blob: 3b0ed6d32ce08e1cb6768e7282b193bc17ab0dda [file] [log] [blame]
/*
* stitcher.cpp - stitcher base
*
* Copyright (c) 2017 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Wind Yuan <[email protected]>
* Author: Yinhang Liu <[email protected]>
*/
#include "stitcher.h"
#include "xcam_utils.h"
// angle to position, output range [-180, 180]
#define OUT_WINDOWS_START 0.0f
#define constraint_margin (2 * _alignment_x)
#define XCAM_GL_RESTART_FIXED_INDEX 0xFFFF
namespace XCam {
static inline bool
merge_neighbor_area (
const Stitcher::CopyArea &current,
const Stitcher::CopyArea &next,
Stitcher::CopyArea &merged)
{
if (current.in_idx == next.in_idx &&
current.in_area.pos_x + current.in_area.width == next.in_area.pos_x &&
current.out_area.pos_x + current.out_area.width == next.out_area.pos_x)
{
merged = current;
merged.in_area.pos_x = current.in_area.pos_x;
merged.in_area.width = current.in_area.width + next.in_area.width;
merged.out_area.pos_x = current.out_area.pos_x;
merged.out_area.width = current.out_area.width + next.out_area.width;
return true;
}
return false;
}
static inline bool
split_area_by_out (
const Stitcher::CopyArea &area, const uint32_t round_width,
Stitcher::CopyArea &split_a, Stitcher::CopyArea &split_b)
{
XCAM_ASSERT (area.out_area.pos_x >= 0 && area.out_area.pos_x < (int32_t)round_width);
XCAM_ASSERT (area.out_area.width > 0 && area.out_area.width < (int32_t)round_width);
if (area.out_area.pos_x + area.out_area.width > (int32_t)round_width) {
split_a = area;
split_a.out_area.width = round_width - area.out_area.pos_x;
split_a.in_area.width = split_a.out_area.width;
split_b = area;
split_b.in_area.pos_x = area.in_area.pos_x + split_a.in_area.width;
split_b.in_area.width = area.in_area.width - split_a.in_area.width;
split_b.out_area.pos_x = 0;
split_b.out_area.width = split_b.in_area.width;
XCAM_ASSERT (split_b.out_area.width == area.out_area.pos_x + area.out_area.width - (int32_t)round_width);
return true;
}
XCAM_ASSERT (area.out_area.width == area.in_area.width);
return false;
}
Stitcher::Stitcher (uint32_t align_x, uint32_t align_y)
: _alignment_x (align_x)
, _alignment_y (align_y)
, _output_width (0)
, _output_height (0)
, _out_start_angle (OUT_WINDOWS_START)
, _camera_num (0)
, _is_round_view_set (false)
, _is_overlap_set (false)
, _is_crop_set (false)
, _is_center_marked (false)
, _scale_mode (ScaleSingleConst)
, _fm_mode (FMNone)
{
XCAM_ASSERT (align_x >= 1);
XCAM_ASSERT (align_y >= 1);
}
Stitcher::~Stitcher ()
{
}
bool
Stitcher::set_bowl_config (const BowlDataConfig &config)
{
_bowl_config = config;
return true;
}
bool
Stitcher::set_camera_num (uint32_t num)
{
XCAM_FAIL_RETURN (
ERROR, num <= XCAM_STITCH_MAX_CAMERAS, false,
"stitcher: set camera count failed, num(%d) is larger than max value(%d)",
num, XCAM_STITCH_MAX_CAMERAS);
_camera_num = num;
return true;
}
bool
Stitcher::set_camera_info (uint32_t index, const CameraInfo &info)
{
XCAM_FAIL_RETURN (
ERROR, index < _camera_num, false,
"stitcher: set camera info failed, index(%d) exceed max camera num(%d)",
index, _camera_num);
_camera_info[index] = info;
return true;
}
bool
Stitcher::set_crop_info (uint32_t index, const ImageCropInfo &info)
{
XCAM_FAIL_RETURN (
ERROR, index < _camera_num, false,
"stitcher: set camera info failed, index(%d) exceed max camera num(%d)",
index, _camera_num);
_crop_info[index] = info;
_is_crop_set = true;
return true;
}
bool
Stitcher::get_crop_info (uint32_t index, ImageCropInfo &info) const
{
XCAM_FAIL_RETURN (
ERROR, index < _camera_num, false,
"stitcher: get crop info failed, index(%d) exceed camera num(%d)",
