blob: 7e7600ba6502a9854ea1b0caeb4a7f16888e02ce [file] [log] [blame]
//===-- Square root of IEEE 754 floating point numbers ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_SRC___SUPPORT_FPUTIL_GENERIC_SQRT_H
#define LLVM_LIBC_SRC___SUPPORT_FPUTIL_GENERIC_SQRT_H
#include "sqrt_80_bit_long_double.h"
#include "src/__support/CPP/bit.h" // countl_zero
#include "src/__support/CPP/type_traits.h"
#include "src/__support/FPUtil/FEnvImpl.h"
#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/rounding_mode.h"
#include "src/__support/common.h"
#include "src/__support/uint128.h"
namespace LIBC_NAMESPACE {
namespace fputil {
namespace internal {
template <typename T> struct SpecialLongDouble {
static constexpr bool VALUE = false;
};
#if defined(LIBC_TYPES_LONG_DOUBLE_IS_X86_FLOAT80)
template <> struct SpecialLongDouble<long double> {
static constexpr bool VALUE = true;
};
#endif // LIBC_TYPES_LONG_DOUBLE_IS_X86_FLOAT80
template <typename T>
LIBC_INLINE void normalize(int &exponent,
typename FPBits<T>::StorageType &mantissa) {
const int shift =
cpp::countl_zero(mantissa) -
(8 * static_cast<int>(sizeof(mantissa)) - 1 - FPBits<T>::FRACTION_LEN);
exponent -= shift;
mantissa <<= shift;
}
#ifdef LIBC_TYPES_LONG_DOUBLE_IS_FLOAT64
template <>
LIBC_INLINE void normalize<long double>(int &exponent, uint64_t &mantissa) {
normalize<double>(exponent, mantissa);
}
#elif !defined(LIBC_TYPES_LONG_DOUBLE_IS_X86_FLOAT80)
template <>
LIBC_INLINE void normalize<long double>(int &exponent, UInt128 &mantissa) {
const uint64_t hi_bits = static_cast<uint64_t>(mantissa >> 64);
const int shift =
hi_bits ? (cpp::countl_zero(hi_bits) - 15)
: (cpp::countl_zero(static_cast<uint64_t>(mantissa)) + 49);
exponent -= shift;
mantissa <<= shift;
}
#endif
} // namespace internal
// Correctly rounded IEEE 754 SQRT for all rounding modes.
// Shift-and-add algorithm.
template <typename T>
LIBC_INLINE cpp::enable_if_t<cpp::is_floating_point_v<T>, T> sqrt(T x) {
if constexpr (internal::SpecialLongDouble<T>::VALUE) {
// Special 80-bit long double.
return x86::sqrt(x);
} else {
// IEEE floating points formats.
using FPBits_t = typename fputil::FPBits<T>;
using StorageType = typename FPBits_t::StorageType;
constexpr StorageType ONE = StorageType(1) << FPBits_t::FRACTION_LEN;
constexpr auto FLT_NAN = FPBits_t::quiet_nan().get_val();
FPBits_t bits(x);
if (bits == FPBits_t::inf(Sign::POS) || bits.is_zero() || bits.is_nan()) {
// sqrt(+Inf) = +Inf
// sqrt(+0) = +0
// sqrt(-0) = -0
// sqrt(NaN) = NaN
// sqrt(-NaN) = -NaN
return x;
} else if (bits.is_neg()) {
// sqrt(-Inf) = NaN
// sqrt(-x) = NaN
return FLT_NAN;
} else {
int x_exp = bits.get_exponent();
StorageType x_mant = bits.get_mantissa();
// Step 1a: Normalize denormal input and append hidden bit to the mantissa
if (bits.is_subnormal()) {
++x_exp; // let x_exp be the correct exponent of ONE bit.
internal::normalize<T>(x_exp, x_mant);
} else {
x_mant |= ONE;
}
// Step 1b: Make sure the exponent is even.
if (x_exp & 1) {
--x_exp;
x_mant <<= 1;
}
// After step 1b, x = 2^(x_exp) * x_mant, where x_exp is even, and
// 1 <= x_mant < 4. So sqrt(x) = 2^(x_exp / 2) * y, with 1 <= y < 2.
// Notice that the output of sqrt is always in the normal range.
// To perform shift-and-add algorithm to find y, let denote:
// y(n) = 1.y_1 y_2 ... y_n, we can define the nth residue to be:
// r(n) = 2^n ( x_mant - y(n)^2 ).
// That leads to the following recurrence formula:
// r(n) = 2*r(n-1) - y_n*[ 2*y(n-1) + 2^(-n-1) ]
// with the initial conditions: y(0) = 1, and r(0) = x - 1.
// So the nth digit y_n of the mantissa of sqrt(x) can be found by:
// y_n = 1 if 2*r(n-1) >= 2*y(n - 1) + 2^(-n-1)
// 0 otherwise.
StorageType y = ONE;
StorageType r = x_mant - ONE;
for (StorageType current_bit = ONE >> 1; current_bit; current_bit >>= 1) {
r <<= 1;
StorageType tmp = (y << 1) + current_bit; // 2*y(n - 1) + 2^(-n-1)
if (r >= tmp) {
r -= tmp;
y += current_bit;
}
}
// We compute one more iteration in order to round correctly.
bool lsb = static_cast<bool>(y & 1); // Least significant bit
bool rb = false; // Round bit
r <<= 2;
StorageType tmp = (y << 2) + 1;
if (r >= tmp) {
r -= tmp;
rb = true;
}
// Remove hidden bit and append the exponent field.
x_exp = ((x_exp >> 1) + FPBits_t::EXP_BIAS);
y = (y - ONE) |
(static_cast<StorageType>(x_exp) << FPBits_t::FRACTION_LEN);
switch (quick_get_round()) {
case FE_TONEAREST:
// Round to nearest, ties to even
if (rb && (lsb || (r != 0)))
++y;
break;
case FE_UPWARD:
if (rb || (r != 0))
++y;
break;
}
return cpp::bit_cast<T>(y);
}
}
}
} // namespace fputil
} // namespace LIBC_NAMESPACE
#endif // LLVM_LIBC_SRC___SUPPORT_FPUTIL_GENERIC_SQRT_H