blob: 4645ab0b5350be5ccbaf84581b0d460f607b3a57 [file] [log] [blame]
//===-- Nearest integer floating-point operations ---------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_SRC___SUPPORT_FPUTIL_NEARESTINTEGEROPERATIONS_H
#define LLVM_LIBC_SRC___SUPPORT_FPUTIL_NEARESTINTEGEROPERATIONS_H
#include "FEnvImpl.h"
#include "FPBits.h"
#include "rounding_mode.h"
#include "hdr/math_macros.h"
#include "src/__support/CPP/type_traits.h"
#include "src/__support/common.h"
namespace LIBC_NAMESPACE {
namespace fputil {
template <typename T, cpp::enable_if_t<cpp::is_floating_point_v<T>, int> = 0>
LIBC_INLINE T trunc(T x) {
FPBits<T> bits(x);
// If x is infinity or NaN, return it.
// If it is zero also we should return it as is, but the logic
// later in this function takes care of it. But not doing a zero
// check, we improve the run time of non-zero values.
if (bits.is_inf_or_nan())
return x;
int exponent = bits.get_exponent();
// If the exponent is greater than the most negative mantissa
// exponent, then x is already an integer.
if (exponent >= static_cast<int>(FPBits<T>::FRACTION_LEN))
return x;
// If the exponent is such that abs(x) is less than 1, then return 0.
if (exponent <= -1)
return FPBits<T>::zero(bits.sign()).get_val();
int trim_size = FPBits<T>::FRACTION_LEN - exponent;
bits.set_mantissa((bits.get_mantissa() >> trim_size) << trim_size);
return bits.get_val();
}
template <typename T, cpp::enable_if_t<cpp::is_floating_point_v<T>, int> = 0>
LIBC_INLINE T ceil(T x) {
FPBits<T> bits(x);
// If x is infinity NaN or zero, return it.
if (bits.is_inf_or_nan() || bits.is_zero())
return x;
bool is_neg = bits.is_neg();
int exponent = bits.get_exponent();
// If the exponent is greater than the most negative mantissa
// exponent, then x is already an integer.
if (exponent >= static_cast<int>(FPBits<T>::FRACTION_LEN))
return x;
if (exponent <= -1) {
if (is_neg)
return T(-0.0);
else
return T(1.0);
}
uint32_t trim_size = FPBits<T>::FRACTION_LEN - exponent;
bits.set_mantissa((bits.get_mantissa() >> trim_size) << trim_size);
T trunc_value = bits.get_val();
// If x is already an integer, return it.
if (trunc_value == x)
return x;
// If x is negative, the ceil operation is equivalent to the trunc operation.
if (is_neg)
return trunc_value;
return trunc_value + T(1.0);
}
template <typename T, cpp::enable_if_t<cpp::is_floating_point_v<T>, int> = 0>
LIBC_INLINE T floor(T x) {
FPBits<T> bits(x);
if (bits.is_neg()) {
return -ceil(-x);
} else {
return trunc(x);
}
}
template <typename T, cpp::enable_if_t<cpp::is_floating_point_v<T>, int> = 0>
LIBC_INLINE T round(T x) {
using StorageType = typename FPBits<T>::StorageType;
FPBits<T> bits(x);
// If x is infinity NaN or zero, return it.
if (bits.is_inf_or_nan() || bits.is_zero())
return x;
int exponent = bits.get_exponent();
// If the exponent is greater than the most negative mantissa
// exponent, then x is already an integer.
if (exponent >= static_cast<int>(FPBits<T>::FRACTION_LEN))
return x;
if (exponent == -1) {
// Absolute value of x is greater than equal to 0.5 but less than 1.
return FPBits<T>::one(bits.sign()).get_val();
}
if (exponent <= -2) {
// Absolute value of x is less than 0.5.
return FPBits<T>::zero(bits.sign()).get_val();
}
uint32_t trim_size = FPBits<T>::FRACTION_LEN - exponent;
bool half_bit_set =
bool(bits.get_mantissa() & (StorageType(1) << (trim_size - 1)));
bits.set_mantissa((bits.get_mantissa() >> trim_size) << trim_size);
T trunc_value = bits.get_val();
// If x is already an integer, return it.
if (trunc_value == x)
return x;
if (!half_bit_set) {
// Franctional part is less than 0.5 so round value is the
// same as the trunc value.
return trunc_value;
} else {
return bits.is_neg() ? trunc_value - T(1.0) : trunc_value + T(1.0);
}
}
template <typename T>
LIBC_INLINE constexpr cpp::enable_if_t<cpp::is_floating_point_v<T>, T>
round_using_specific_rounding_mode(T x, int rnd) {
using StorageType = typename FPBits<T>::StorageType;
FPBits<T> bits(x);
// If x is infinity NaN or zero, return it.
