| //===-- Nearest integer floating-point operations ---------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_LIBC_SRC___SUPPORT_FPUTIL_NEARESTINTEGEROPERATIONS_H |
| #define LLVM_LIBC_SRC___SUPPORT_FPUTIL_NEARESTINTEGEROPERATIONS_H |
| |
| #include "FEnvImpl.h" |
| #include "FPBits.h" |
| #include "rounding_mode.h" |
| |
| #include "hdr/math_macros.h" |
| #include "src/__support/CPP/type_traits.h" |
| #include "src/__support/common.h" |
| |
| namespace LIBC_NAMESPACE { |
| namespace fputil { |
| |
| template <typename T, cpp::enable_if_t<cpp::is_floating_point_v<T>, int> = 0> |
| LIBC_INLINE T trunc(T x) { |
| FPBits<T> bits(x); |
| |
| // If x is infinity or NaN, return it. |
| // If it is zero also we should return it as is, but the logic |
| // later in this function takes care of it. But not doing a zero |
| // check, we improve the run time of non-zero values. |
| if (bits.is_inf_or_nan()) |
| return x; |
| |
| int exponent = bits.get_exponent(); |
| |
| // If the exponent is greater than the most negative mantissa |
| // exponent, then x is already an integer. |
| if (exponent >= static_cast<int>(FPBits<T>::FRACTION_LEN)) |
| return x; |
| |
| // If the exponent is such that abs(x) is less than 1, then return 0. |
| if (exponent <= -1) |
| return FPBits<T>::zero(bits.sign()).get_val(); |
| |
| int trim_size = FPBits<T>::FRACTION_LEN - exponent; |
| bits.set_mantissa((bits.get_mantissa() >> trim_size) << trim_size); |
| return bits.get_val(); |
| } |
| |
| template <typename T, cpp::enable_if_t<cpp::is_floating_point_v<T>, int> = 0> |
| LIBC_INLINE T ceil(T x) { |
| FPBits<T> bits(x); |
| |
| // If x is infinity NaN or zero, return it. |
| if (bits.is_inf_or_nan() || bits.is_zero()) |
| return x; |
| |
| bool is_neg = bits.is_neg(); |
| int exponent = bits.get_exponent(); |
| |
| // If the exponent is greater than the most negative mantissa |
| // exponent, then x is already an integer. |
| if (exponent >= static_cast<int>(FPBits<T>::FRACTION_LEN)) |
| return x; |
| |
| if (exponent <= -1) { |
| if (is_neg) |
| return T(-0.0); |
| else |
| return T(1.0); |
| } |
| |
| uint32_t trim_size = FPBits<T>::FRACTION_LEN - exponent; |
| bits.set_mantissa((bits.get_mantissa() >> trim_size) << trim_size); |
| T trunc_value = bits.get_val(); |
| |
| // If x is already an integer, return it. |
| if (trunc_value == x) |
| return x; |
| |
| // If x is negative, the ceil operation is equivalent to the trunc operation. |
| if (is_neg) |
| return trunc_value; |
| |
| return trunc_value + T(1.0); |
| } |
| |
| template <typename T, cpp::enable_if_t<cpp::is_floating_point_v<T>, int> = 0> |
| LIBC_INLINE T floor(T x) { |
| FPBits<T> bits(x); |
| if (bits.is_neg()) { |
| return -ceil(-x); |
| } else { |
| return trunc(x); |
| } |
| } |
| |
| template <typename T, cpp::enable_if_t<cpp::is_floating_point_v<T>, int> = 0> |
| LIBC_INLINE T round(T x) { |
| using StorageType = typename FPBits<T>::StorageType; |
| FPBits<T> bits(x); |
| |
| // If x is infinity NaN or zero, return it. |
| if (bits.is_inf_or_nan() || bits.is_zero()) |
