| //===-- Common header for fmod implementations ------------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_LIBC_SRC___SUPPORT_FPUTIL_GENERIC_FMOD_H |
| #define LLVM_LIBC_SRC___SUPPORT_FPUTIL_GENERIC_FMOD_H |
| |
| #include "src/__support/CPP/bit.h" |
| #include "src/__support/CPP/limits.h" |
| #include "src/__support/CPP/type_traits.h" |
| #include "src/__support/FPUtil/FEnvImpl.h" |
| #include "src/__support/FPUtil/FPBits.h" |
| #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY |
| |
| namespace LIBC_NAMESPACE { |
| namespace fputil { |
| namespace generic { |
| |
| // Objective: |
| // The algorithm uses integer arithmetic (max uint64_t) for general case. |
| // Some common cases, like abs(x) < abs(y) or abs(x) < 1000 * abs(y) are |
| // treated specially to increase performance. The part of checking special |
| // cases, numbers NaN, INF etc. treated separately. |
| // |
| // Objective: |
| // 1) FMod definition (https://cplusplus.com/reference/cmath/fmod/): |
| // fmod = numer - tquot * denom, where tquot is the truncated |
| // (i.e., rounded towards zero) result of: numer/denom. |
| // 2) FMod with negative x and/or y can be trivially converted to fmod for |
| // positive x and y. Therefore the algorithm below works only with |
| // positive numbers. |
| // 3) All positive floating point numbers can be represented as m * 2^e, |
| // where "m" is positive integer and "e" is signed. |
| // 4) FMod function can be calculated in integer numbers (x > y): |
| // fmod = m_x * 2^e_x - tquot * m_y * 2^e_y |
| // = 2^e_y * (m_x * 2^(e_x - e^y) - tquot * m_y). |
| // All variables in parentheses are unsigned integers. |
| // |
| // Mathematical background: |
| // Input x,y in the algorithm is represented (mathematically) like m_x*2^e_x |
| // and m_y*2^e_y. This is an ambiguous number representation. For example: |
| // m * 2^e = (2 * m) * 2^(e-1) |
| // The algorithm uses the facts that |
| // r = a % b = (a % (N * b)) % b, |
| // (a * c) % (b * c) = (a % b) * c |
| // where N is positive integer number. a, b and c - positive. Let's adopt |
| // the formula for representation above. |
| // a = m_x * 2^e_x, b = m_y * 2^e_y, N = 2^k |
| // r(k) = a % b = (m_x * 2^e_x) % (2^k * m_y * 2^e_y) |
| // = 2^(e_y + k) * (m_x * 2^(e_x - e_y - k) % m_y) |
| // r(k) = m_r * 2^e_r = (m_x % m_y) * 2^(m_y + k) |
| // = (2^p * (m_x % m_y) * 2^(e_y + k - p)) |
| // m_r = 2^p * (m_x % m_y), e_r = m_y + k - p |
| // |
| // Algorithm description: |
| // First, let write x = m_x * 2^e_x and y = m_y * 2^e_y with m_x, m_y, e_x, e_y |
| // are integers (m_x amd m_y positive). |
| // Then the naive implementation of the fmod function with a simple |
| // for/while loop: |
| // while (e_x > e_y) { |
| // m_x *= 2; --e_x; // m_x * 2^e_x == 2 * m_x * 2^(e_x - 1) |
| // m_x %= m_y; |
| // } |
| // On the other hand, the algorithm exploits the fact that m_x, m_y are the |
| // mantissas of floating point numbers, which use less bits than the storage |
| // integers: 24 / 32 for floats and 53 / 64 for doubles, so if in each step of |
| // the iteration, we can left shift m_x as many bits as the storage integer |
| // type can hold, the exponent reduction per step will be at least 32 - 24 = 8 |
| // for floats and 64 - 53 = 11 for doubles (double example below): |
| // while (e_x > e_y) { |
| // m_x <<= 11; e_x -= 11; // m_x * 2^e_x == 2^11 * m_x * 2^(e_x - 11) |
| // m_x %= m_y; |
| // } |
| // Some extra improvements are done: |
| // 1) Shift m_y maximum to the right, which can significantly improve |
| // performance for small integer numbers (y = 3 for example). |