index, _camera_num);
info = _crop_info[index];
return true;
}
#if 0
bool
Stitcher::set_overlap_info (uint32_t index, const ImageOverlapInfo &info)
{
XCAM_FAIL_RETURN (
ERROR, index < _camera_num, false,
"stitcher: set overlap info failed, index(%d) exceed max camera num(%d)",
index, _camera_num);
_overlap_info[index] = info;
_is_overlap_set = true;
return true;
}
bool
Stitcher::get_overlap_info (uint32_t index, ImageOverlapInfo &info) const
{
XCAM_FAIL_RETURN (
ERROR, index < _camera_num, false,
"stitcher: get overlap info failed, index(%d) exceed camera num(%d)",
index, _camera_num);
info = _overlap_info[index];
return true;
}
#endif
bool
Stitcher::get_camera_info (uint32_t index, CameraInfo &info) const
{
XCAM_FAIL_RETURN (
ERROR, index < XCAM_STITCH_MAX_CAMERAS, false,
"stitcher: get camera info failed, index(%d) exceed max camera value(%d)",
index, XCAM_STITCH_MAX_CAMERAS);
info = _camera_info[index];
return true;
}
XCamReturn
Stitcher::estimate_round_slices ()
{
if (_is_round_view_set)
return XCAM_RETURN_NO_ERROR;
XCAM_FAIL_RETURN (
ERROR, _camera_num && _camera_num < XCAM_STITCH_MAX_CAMERAS, XCAM_RETURN_ERROR_PARAM,
"stitcher: camera num was not set, or camera num(%d) exceed max camera value(%d)",
_camera_num, XCAM_STITCH_MAX_CAMERAS);
for (uint32_t i = 0; i < _camera_num; ++i) {
CameraInfo &cam_info = _camera_info[i];
RoundViewSlice &view_slice = _round_view_slices[i];
view_slice.width = cam_info.angle_range / 360.0f * (float)_output_width;
view_slice.width = XCAM_ALIGN_UP (view_slice.width, _alignment_x);
view_slice.height = _output_height;
view_slice.hori_angle_range = view_slice.width * 360.0f / (float)_output_width;
uint32_t aligned_start = format_angle (cam_info.round_angle_start) / 360.0f * (float)_output_width;
aligned_start = XCAM_ALIGN_AROUND (aligned_start, _alignment_x);
if (_output_width <= constraint_margin + aligned_start || aligned_start <= constraint_margin)
aligned_start = 0;
view_slice.hori_angle_start = format_angle((float)aligned_start / (float)_output_width * 360.0f);
if (XCAM_DOUBLE_EQUAL_AROUND (view_slice.hori_angle_start, 0.0001f))
view_slice.hori_angle_start = 0.0f;
cam_info.round_angle_start = view_slice.hori_angle_start;
cam_info.angle_range = view_slice.hori_angle_range;
}
_is_round_view_set = true;
return XCAM_RETURN_NO_ERROR;
}
XCamReturn
Stitcher::estimate_coarse_crops ()
{
if (_is_crop_set)
return XCAM_RETURN_NO_ERROR;
XCAM_FAIL_RETURN (
ERROR, _camera_num > 0 && _is_round_view_set, XCAM_RETURN_ERROR_ORDER,
"stitcher mark_centers failed, need set camera info and round_slices first");
for (uint32_t i = 0; i < _camera_num; ++i) {
_crop_info[i].left = 0;
_crop_info[i].right = 0;
_crop_info[i].top = 0;
_crop_info[i].bottom = 0;
}
_is_crop_set = true;
return XCAM_RETURN_NO_ERROR;
}
// after crop done
XCamReturn
Stitcher::mark_centers ()
{
if (_is_center_marked)
return XCAM_RETURN_NO_ERROR;
XCAM_FAIL_RETURN (
ERROR, _camera_num > 0 && _is_round_view_set, XCAM_RETURN_ERROR_ORDER,
"stitcher mark_centers failed, need set camera info and round_view slices first");
for (uint32_t i = 0; i < _camera_num; ++i) {
const RoundViewSlice &slice = _round_view_slices[i];
//calcuate final output postion
float center_angle = i * 360.0f / _camera_num;
uint32_t out_pos = format_angle (center_angle - _out_start_angle) / 360.0f * _output_width;
XCAM_ASSERT (out_pos < _output_width);
if (_output_width <= constraint_margin + out_pos || out_pos <= constraint_margin)
out_pos = 0;
// get slice center angle
center_angle = XCAM_ALIGN_AROUND (out_pos, _alignment_x) / (float)_output_width * 360.0f - _out_start_angle;