if (bits.is_inf_or_nan() || bits.is_zero())
return x;
bool is_neg = bits.is_neg();
int exponent = bits.get_exponent();
// If the exponent is greater than the most negative mantissa
// exponent, then x is already an integer.
if (exponent >= static_cast<int>(FPBits<T>::FRACTION_LEN))
return x;
if (exponent <= -1) {
switch (rnd) {
case FP_INT_DOWNWARD:
return is_neg ? T(-1.0) : T(0.0);
case FP_INT_UPWARD:
return is_neg ? T(-0.0) : T(1.0);
case FP_INT_TOWARDZERO:
return is_neg ? T(-0.0) : T(0.0);
case FP_INT_TONEARESTFROMZERO:
if (exponent < -1)
return is_neg ? T(-0.0) : T(0.0); // abs(x) < 0.5
return is_neg ? T(-1.0) : T(1.0); // abs(x) >= 0.5
case FP_INT_TONEAREST:
default:
if (exponent <= -2 || bits.get_mantissa() == 0)
return is_neg ? T(-0.0) : T(0.0); // abs(x) <= 0.5
else
return is_neg ? T(-1.0) : T(1.0); // abs(x) > 0.5
}
}
uint32_t trim_size = FPBits<T>::FRACTION_LEN - exponent;
FPBits<T> new_bits = bits;
new_bits.set_mantissa((bits.get_mantissa() >> trim_size) << trim_size);
T trunc_value = new_bits.get_val();
// If x is already an integer, return it.
if (trunc_value == x)
return x;
StorageType trim_value =
bits.get_mantissa() & ((StorageType(1) << trim_size) - 1);
StorageType half_value = (StorageType(1) << (trim_size - 1));
// If exponent is 0, trimSize will be equal to the mantissa width, and
// truncIsOdd` will not be correct. So, we handle it as a special case
// below.
StorageType trunc_is_odd =
new_bits.get_mantissa() & (StorageType(1) << trim_size);
switch (rnd) {
case FP_INT_DOWNWARD:
return is_neg ? trunc_value - T(1.0) : trunc_value;
case FP_INT_UPWARD:
return is_neg ? trunc_value : trunc_value + T(1.0);
case FP_INT_TOWARDZERO:
return trunc_value;
case FP_INT_TONEARESTFROMZERO:
if (trim_value >= half_value)
return is_neg ? trunc_value - T(1.0) : trunc_value + T(1.0);
return trunc_value;
case FP_INT_TONEAREST:
default:
if (trim_value > half_value) {
return is_neg ? trunc_value - T(1.0) : trunc_value + T(1.0);
} else if (trim_value == half_value) {
if (exponent == 0)
return is_neg ? T(-2.0) : T(2.0);
if (trunc_is_odd)
return is_neg ? trunc_value - T(1.0) : trunc_value + T(1.0);
else
return trunc_value;
} else {
return trunc_value;
}
}
}
template <typename T>
LIBC_INLINE cpp::enable_if_t<cpp::is_floating_point_v<T>, T>
round_using_current_rounding_mode(T x) {
int rounding_mode = quick_get_round();
switch (rounding_mode) {
case FE_DOWNWARD:
return round_using_specific_rounding_mode(x, FP_INT_DOWNWARD);
case FE_UPWARD:
return round_using_specific_rounding_mode(x, FP_INT_UPWARD);
case FE_TOWARDZERO:
return round_using_specific_rounding_mode(x, FP_INT_TOWARDZERO);
case FE_TONEAREST:
return round_using_specific_rounding_mode(x, FP_INT_TONEAREST);
default:
__builtin_unreachable();
}
}
template <bool IsSigned, typename T>
LIBC_INLINE constexpr cpp::enable_if_t<cpp::is_floating_point_v<T>, T>
fromfp(T x, int rnd, unsigned int width) {
using StorageType = typename FPBits<T>::StorageType;
constexpr StorageType EXPLICIT_BIT =
FPBits<T>::SIG_MASK - FPBits<T>::FRACTION_MASK;
if (width == 0U) {
raise_except_if_required(FE_INVALID);
return FPBits<T>::quiet_nan().get_val();
}
FPBits<T> bits(x);
if (bits.is_inf_or_nan()) {
raise_except_if_required(FE_INVALID);
return FPBits<T>::quiet_nan().get_val();
}
T rounded_value = round_using_specific_rounding_mode(x, rnd);
if constexpr (IsSigned) {
// T can't hold a finite number >= 2.0 * 2^EXP_BIAS.