| return x; |
| |
| int exponent = bits.get_exponent(); |
| |
| // If the exponent is greater than the most negative mantissa |
| // exponent, then x is already an integer. |
| if (exponent >= static_cast<int>(FPBits<T>::FRACTION_LEN)) |
| return x; |
| |
| if (exponent == -1) { |
| // Absolute value of x is greater than equal to 0.5 but less than 1. |
| return FPBits<T>::one(bits.sign()).get_val(); |
| } |
| |
| if (exponent <= -2) { |
| // Absolute value of x is less than 0.5. |
| return FPBits<T>::zero(bits.sign()).get_val(); |
| } |
| |
| uint32_t trim_size = FPBits<T>::FRACTION_LEN - exponent; |
| bool half_bit_set = |
| bool(bits.get_mantissa() & (StorageType(1) << (trim_size - 1))); |
| bits.set_mantissa((bits.get_mantissa() >> trim_size) << trim_size); |
| T trunc_value = bits.get_val(); |
| |
| // If x is already an integer, return it. |
| if (trunc_value == x) |
| return x; |
| |
| if (!half_bit_set) { |
| // Franctional part is less than 0.5 so round value is the |
| // same as the trunc value. |
| return trunc_value; |
| } else { |
| return bits.is_neg() ? trunc_value - T(1.0) : trunc_value + T(1.0); |
| } |
| } |
| |
| template <typename T> |
| LIBC_INLINE constexpr cpp::enable_if_t<cpp::is_floating_point_v<T>, T> |
| round_using_specific_rounding_mode(T x, int rnd) { |
| using StorageType = typename FPBits<T>::StorageType; |
| FPBits<T> bits(x); |
| |
| // If x is infinity NaN or zero, return it. |
| if (bits.is_inf_or_nan() || bits.is_zero()) |
| return x; |
| |
| bool is_neg = bits.is_neg(); |
| int exponent = bits.get_exponent(); |
| |
| // If the exponent is greater than the most negative mantissa |
| // exponent, then x is already an integer. |
| if (exponent >= static_cast<int>(FPBits<T>::FRACTION_LEN)) |
| return x; |
| |
| if (exponent <= -1) { |
| switch (rnd) { |
| case FP_INT_DOWNWARD: |
| return is_neg ? T(-1.0) : T(0.0); |
| case FP_INT_UPWARD: |
| return is_neg ? T(-0.0) : T(1.0); |
| case FP_INT_TOWARDZERO: |
| return is_neg ? T(-0.0) : T(0.0); |
| case FP_INT_TONEARESTFROMZERO: |
| if (exponent < -1) |
| return is_neg ? T(-0.0) : T(0.0); // abs(x) < 0.5 |
| return is_neg ? T(-1.0) : T(1.0); // abs(x) >= 0.5 |
| case FP_INT_TONEAREST: |
| default: |
| if (exponent <= -2 || bits.get_mantissa() == 0) |
| return is_neg ? T(-0.0) : T(0.0); // abs(x) <= 0.5 |
| else |
| return is_neg ? T(-1.0) : T(1.0); // abs(x) > 0.5 |
| } |
| } |
| |
| uint32_t trim_size = FPBits<T>::FRACTION_LEN - exponent; |
| FPBits<T> new_bits = bits; |
| new_bits.set_mantissa((bits.get_mantissa() >> trim_size) << trim_size); |
| T trunc_value = new_bits.get_val(); |
| |
| // If x is already an integer, return it. |
| if (trunc_value == x) |
| return x; |
| |
| StorageType trim_value = |
| bits.get_mantissa() & ((StorageType(1) << trim_size) - 1); |
| StorageType half_value = (StorageType(1) << (trim_size - 1)); |
| // If exponent is 0, trimSize will be equal to the mantissa width, and |
| // truncIsOdd` will not be correct. So, we handle it as a special case |
| // below. |
| StorageType trunc_is_odd = |