center_angle = format_angle (center_angle);
float center_in_slice = center_angle - slice.hori_angle_start;
center_in_slice = format_angle (center_in_slice);
XCAM_FAIL_RETURN (
ERROR, center_in_slice < slice.hori_angle_range,
XCAM_RETURN_ERROR_PARAM,
"stitcher mark center failed, slice:%d calculated center-angle:%.2f is out of slice angle(start:%.2f, range:%.2f)",
center_angle, slice.hori_angle_start, slice.hori_angle_range);
uint32_t slice_pos = (uint32_t)(center_in_slice / slice.hori_angle_range * slice.width);
slice_pos = XCAM_ALIGN_AROUND (slice_pos, _alignment_x);
XCAM_ASSERT (slice_pos > _crop_info[i].left && slice_pos < slice.width - _crop_info[i].right);
_center_marks[i].slice_center_x = slice_pos;
_center_marks[i].out_center_x = out_pos;
}
_is_center_marked = true;
return XCAM_RETURN_NO_ERROR;
}
XCamReturn
Stitcher::estimate_overlap ()
{
if (_is_overlap_set)
return XCAM_RETURN_NO_ERROR;
XCAM_FAIL_RETURN (
ERROR, _is_round_view_set && _is_crop_set && _is_center_marked, XCAM_RETURN_ERROR_ORDER,
"stitcher estimate_coarse_seam failed, need set round_view slices, crop info and mark centers first");
for (uint32_t idx = 0; idx < _camera_num; ++idx) {
uint32_t next_idx = (idx + 1) % _camera_num;
const RoundViewSlice &left = _round_view_slices[idx];
const RoundViewSlice &right = _round_view_slices[next_idx];
const CenterMark &left_center = _center_marks[idx];
const CenterMark &right_center = _center_marks[next_idx];
const ImageCropInfo &left_img_crop = _crop_info[idx];
const ImageCropInfo &right_img_crop = _crop_info[next_idx];
#if 0
XCAM_FAIL_RETURN (
ERROR,
(format_angle (right.hori_angle_start - left.hori_angle_start) < left.hori_angle_range)
XCAM_RETURN_ERROR_UNKNOWN,
"stitcher estimate_coarse_seam failed and there is no seam between slice %d and slice %d", idx, next_idx);
float seam_angle_start = right.hori_angle_start;
float seam_angle_range =
format_angle (left.hori_angle_start + left.hori_angle_range - right.hori_angle_start);
XCAM_FAIL_RETURN (
ERROR, seam_angle_range < right.hori_angle_range, XCAM_RETURN_ERROR_UNKNOWN,
"stitcher estimate_coarse_seam failed and left slice(%d)over covered right slice(%d)", idx, next_idx);
XCAM_ASSERT (!XCAM_DOUBLE_EQUAL_AROUND (left.hori_angle_range, 0.0f));
XCAM_ASSERT (!XCAM_DOUBLE_EQUAL_AROUND (right.hori_angle_range, 0.0f));
#endif
uint32_t out_right_center_x = right_center.out_center_x;
if (out_right_center_x == 0)
out_right_center_x = _output_width;
Rect valid_left_img, valid_right_img;
valid_left_img.pos_x = left_center.slice_center_x;
valid_left_img.width = left.width - left_img_crop.right - valid_left_img.pos_x;
valid_left_img.pos_y = left_img_crop.top;
valid_left_img.height = left.height - left_img_crop.top - left_img_crop.bottom;
valid_right_img.width = right_center.slice_center_x - right_img_crop.left;
valid_right_img.pos_x = right_center.slice_center_x - valid_right_img.width;
valid_right_img.pos_y = right_img_crop.top;
valid_right_img.height = right.height - right_img_crop.top - right_img_crop.bottom;
uint32_t merge_width = out_right_center_x - left_center.out_center_x;
XCAM_FAIL_RETURN (
ERROR,
valid_left_img.width + valid_right_img.width > (int32_t)merge_width,
XCAM_RETURN_ERROR_UNKNOWN,
"stitcher estimate_overlap failed and there is no overlap area between slice %d and slice %d", idx, next_idx);
uint32_t overlap_width = valid_left_img.width + valid_right_img.width - merge_width;
Rect left_img_overlap, right_img_overlap;
left_img_overlap.pos_x = valid_left_img.pos_x + valid_left_img.width - overlap_width;
left_img_overlap.width = overlap_width;
left_img_overlap.pos_y = valid_left_img.pos_y;