| // The m_x shift in the loop can be 62 instead of 11 for double. |
| // 2) For some architectures with very slow division, it can be better to |
| // calculate inverse value ones, and after do multiplication in the loop. |
| // 3) "likely" special cases are treated specially to improve performance. |
| // |
| // Simple example: |
| // The examples below use byte for simplicity. |
| // 1) Shift hy maximum to right without losing bits and increase iy value |
| // m_y = 0b00101100 e_y = 20 after shift m_y = 0b00001011 e_y = 22. |
| // 2) m_x = m_x % m_y. |
| // 3) Move m_x maximum to left. Note that after (m_x = m_x % m_y) CLZ in m_x |
| // is not lower than CLZ in m_y. m_x=0b00001001 e_x = 100, m_x=0b10010000, |
| // e_x = 100-4 = 96. |
| // 4) Repeat (2) until e_x == e_y. |
| // |
| // Complexity analysis (double): |
| // Converting x,y to (m_x,e_x),(m_y, e_y): CTZ/shift/AND/OR/if. Loop count: |
| // (m_x - m_y) / (64 - "length of m_y"). |
| // max("length of m_y") = 53, |
| // max(e_x - e_y) = 2048 |
| // Maximum operation is 186. For rare "unrealistic" cases. |
| // |
| // Special cases (double): |
| // Supposing that case where |y| > 1e-292 and |x/y|<2000 is very common |
| // special processing is implemented. No m_y alignment, no loop: |
| // result = (m_x * 2^(e_x - e_y)) % m_y. |
| // When x and y are both subnormal (rare case but...) the |
| // result = m_x % m_y. |
| // Simplified conversion back to double. |
| |
| // Exceptional cases handler according to cppreference.com |
| // https://en.cppreference.com/w/cpp/numeric/math/fmod |
| // and POSIX standard described in Linux man |
| // https://man7.org/linux/man-pages/man3/fmod.3p.html |
| // C standard for the function is not full, so not by default (although it can |
| // be implemented in another handler. |
| // Signaling NaN converted to quiet NaN with FE_INVALID exception. |
| // https://www.open-std.org/JTC1/SC22/WG14/www/docs/n1011.htm |
| template <typename T> struct FModDivisionSimpleHelper { |
| LIBC_INLINE constexpr static T execute(int exp_diff, int sides_zeroes_count, |
| T m_x, T m_y) { |
| while (exp_diff > sides_zeroes_count) { |
| exp_diff -= sides_zeroes_count; |
| m_x <<= sides_zeroes_count; |
| m_x %= m_y; |
| } |
| m_x <<= exp_diff; |
| m_x %= m_y; |
| return m_x; |
| } |
| }; |
| |
| template <typename T> struct FModDivisionInvMultHelper { |
| LIBC_INLINE constexpr static T execute(int exp_diff, int sides_zeroes_count, |
| T m_x, T m_y) { |
| constexpr int LENGTH = sizeof(T) * CHAR_BIT; |
| if (exp_diff > sides_zeroes_count) { |
| T inv_hy = (cpp::numeric_limits<T>::max() / m_y); |
| while (exp_diff > sides_zeroes_count) { |
| exp_diff -= sides_zeroes_count; |
| T hd = (m_x * inv_hy) >> (LENGTH - sides_zeroes_count); |
| m_x <<= sides_zeroes_count; |
| m_x -= hd * m_y; |
| while (LIBC_UNLIKELY(m_x > m_y)) |
| m_x -= m_y; |
| } |
| T hd = (m_x * inv_hy) >> (LENGTH - exp_diff); |
| m_x <<= exp_diff; |
| m_x -= hd * m_y; |
| while (LIBC_UNLIKELY(m_x > m_y)) |
| m_x -= m_y; |
| } else { |
| m_x <<= exp_diff; |
| m_x %= m_y; |
| } |
| return m_x; |
| } |
| }; |
| |
| template <typename T, typename U = typename FPBits<T>::StorageType, |
| typename DivisionHelper = FModDivisionSimpleHelper<U>> |
| class FMod { |
| static_assert(cpp::is_floating_point_v<T> && cpp::is_unsigned_v<U> && |
| (sizeof(U) * CHAR_BIT > FPBits<T>::FRACTION_LEN), |
| "FMod instantiated with invalid type."); |
| |
| private: |
| using FPB = FPBits<T>; |
| using StorageType = typename FPB::StorageType; |
| |
| LIBC_INLINE static bool pre_check(T x, T y, T &out) { |