if (width - 1 > FPBits<T>::EXP_BIAS)
return rounded_value;
StorageType range_exp = width - 1U + FPBits<T>::EXP_BIAS;
// rounded_value < -2^(width - 1)
T range_min =
FPBits<T>::create_value(Sign::NEG, range_exp, EXPLICIT_BIT).get_val();
if (rounded_value < range_min) {
raise_except_if_required(FE_INVALID);
return FPBits<T>::quiet_nan().get_val();
}
// rounded_value > 2^(width - 1) - 1
T range_max =
FPBits<T>::create_value(Sign::POS, range_exp, EXPLICIT_BIT).get_val() -
T(1.0);
if (rounded_value > range_max) {
raise_except_if_required(FE_INVALID);
return FPBits<T>::quiet_nan().get_val();
}
return rounded_value;
}
if (rounded_value < T(0.0)) {
raise_except_if_required(FE_INVALID);
return FPBits<T>::quiet_nan().get_val();
}
// T can't hold a finite number >= 2.0 * 2^EXP_BIAS.
if (width > FPBits<T>::EXP_BIAS)
return rounded_value;
StorageType range_exp = width + FPBits<T>::EXP_BIAS;
// rounded_value > 2^width - 1
T range_max =
FPBits<T>::create_value(Sign::POS, range_exp, EXPLICIT_BIT).get_val() -
T(1.0);
if (rounded_value > range_max) {
raise_except_if_required(FE_INVALID);
return FPBits<T>::quiet_nan().get_val();
}
return rounded_value;
}
template <bool IsSigned, typename T>
LIBC_INLINE constexpr cpp::enable_if_t<cpp::is_floating_point_v<T>, T>
fromfpx(T x, int rnd, unsigned int width) {
T rounded_value = fromfp<IsSigned>(x, rnd, width);
FPBits<T> bits(rounded_value);
if (!bits.is_nan() && rounded_value != x)
raise_except_if_required(FE_INEXACT);
return rounded_value;
}
namespace internal {
template <typename F, typename I,
cpp::enable_if_t<cpp::is_floating_point_v<F> && cpp::is_integral_v<I>,
int> = 0>
LIBC_INLINE I rounded_float_to_signed_integer(F x) {
constexpr I INTEGER_MIN = (I(1) << (sizeof(I) * 8 - 1));
constexpr I INTEGER_MAX = -(INTEGER_MIN + 1);
FPBits<F> bits(x);
auto set_domain_error_and_raise_invalid = []() {
set_errno_if_required(EDOM);
raise_except_if_required(FE_INVALID);
};
if (bits.is_inf_or_nan()) {
set_domain_error_and_raise_invalid();
return bits.is_neg() ? INTEGER_MIN : INTEGER_MAX;
}
int exponent = bits.get_exponent();
constexpr int EXPONENT_LIMIT = sizeof(I) * 8 - 1;
if (exponent > EXPONENT_LIMIT) {
set_domain_error_and_raise_invalid();
return bits.is_neg() ? INTEGER_MIN : INTEGER_MAX;
} else if (exponent == EXPONENT_LIMIT) {
if (bits.is_pos() || bits.get_mantissa() != 0) {
set_domain_error_and_raise_invalid();
return bits.is_neg() ? INTEGER_MIN : INTEGER_MAX;
}
// If the control reaches here, then it means that the rounded
// value is the most negative number for the signed integer type I.
}
// For all other cases, if `x` can fit in the integer type `I`,
// we just return `x`. static_cast will convert the floating
// point value to the exact integer value.
return static_cast<I>(x);
}
} // namespace internal
template <typename F, typename I,
cpp::enable_if_t<cpp::is_floating_point_v<F> && cpp::is_integral_v<I>,
int> = 0>
LIBC_INLINE I round_to_signed_integer(F x) {
return internal::rounded_float_to_signed_integer<F, I>(round(x));
}
template <typename F, typename I,
cpp::enable_if_t<cpp::is_floating_point_v<F> && cpp::is_integral_v<I>,
int> = 0>
LIBC_INLINE I round_to_signed_integer_using_current_rounding_mode(F x) {
return internal::rounded_float_to_signed_integer<F, I>(
round_using_current_rounding_mode(x));
}
} // namespace fputil
} // namespace LIBC_NAMESPACE
#endif // LLVM_LIBC_SRC___SUPPORT_FPUTIL_NEARESTINTEGEROPERATIONS_H