| new_bits.get_mantissa() & (StorageType(1) << trim_size); |
| |
| switch (rnd) { |
| case FP_INT_DOWNWARD: |
| return is_neg ? trunc_value - T(1.0) : trunc_value; |
| case FP_INT_UPWARD: |
| return is_neg ? trunc_value : trunc_value + T(1.0); |
| case FP_INT_TOWARDZERO: |
| return trunc_value; |
| case FP_INT_TONEARESTFROMZERO: |
| if (trim_value >= half_value) |
| return is_neg ? trunc_value - T(1.0) : trunc_value + T(1.0); |
| return trunc_value; |
| case FP_INT_TONEAREST: |
| default: |
| if (trim_value > half_value) { |
| return is_neg ? trunc_value - T(1.0) : trunc_value + T(1.0); |
| } else if (trim_value == half_value) { |
| if (exponent == 0) |
| return is_neg ? T(-2.0) : T(2.0); |
| if (trunc_is_odd) |
| return is_neg ? trunc_value - T(1.0) : trunc_value + T(1.0); |
| else |
| return trunc_value; |
| } else { |
| return trunc_value; |
| } |
| } |
| } |
| |
| template <typename T> |
| LIBC_INLINE cpp::enable_if_t<cpp::is_floating_point_v<T>, T> |
| round_using_current_rounding_mode(T x) { |
| int rounding_mode = quick_get_round(); |
| |
| switch (rounding_mode) { |
| case FE_DOWNWARD: |
| return round_using_specific_rounding_mode(x, FP_INT_DOWNWARD); |
| case FE_UPWARD: |
| return round_using_specific_rounding_mode(x, FP_INT_UPWARD); |
| case FE_TOWARDZERO: |
| return round_using_specific_rounding_mode(x, FP_INT_TOWARDZERO); |
| case FE_TONEAREST: |
| return round_using_specific_rounding_mode(x, FP_INT_TONEAREST); |
| default: |
| __builtin_unreachable(); |
| } |
| } |
| |
| template <bool IsSigned, typename T> |
| LIBC_INLINE constexpr cpp::enable_if_t<cpp::is_floating_point_v<T>, T> |
| fromfp(T x, int rnd, unsigned int width) { |
| using StorageType = typename FPBits<T>::StorageType; |
| |
| constexpr StorageType EXPLICIT_BIT = |
| FPBits<T>::SIG_MASK - FPBits<T>::FRACTION_MASK; |
| |
| if (width == 0U) { |
| raise_except_if_required(FE_INVALID); |
| return FPBits<T>::quiet_nan().get_val(); |
| } |
| |
| FPBits<T> bits(x); |
| |
| if (bits.is_inf_or_nan()) { |
| raise_except_if_required(FE_INVALID); |
| return FPBits<T>::quiet_nan().get_val(); |
| } |
| |
| T rounded_value = round_using_specific_rounding_mode(x, rnd); |
| |
| if constexpr (IsSigned) { |
| // T can't hold a finite number >= 2.0 * 2^EXP_BIAS. |
| if (width - 1 > FPBits<T>::EXP_BIAS) |
| return rounded_value; |
| |
| StorageType range_exp = width - 1U + FPBits<T>::EXP_BIAS; |
| // rounded_value < -2^(width - 1) |
| T range_min = |
| FPBits<T>::create_value(Sign::NEG, range_exp, EXPLICIT_BIT).get_val(); |
| if (rounded_value < range_min) { |
| raise_except_if_required(FE_INVALID); |
| return FPBits<T>::quiet_nan().get_val(); |
| } |
| // rounded_value > 2^(width - 1) - 1 |
| T range_max = |
| FPBits<T>::create_value(Sign::POS, range_exp, EXPLICIT_BIT).get_val() - |
| T(1.0); |
| if (rounded_value > range_max) { |
| raise_except_if_required(FE_INVALID); |
| return FPBits<T>::quiet_nan().get_val(); |
| } |
| |
| return rounded_value; |
| } |
| |
| if (rounded_value < T(0.0)) { |
| raise_except_if_required(FE_INVALID); |
| return FPBits<T>::quiet_nan().get_val(); |