| using FPB = fputil::FPBits<T>; |
| const T quiet_nan = FPB::quiet_nan().get_val(); |
| FPB sx(x), sy(y); |
| if (LIBC_LIKELY(!sy.is_zero() && !sy.is_inf_or_nan() && |
| !sx.is_inf_or_nan())) |
| return false; |
| |
| if (sx.is_nan() || sy.is_nan()) { |
| if (sx.is_signaling_nan() || sy.is_signaling_nan()) |
| fputil::raise_except_if_required(FE_INVALID); |
| out = quiet_nan; |
| return true; |
| } |
| |
| if (sx.is_inf() || sy.is_zero()) { |
| fputil::raise_except_if_required(FE_INVALID); |
| fputil::set_errno_if_required(EDOM); |
| out = quiet_nan; |
| return true; |
| } |
| |
| out = x; |
| return true; |
| } |
| |
| LIBC_INLINE static constexpr FPB eval_internal(FPB sx, FPB sy) { |
| |
| if (LIBC_LIKELY(sx.uintval() <= sy.uintval())) { |
| if (sx.uintval() < sy.uintval()) |
| return sx; // |x|<|y| return x |
| return FPB::zero(); // |x|=|y| return 0.0 |
| } |
| |
| int e_x = sx.get_biased_exponent(); |
| int e_y = sy.get_biased_exponent(); |
| |
| // Most common case where |y| is "very normal" and |x/y| < 2^EXP_LEN |
| if (LIBC_LIKELY(e_y > int(FPB::FRACTION_LEN) && |
| e_x - e_y <= int(FPB::EXP_LEN))) { |
| StorageType m_x = sx.get_explicit_mantissa(); |
| StorageType m_y = sy.get_explicit_mantissa(); |
| StorageType d = (e_x == e_y) ? (m_x - m_y) : (m_x << (e_x - e_y)) % m_y; |
| if (d == 0) |
| return FPB::zero(); |
| // iy - 1 because of "zero power" for number with power 1 |
| return FPB::make_value(d, e_y - 1); |
| } |
| // Both subnormal special case. |
| if (LIBC_UNLIKELY(e_x == 0 && e_y == 0)) { |
| FPB d; |
| d.set_mantissa(sx.uintval() % sy.uintval()); |
| return d; |
| } |
| |
| // Note that hx is not subnormal by conditions above. |
| U m_x = static_cast<U>(sx.get_explicit_mantissa()); |
| e_x--; |
| |
| U m_y = static_cast<U>(sy.get_explicit_mantissa()); |
| constexpr int DEFAULT_LEAD_ZEROS = |
| sizeof(U) * CHAR_BIT - FPB::FRACTION_LEN - 1; |
| int lead_zeros_m_y = DEFAULT_LEAD_ZEROS; |
| if (LIBC_LIKELY(e_y > 0)) { |
| e_y--; |
| } else { |
| m_y = static_cast<U>(sy.get_mantissa()); |
| lead_zeros_m_y = cpp::countl_zero(m_y); |
| } |
| |
| // Assume hy != 0 |
| int tail_zeros_m_y = cpp::countr_zero(m_y); |
| int sides_zeroes_count = lead_zeros_m_y + tail_zeros_m_y; |
| // n > 0 by conditions above |
| int exp_diff = e_x - e_y; |
| { |
| // Shift hy right until the end or n = 0 |
| int right_shift = exp_diff < tail_zeros_m_y ? exp_diff : tail_zeros_m_y; |
| m_y >>= right_shift; |
| exp_diff -= right_shift; |
| e_y += right_shift; |
| } |
| |
| { |
| // Shift hx left until the end or n = 0 |
| int left_shift = |
| exp_diff < DEFAULT_LEAD_ZEROS ? exp_diff : DEFAULT_LEAD_ZEROS; |
| m_x <<= left_shift; |
| exp_diff -= left_shift; |
| } |
| |
| m_x %= m_y; |
| if (LIBC_UNLIKELY(m_x == 0)) |
| return FPB::zero(); |
| |
| if (exp_diff == 0) |
| return FPB::make_value(static_cast<StorageType>(m_x), e_y); |
| |
| // hx next can't be 0, because hx < hy, hy % 2 == 1 hx * 2^i % hy != 0 |
| m_x = DivisionHelper::execute(exp_diff, sides_zeroes_count, m_x, m_y); |
| return FPB::make_value(static_cast<StorageType>(m_x), e_y); |
| } |
| |
| public: |
| LIBC_INLINE static T eval(T x, T y) { |
| if (T out; LIBC_UNLIKELY(pre_check(x, y, out))) |
| return out; |
| FPB sx(x), sy(y); |
| Sign sign = sx.sign(); |
| sx.set_sign(Sign::POS); |
| sy.set_sign(Sign::POS); |
| FPB result = eval_internal(sx, sy); |
| result.set_sign(sign); |
| return result.get_val(); |
| } |
| }; |
| |
| } // namespace generic |
| } // namespace fputil |
| } // namespace LIBC_NAMESPACE |
| |
| #endif // LLVM_LIBC_SRC___SUPPORT_FPUTIL_GENERIC_FMOD_H |