd_hbe_apply_ifft_224(FLOAT32 *inp, FLOAT32 *scratch, WORD32 len, WORD32 i_sign) {
WORD32 mpoints = len / 32;
WORD32 fpoints = len / 7;
WORD32 ii, jj;
FLOAT32 *op = scratch;
scratch += 2 * len;
for (ii = 0; ii < mpoints; ii++) {
for (jj = 0; jj < fpoints; jj++) {
op[2 * jj + 0] = inp[2 * mpoints * jj + 2 * ii];
op[2 * jj + 1] = inp[2 * mpoints * jj + 2 * ii + 1];
}
if (fpoints & (fpoints - 1))
ixheaacd_hbe_apply_cfftn_gen(op, scratch, fpoints, i_sign);
else
ixheaacd_hbe_apply_cfftn(op, scratch, fpoints, i_sign);
for (jj = 0; jj < fpoints; jj++) {
inp[mpoints * 2 * jj + 2 * ii + 0] = op[2 * jj + 0];
inp[mpoints * 2 * jj + 2 * ii + 1] = op[2 * jj + 1];
}
}
ixheaacd_hbe_apply_tw_mult_ifft(inp, op, fpoints, mpoints, ixheaac_twid_tbl_fft_224);
for (ii = 0; ii < fpoints; ii++) {
ixheaacd_hbe_apply_ifft_7(op, scratch);
scratch += (mpoints * 2);
op += (mpoints * 2);
}
scratch -= fpoints * mpoints * 2;
for (jj = 0; jj < fpoints; jj++) {
for (ii = 0; ii < mpoints; ii++) {
inp[fpoints * ii * 2 + 2 * jj + 0] = scratch[mpoints * jj * 2 + 2 * ii + 0];
inp[fpoints * ii * 2 + 2 * jj + 1] = scratch[mpoints * jj * 2 + 2 * ii + 1];
}
}
}
VOID ixheaacd_hbe_apply_ifft_336(FLOAT32 *inp, FLOAT32 *ptr_scratch, WORD32 len,
WORD32 i_sign) {
WORD32 i, j;
WORD32 m_points = len / 7;
WORD32 n_points = len / 48;
FLOAT32 *ptr_real, *ptr_imag, *p_real_1, *p_scratch;
ptr_real = ptr_scratch;
ptr_scratch += 2 * len;
ptr_imag = ptr_scratch;
ptr_scratch += len;
p_scratch = ptr_scratch;
ptr_scratch += len;
p_real_1 = ptr_scratch;
ptr_scratch += len;
for (i = 0; i < len; i++) {
ptr_real[i] = inp[2 * i + 0];
ptr_imag[i] = inp[2 * i + 1];
}
for (i = 0; i < m_points; i++) {
for (j = 0; j < n_points; j++) {
p_real_1[2 * j + 0] = inp[m_points * 2 * j + 2 * i + 0];
p_real_1[2 * j + 1] = inp[m_points * 2 * j + 2 * i + 1];
}
ixheaacd_hbe_apply_ifft_7(p_real_1, ptr_scratch);
for (j = 0; j < n_points; j++) {
inp[m_points * 2 * j + 2 * i + 0] = ptr_scratch[2 * j + 0];
inp[m_points * 2 * j + 2 * i + 1] = ptr_scratch[2 * j + 1];
}
}
if (m_points == 48)
ixheaacd_hbe_apply_tw_mult_ifft(inp, p_scratch, n_points, m_points,
ixheaac_twid_tbl_fft_336);
else
ixheaacd_hbe_apply_tw_mult_ifft(inp, p_scratch, n_points, m_points,
ixheaac_twid_tbl_fft_168);
for (i = 0; i < len; i++) {
ptr_real[2 * i + 0] = p_scratch[2 * i + 0];
ptr_real[2 * i + 1] = p_scratch[2 * i + 1];
}
for (i = 0; i < n_points; i++) {
ixheaacd_hbe_apply_cfftn_gen(ptr_real, ptr_scratch, m_points, i_sign);
ptr_real += (2 * m_points);
}
ptr_real -= n_points * 2 * m_points;
for (j = 0; j < n_points; j++) {
for (i = 0; i < m_points; i++) {
inp[n_points * 2 * i + 2 * j + 0] = ptr_real[2 * m_points * j + 2 * i + 0];
inp[n_points * 2 * i + 2 * j + 1] = ptr_real[2 * m_points * j + 2 * i + 1];
}
}
return;
}