| /* |
| * kernel_fisheye_2_gps |
| * input_y, input image, CL_R + CL_UNORM_INT8 //sampler |
| * input_uv, CL_RG + CL_UNORM_INT8 //sampler |
| * output_y, CL_RGBA + CL_UNSIGNED_INT8, // 4-pixel |
| * output_uv, CL_RGBA + CL_UNSIGNED_INT8, // 4-pixel |
| * |
| * all angles are in radian |
| */ |
| |
| #define PI 3.1415926f |
| #define PIXEL_PER_WI 4 |
| |
| typedef struct { |
| float center_x; |
| float center_y; |
| float wide_angle; |
| float radius; |
| float rotate_angle; |
| } FisheyeInfo; |
| |
| __inline float2 calculate_fisheye_pos (float2 gps_pos, const FisheyeInfo *info) |
| { |
| float z = cos (gps_pos.y); |
| float x = sin (gps_pos.y) * cos (gps_pos.x); |
| float y = sin (gps_pos.y) * sin (gps_pos.x); |
| float r_angle = acos (y); |
| float r = r_angle * (info->radius * 2.0f) / info->wide_angle; |
| float xz_size = sqrt(x * x + z * z); |
| |
| float2 dst; |
| dst.x = -r * x / xz_size; |
| dst.y = -r * z / xz_size; |
| |
| float2 ret; |
| ret.x = cos(info->rotate_angle) * dst.x - sin(info->rotate_angle) * dst.y; |
| ret.y = sin(info->rotate_angle) * dst.x + cos (info->rotate_angle) * dst.y; |
| |
| return ret + (float2)(info->center_x, info->center_y); |
| } |
| |
| __kernel void |
| kernel_fisheye_table ( |
| const FisheyeInfo info, const float2 fisheye_image_size, |
| __write_only image2d_t table, const float2 radian_per_pixel, const float2 table_center) |
| { |
| int2 out_pos = (int2)(get_global_id (0), get_global_id (1)); |
| float2 gps_pos = (convert_float2 (out_pos) - table_center) * radian_per_pixel + PI / 2.0f; |
| float2 pos = calculate_fisheye_pos (gps_pos, &info); |
| float2 min_pos = (float2)(info.center_x - info.radius, info.center_y - info.radius); |
| float2 max_pos = (float2)(info.center_x + info.radius, info.center_y + info.radius); |
| pos = clamp (pos, min_pos, max_pos); |
| pos /= fisheye_image_size; |
| write_imagef (table, out_pos, (float4)(pos, 0.0f, 0.0f)); |
| } |
| |
| __kernel void |
| kernel_lsc_table ( |
| __read_only image2d_t geo_table, __write_only image2d_t lsc_table, |
| __global float *lsc_array, int array_size, const FisheyeInfo info, const float2 fisheye_image_size) |
| { |
| sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST; |
| int2 pos = (int2) (get_global_id (0), get_global_id (1)); |
| |
| float2 geo_data = read_imagef (geo_table, sampler, pos).xy * fisheye_image_size; |
| float2 dist = geo_data - (float2)(info.center_x, info.center_y); |
| float r = sqrt (dist.x * dist.x + dist.y * dist.y); |
| r /= (1.0f * info.radius / array_size); |
| |
| int min_idx = r; |
| int max_idx = r + 1.0f; |
| float lsc_data = max_idx > (array_size - 1) ? lsc_array[array_size - 1] : |
| (r - min_idx) * (lsc_array[max_idx] - lsc_array[min_idx]) + lsc_array[min_idx]; |
| |
| write_imagef (lsc_table, pos, (float4)(lsc_data, 0.0f, 0.0f, 1.0f)); |
| } |
| |
| __kernel void |
| kernel_fisheye_2_gps ( |
| __read_only image2d_t input_y, __read_only image2d_t input_uv, |
| const float2 input_y_size, const FisheyeInfo info, |
| __write_only image2d_t output_y, __write_only image2d_t output_uv, |
| const float2 dst_center, const float2 radian_per_pixel) |
| { |
| const int g_x = get_global_id (0); |
| const int g_y_uv = get_global_id (1); |
| const int g_y = get_global_id (1) * 2; |
| float2 src_pos[4]; |
| float4 src_data; |
| float *src_ptr = (float*)(&src_data); |
| sampler_t sampler = CLK_NORMALIZED_COORDS_TRUE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_LINEAR; |
| |
| float2 gps_start_pos = |
| (convert_float2((int2)(g_x * PIXEL_PER_WI, g_y)) - dst_center) * radian_per_pixel + PI / 2.0f; |
| float2 gps_pos = gps_start_pos; |
| |
| #pragma unroll |
| for (int i = 0; i < PIXEL_PER_WI; ++i) { |
| float2 pos = calculate_fisheye_pos (gps_pos, &info); |
| src_pos[i] = pos / input_y_size; |
| src_ptr[i] = read_imagef (input_y, sampler, src_pos[i]).x; |
| gps_pos.x += radian_per_pixel.x; |
| } |
| write_imageui (output_y, (int2)(g_x, g_y), convert_uint4(convert_uchar4(src_data * 255.0f))); |
| |
| src_data.s01 = read_imagef (input_uv, sampler, src_pos[0]).xy; |
| src_data.s23 = read_imagef (input_uv, sampler, src_pos[2]).xy; |
| write_imageui (output_uv, (int2)(g_x, g_y_uv), convert_uint4(convert_uchar4(src_data * 255.0f))); |
| |
| gps_pos = gps_start_pos; |
| gps_pos.y += radian_per_pixel.y; |
| #pragma unroll |
| for (int i = 0; i < PIXEL_PER_WI; ++i) { |
| float2 pos = calculate_fisheye_pos (gps_pos, &info); |
| pos /= input_y_size; |
| src_ptr[i] = read_imagef (input_y, sampler, pos).x; |
| gps_pos.x += radian_per_pixel.x; |
| } |
| write_imageui (output_y, (int2)(g_x, g_y + 1), convert_uint4(convert_uchar4(src_data * 255.0f))); |
| |
| } |