| } |
| |
| // T can't hold a finite number >= 2.0 * 2^EXP_BIAS. |
| if (width > FPBits<T>::EXP_BIAS) |
| return rounded_value; |
| |
| StorageType range_exp = width + FPBits<T>::EXP_BIAS; |
| // rounded_value > 2^width - 1 |
| T range_max = |
| FPBits<T>::create_value(Sign::POS, range_exp, EXPLICIT_BIT).get_val() - |
| T(1.0); |
| if (rounded_value > range_max) { |
| raise_except_if_required(FE_INVALID); |
| return FPBits<T>::quiet_nan().get_val(); |
| } |
| |
| return rounded_value; |
| } |
| |
| template <bool IsSigned, typename T> |
| LIBC_INLINE constexpr cpp::enable_if_t<cpp::is_floating_point_v<T>, T> |
| fromfpx(T x, int rnd, unsigned int width) { |
| T rounded_value = fromfp<IsSigned>(x, rnd, width); |
| FPBits<T> bits(rounded_value); |
| |
| if (!bits.is_nan() && rounded_value != x) |
| raise_except_if_required(FE_INEXACT); |
| |
| return rounded_value; |
| } |
| |
| namespace internal { |
| |
| template <typename F, typename I, |
| cpp::enable_if_t<cpp::is_floating_point_v<F> && cpp::is_integral_v<I>, |
| int> = 0> |
| LIBC_INLINE I rounded_float_to_signed_integer(F x) { |
| constexpr I INTEGER_MIN = (I(1) << (sizeof(I) * 8 - 1)); |
| constexpr I INTEGER_MAX = -(INTEGER_MIN + 1); |
| FPBits<F> bits(x); |
| auto set_domain_error_and_raise_invalid = []() { |
| set_errno_if_required(EDOM); |
| raise_except_if_required(FE_INVALID); |
| }; |
| |
| if (bits.is_inf_or_nan()) { |
| set_domain_error_and_raise_invalid(); |
| return bits.is_neg() ? INTEGER_MIN : INTEGER_MAX; |
| } |
| |
| int exponent = bits.get_exponent(); |
| constexpr int EXPONENT_LIMIT = sizeof(I) * 8 - 1; |
| if (exponent > EXPONENT_LIMIT) { |
| set_domain_error_and_raise_invalid(); |
| return bits.is_neg() ? INTEGER_MIN : INTEGER_MAX; |
| } else if (exponent == EXPONENT_LIMIT) { |
| if (bits.is_pos() || bits.get_mantissa() != 0) { |
| set_domain_error_and_raise_invalid(); |
| return bits.is_neg() ? INTEGER_MIN : INTEGER_MAX; |
| } |
| // If the control reaches here, then it means that the rounded |
| // value is the most negative number for the signed integer type I. |
| } |
| |
| // For all other cases, if `x` can fit in the integer type `I`, |
| // we just return `x`. static_cast will convert the floating |
| // point value to the exact integer value. |
| return static_cast<I>(x); |
| } |
| |
| } // namespace internal |
| |
| template <typename F, typename I, |
| cpp::enable_if_t<cpp::is_floating_point_v<F> && cpp::is_integral_v<I>, |
| int> = 0> |
| LIBC_INLINE I round_to_signed_integer(F x) { |
| return internal::rounded_float_to_signed_integer<F, I>(round(x)); |
| } |
| |
| template <typename F, typename I, |
| cpp::enable_if_t<cpp::is_floating_point_v<F> && cpp::is_integral_v<I>, |
| int> = 0> |
| LIBC_INLINE I round_to_signed_integer_using_current_rounding_mode(F x) { |
| return internal::rounded_float_to_signed_integer<F, I>( |
| round_using_current_rounding_mode(x)); |
| } |
| |
| } // namespace fputil |
| } // namespace LIBC_NAMESPACE |
| |
| #endif // LLVM_LIBC_SRC___SUPPORT_FPUTIL_NEARESTINTEGEROPERATIONS_H |