left_img_overlap.height = valid_left_img.height;
XCAM_ASSERT (left_img_overlap.pos_x >= (int32_t)left_center.slice_center_x && left_img_overlap.pos_x < (int32_t)left.width);
right_img_overlap.pos_x = valid_right_img.pos_x;
right_img_overlap.width = overlap_width;
right_img_overlap.pos_y = valid_right_img.pos_y;
right_img_overlap.height = valid_right_img.height;
XCAM_ASSERT (right_img_overlap.pos_x >= (int32_t)right_img_crop.left && right_img_overlap.pos_x < (int32_t)right_center.slice_center_x);
Rect out_overlap;
out_overlap.pos_x = left_center.out_center_x + valid_left_img.width - overlap_width;
out_overlap.width = overlap_width;
// out_overlap.pos_y/height not useful by now
out_overlap.pos_y = valid_left_img.pos_y;
out_overlap.height = valid_left_img.height;
#if 0
left_img_seam.pos_x =
left.width * format_angle (seam_angle_start - left.hori_angle_start) / left.hori_angle_range;
left_img_seam.pos_y = _crop_info[idx].top;
left_img_seam.width = left.width * seam_angle_range / left.hori_angle_range;
left_img_seam.height = left.height - _crop_info[idx].top - _crop_info[idx].bottom;
//consider crop
XCAM_ASSERT (left_img_seam.pos_x < left.width - _crop_info[idx].right);
if (left_img_seam.pos_x + left_img_seam.width > left.width - _crop_info[idx].right)
left_img_seam.width = left.width - _crop_info[idx].right;
right_img_seam.pos_x = 0;
right_img_seam.pos_y = _crop_info[next_idx].top;
right_img_seam.width = right.width * (seam_angle_range / right.hori_angle_range);
right_img_seam.height = right.height - _crop_info[next_idx].top - _crop_info[next_idx].bottom;
//consider crop
XCAM_ASSERT (right_img_seam.pos_x + right_img_seam.width > _crop_info[next_idx].left);
if (_crop_info[next_idx].left) {
right_img_seam.pos_x = _crop_info[next_idx].left;
right_img_seam.width -= _crop_info[next_idx].left;
left_img_seam.pos_x += _crop_info[next_idx].left;
left_img_seam.width -= _crop_info[next_idx].left;
}
XCAM_ASSERT (abs (left_img_seam.width - right_img_seam.width) < 16);
left_img_seam.pos_x = XCAM_ALIGN_DOWN (left_img_seam.pos_x, _alignment_x);
right_img_seam.pos_x = XCAM_ALIGN_DOWN (right_img_seam.pos_x, _alignment_x);
//find max seam width
uint32_t seam_width, seam_height;
seam_width = XCAM_MAX (left_img_seam.width, right_img_seam.width);
if (left_img_seam.pos_x + seam_width > left.width)
seam_width = left.width - left_img_seam.pos_x;
if (right_img_seam.pos_x + seam_width > right.width)
seam_width = right.width - right_img_seam.pos_x;
XCAM_FAIL_RETURN (
ERROR, seam_width >= XCAM_STITCH_MIN_SEAM_WIDTH, XCAM_RETURN_ERROR_UNKNOWN,
"stitcher estimate_coarse_seam failed, the seam(w:%d) is very narrow between(slice %d and %d)",
seam_width, idx, next_idx);
left_img_seam.width = right_img_seam.width = XCAM_ALIGN_DOWN (seam_width, _alignment_x);
// min height
uint32_t top = XCAM_MAX (left_img_seam.pos_y, right_img_seam.pos_y);
uint32_t bottom0 = left_img_seam.pos_y + left_img_seam.height;
uint32_t bottom1 = right_img_seam.pos_y + right_img_seam.height;
uint32_t bottom = XCAM_MIN (bottom0, bottom1);
top = XCAM_ALIGN_UP (top, _alignment_y);
left_img_seam.pos_y = right_img_seam.pos_y = top;
left_img_seam.height = right_img_seam.height = XCAM_ALIGN_DOWN (bottom - top, _alignment_y);
#endif
// set overlap info
_overlap_info[idx].left = left_img_overlap;
_overlap_info[idx].right = right_img_overlap;
_overlap_info[idx].out_area = out_overlap;
}
_is_overlap_set = true;
return XCAM_RETURN_NO_ERROR;
}
XCamReturn
Stitcher::update_copy_areas ()
{
XCAM_FAIL_RETURN (
ERROR, _camera_num > 1 && _is_round_view_set && _is_crop_set && _is_overlap_set, XCAM_RETURN_ERROR_ORDER,
