blob: 02dd273068113968ffab4de4f5822475fda77045 [file] [log] [blame]
/*
* cl_wavelet_denoise_handler.cpp - CL wavelet denoise handler
*
* Copyright (c) 2015 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Wei Zong <[email protected]>
*/
#include "cl_utils.h"
#include "x3a_stats_pool.h"
#include "cl_context.h"
#include "cl_device.h"
#include "cl_wavelet_denoise_handler.h"
#define WAVELET_DECOMPOSITION_LEVELS 4
namespace XCam {
static const XCamKernelInfo kernel_wavelet_denoise_info = {
"kernel_wavelet_denoise",
#include "kernel_wavelet_denoise.clx"
, 0,
};
CLWaveletDenoiseImageKernel::CLWaveletDenoiseImageKernel (
const SmartPtr<CLContext> &context,
const char *name,
SmartPtr<CLWaveletDenoiseImageHandler> &handler,
uint32_t channel,
uint32_t layer)
: CLImageKernel (context, name)
, _channel (channel)
, _current_layer (layer)
, _handler (handler)
{
}
XCamReturn
CLWaveletDenoiseImageKernel::prepare_arguments (
CLArgList &args, CLWorkSize &work_size)
{
SmartPtr<CLContext> context = get_context ();
SmartPtr<VideoBuffer> input = _handler->get_input_buf ();
SmartPtr<VideoBuffer> output = _handler->get_output_buf ();
const VideoBufferInfo &video_info_in = input->get_video_info ();
const VideoBufferInfo &video_info_out = output->get_video_info ();
SmartPtr<CLMemory> input_image = convert_to_clbuffer (context, input);
SmartPtr<CLMemory> reconstruct_image = convert_to_clbuffer (context, output);
SmartPtr<CLMemory> details_image = _handler->get_details_image ();
SmartPtr<CLMemory> approx_image = _handler->get_approx_image ();
uint32_t decomposition_levels = WAVELET_DECOMPOSITION_LEVELS;
float soft_threshold = _handler->get_denoise_config ().threshold[0];
float hard_threshold = _handler->get_denoise_config ().threshold[1];
uint32_t input_y_offset = video_info_in.offsets[0] / 4;
uint32_t output_y_offset = video_info_out.offsets[0] / 4;
uint32_t input_uv_offset = video_info_in.aligned_height;
uint32_t output_uv_offset = video_info_out.aligned_height;
XCAM_FAIL_RETURN (
WARNING,
input_image->is_valid () && reconstruct_image->is_valid (),
XCAM_RETURN_ERROR_MEM,
"cl image kernel(%s) in/out memory not available", XCAM_STR(get_kernel_name ()));
//set args;
work_size.dim = XCAM_DEFAULT_IMAGE_DIM;
work_size.local[0] = 8;
work_size.local[1] = 4;
if (_current_layer % 2) {
args.push_back (new CLMemArgument (input_image));
args.push_back (new CLMemArgument (approx_image));
} else {
args.push_back (new CLMemArgument (approx_image));
args.push_back (new CLMemArgument (input_image));
}
args.push_back (new CLMemArgument (details_image));
args.push_back (new CLMemArgument (reconstruct_image));
args.push_back (new CLArgumentT<uint32_t> (input_y_offset));
args.push_back (new CLArgumentT<uint32_t> (output_y_offset));
args.push_back (new CLArgumentT<uint32_t> (input_uv_offset));
args.push_back (new CLArgumentT<uint32_t> (output_uv_offset));
args.push_back (new CLArgumentT<uint32_t> (_current_layer));
args.push_back (new CLArgumentT<uint32_t> (decomposition_levels));
args.push_back (new CLArgumentT<float> (hard_threshold));
args.push_back (new CLArgumentT<float> (soft_threshold));
if (_channel & CL_IMAGE_CHANNEL_UV) {
work_size.global[0] = video_info_in.width / 16;
work_size.global[1] = video_info_in.height / 2;
} else {
work_size.global[0] = video_info_in.width / 16;
work_size.global[1] = video_info_in.height;
}
return XCAM_RETURN_NO_ERROR;
}
CLWaveletDenoiseImageHandler::CLWaveletDenoiseImageHandler (
const SmartPtr<CLContext> &context, const char *name)
: CLImageHandler (context, name)
{
_config.decomposition_levels = 5;
_config.threshold[0] = 0.5;
_config.threshold[1] = 5.0;
}
XCamReturn
CLWaveletDenoiseImageHandler::prepare_output_buf (SmartPtr<VideoBuffer> &input, SmartPtr<VideoBuffer> &output)
{
XCamReturn ret = XCAM_RETURN_NO_ERROR;
CLImageHandler::prepare_output_buf(input, output);
if (!_approx_image.ptr ()) {
const VideoBufferInfo & video_info = input->get_video_info ();
uint32_t buffer_size = video_info.width * video_info.aligned_height;
_approx_image = new CLBuffer (get_context (), buffer_size,
CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, NULL);
}
if (!_details_image.ptr ()) {
const VideoBufferInfo & video_info = input->get_video_info ();
uint32_t buffer_size = sizeof(float) * video_info.width * video_info.height;
_details_image = new CLBuffer (get_context (), buffer_size,
CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, NULL);
}
return ret;
}
bool
CLWaveletDenoiseImageHandler::set_denoise_config (const XCam3aResultWaveletNoiseReduction& config)
{
_config = config;
return true;
}
SmartPtr<CLImageHandler>
create_cl_wavelet_denoise_image_handler (const SmartPtr<CLContext> &context, uint32_t channel)
{
SmartPtr<CLWaveletDenoiseImageHandler> wavelet_handler;
SmartPtr<CLWaveletDenoiseImageKernel> wavelet_kernel;
wavelet_handler = new CLWaveletDenoiseImageHandler (context, "cl_handler_wavelet_denoise");
XCAM_ASSERT (wavelet_handler.ptr ());
for (int layer = 1; layer <= WAVELET_DECOMPOSITION_LEVELS; layer++) {
wavelet_kernel = new CLWaveletDenoiseImageKernel (
context, "kernel_wavelet_denoise", wavelet_handler, channel, layer);
const char *build_options =
(channel & CL_IMAGE_CHANNEL_UV) ? "-DWAVELET_DENOISE_UV=1" : "-DWAVELET_DENOISE_UV=0";
XCAM_ASSERT (wavelet_kernel.ptr ());
XCAM_FAIL_RETURN (
ERROR, wavelet_kernel->build_kernel (kernel_wavelet_denoise_info, build_options) == XCAM_RETURN_NO_ERROR, NULL,
"build wavelet denoise kernel(%s) failed", kernel_wavelet_denoise_info.kernel_name);
XCAM_ASSERT (wavelet_kernel->is_valid ());
wavelet_handler->add_kernel (wavelet_kernel);
}
return wavelet_handler;
}
};