"stitcher update_copy_areas failed, check orders, need"
"camera_info, round_view slices, crop_info and overlap_info set first.");
CopyAreaArray tmp_areas;
uint32_t i = 0;
uint32_t next_i = 0;
for (i = 0; i < _camera_num; ++i) {
next_i = (i + 1 ) % _camera_num;
const CenterMark &mark_left = _center_marks[i];
const CenterMark &mark_right = _center_marks[next_i];
const ImageOverlapInfo &overlap = _overlap_info[i];
CopyArea split_a, split_b;
CopyArea left;
left.in_idx = i;
left.in_area.pos_x = mark_left.slice_center_x;
left.in_area.width = overlap.left.pos_x - left.in_area.pos_x;
XCAM_ASSERT (left.in_area.width > 0);
left.in_area.pos_y = _crop_info[i].top;
left.in_area.height = _round_view_slices[i].height - _crop_info[i].top - _crop_info[i].bottom;
XCAM_ASSERT (left.in_area.height > 0);
left.out_area.pos_x = mark_left.out_center_x;
left.out_area.width = left.in_area.width;
left.out_area.pos_y = 0;
left.out_area.height = left.in_area.height;
if (split_area_by_out (left, _output_width, split_a, split_b)) {
tmp_areas.push_back (split_a);
tmp_areas.push_back (split_b);
} else {
tmp_areas.push_back (left);
}
CopyArea right;
right.in_idx = next_i;
right.in_area.pos_x = _overlap_info[i].right.pos_x + _overlap_info[i].right.width;
right.in_area.width = (int32_t)mark_right.slice_center_x - right.in_area.pos_x;
XCAM_ASSERT (right.in_area.width > 0);
right.in_area.pos_y = _crop_info[next_i].top;
right.in_area.height = _round_view_slices[next_i].height - _crop_info[next_i].top - _crop_info[next_i].bottom;
XCAM_ASSERT (right.in_area.height > 0);
uint32_t out_right_center_x = mark_right.out_center_x;
if (out_right_center_x == 0)
out_right_center_x = _output_width;
right.out_area.width = right.in_area.width;
right.out_area.pos_x = out_right_center_x - right.out_area.width;
right.out_area.pos_y = 0;
right.out_area.height = right.in_area.height;
if (split_area_by_out (right, _output_width, split_a, split_b)) {
tmp_areas.push_back (split_a);
tmp_areas.push_back (split_b);
} else {
tmp_areas.push_back (right);
}
}
XCAM_ASSERT (tmp_areas.size () > _camera_num && _camera_num >= 2);
CopyArea merged;
int32_t start = 0;
int32_t end = tmp_areas.size () - 1;
if (tmp_areas.size () > 2) {
const CopyArea &first = tmp_areas[0];
const CopyArea &last = tmp_areas[end];
// merge first and last
if (merge_neighbor_area (last, first, merged)) {
_copy_areas.push_back (merged);
++start;
--end;
}
}
// merge areas
for (i = (uint32_t)start; (int32_t)i <= end; ) {
const CopyArea &current = tmp_areas[i];
if (i == (uint32_t)end) {
_copy_areas.push_back (current);
break;
}
const CopyArea &next = tmp_areas[i + 1];
if (merge_neighbor_area (current, next, merged)) {
_copy_areas.push_back (merged);
i += 2;
} else {
_copy_areas.push_back (current);
i += 1;
}
}
XCAM_ASSERT (_copy_areas.size() >= _camera_num);
return XCAM_RETURN_NO_ERROR;
}
BowlModel::BowlModel (const BowlDataConfig &config, const uint32_t image_width, const uint32_t image_height)
: _config (config)
, _bowl_img_width (image_width)
, _bowl_img_height (image_height)
{
//max area => x/a = y/b
XCAM_ASSERT (fabs(_config.center_z) < _config.c);
float mid = sqrt ((1.0f - _config.center_z * _config.center_z / (_config.c * _config.c)) / 2.0f);
_max_topview_length_mm = mid * _config.a * 2.0f;
_max_topview_width_mm = mid * _config.b * 2.0f;
}
bool
BowlModel::get_max_topview_area_mm (float &length_mm, float &width_mm)
{
if (_max_topview_width_mm <= 0.0f || _max_topview_length_mm <= 0.0f)
return false;
length_mm = _max_topview_length_mm;
width_mm = _max_topview_width_mm;
return true;
}
bool
BowlModel::get_topview_rect_map (
PointMap &texture_points,
uint32_t res_width, uint32_t res_height,
float length_mm, float width_mm)
{
if (XCAM_DOUBLE_EQUAL_AROUND (length_mm, 0.0f) ||
XCAM_DOUBLE_EQUAL_AROUND (width_mm, 0.0f)) {
get_max_topview_area_mm (length_mm, width_mm);
}
XCAM_FAIL_RETURN (
ERROR,
length_mm * length_mm / (_config.a * _config.a) / 4.0f + width_mm * width_mm / (_config.b * _config.b) / 4.0f +
_config.center_z * _config.center_z / (_config.c * _config.c) <= 1.0f + 0.001f,
false,
"bowl model topview input area(L:%.2fmm, W:%.2fmm) is larger than max area", length_mm, width_mm);
float center_pos_x = res_width / 2.0f;
float center_pos_y = res_height / 2.0f;
float mm_per_pixel_x = length_mm / res_width;
float mm_per_pixel_y = width_mm / res_height;
texture_points.resize (res_width * res_height);
for(uint32_t row = 0; row < res_height; row++) {
for(uint32_t col = 0; col < res_width; col++) {
PointFloat3 world_pos (
(col - center_pos_x) * mm_per_pixel_x,
(center_pos_y - row) * mm_per_pixel_y,
0.0f);
PointFloat2 texture_pos = bowl_view_coords_to_image (
_config, world_pos, _bowl_img_width, _bowl_img_height);
texture_points [res_width * row + col] = texture_pos;
}
}
return true;
}
bool
BowlModel::get_stitch_image_vertex_model (
VertexMap &vertices, PointMap &texture_points, IndexVector &indeices,
uint32_t res_width, uint32_t res_height, float vertex_height)
{
vertices.reserve (2 * (res_width + 1) * (res_height + 1));
texture_points.reserve (2 * (res_width + 1) * (res_height + 1));
indeices.reserve (2 * (res_width + 1) * (res_height + 1) + (res_height + 1));
float step_x = (float)_bowl_img_width / res_width;
float step_y = vertex_height / res_height;
float offset_y = (float)_bowl_img_height - vertex_height;
int32_t indicator = 0;
for (uint32_t row = 0; row < res_height - 1; row++) {
PointFloat2 texture_pos0;
texture_pos0.y = row * step_y + offset_y;
PointFloat2 texture_pos1;
texture_pos1.y = (row + 1) * step_y + offset_y;
for (uint32_t col = 0; col <= res_width; col++) {
texture_pos0.x = col * step_x;
texture_pos1.x = col * step_x;
PointFloat3 world_pos0 =
bowl_view_image_to_world (
_config, _bowl_img_width, _bowl_img_height, texture_pos0);
vertices.push_back (PointFloat3(world_pos0.x / _config.a, world_pos0.y / _config.b, world_pos0.z / _config.c));
indeices.push_back (indicator++);
texture_points.push_back (PointFloat2(texture_pos0.x / _bowl_img_width, texture_pos0.y / _bowl_img_height));
PointFloat3 world_pos1 =
bowl_view_image_to_world (
_config, _bowl_img_width, _bowl_img_height, texture_pos1);
vertices.push_back (PointFloat3(world_pos1.x / _config.a, world_pos1.y / _config.b, world_pos1.z / _config.c));
indeices.push_back (indicator++);
texture_points.push_back (PointFloat2(texture_pos1.x / _bowl_img_width, texture_pos1.y / _bowl_img_height));
}
}
return true;
}
bool
BowlModel::get_bowlview_vertex_model (
VertexMap &vertices, PointMap &texture_points, IndexVector &indeices,
uint32_t res_width, uint32_t res_height)
{
return get_stitch_image_vertex_model (vertices, texture_points, indeices, res_width, res_height, (float)_bowl_img_height);
}
bool
BowlModel::get_topview_vertex_model (
VertexMap &vertices, PointMap &texture_points, IndexVector &indeices,
uint32_t res_width, uint32_t res_height)
{
float wall_image_height = _config.wall_height / (float)(_config.wall_height + _config.ground_length) * (float)_bowl_img_height;
float ground_image_height = (float)_bowl_img_height - wall_image_height;
return get_stitch_image_vertex_model (vertices, texture_points, indeices, res_width, res_height, ground_image_height);
}
}