| //===-- Square root of IEEE 754 floating point numbers ----------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_LIBC_SRC___SUPPORT_FPUTIL_GENERIC_SQRT_H |
| #define LLVM_LIBC_SRC___SUPPORT_FPUTIL_GENERIC_SQRT_H |
| |
| #include "sqrt_80_bit_long_double.h" |
| #include "src/__support/CPP/bit.h" // countl_zero |
| #include "src/__support/CPP/type_traits.h" |
| #include "src/__support/FPUtil/FEnvImpl.h" |
| #include "src/__support/FPUtil/FPBits.h" |
| #include "src/__support/FPUtil/rounding_mode.h" |
| #include "src/__support/common.h" |
| #include "src/__support/uint128.h" |
| |
| namespace LIBC_NAMESPACE { |
| namespace fputil { |
| |
| namespace internal { |
| |
| template <typename T> struct SpecialLongDouble { |
| static constexpr bool VALUE = false; |
| }; |
| |
| #if defined(LIBC_TYPES_LONG_DOUBLE_IS_X86_FLOAT80) |
| template <> struct SpecialLongDouble<long double> { |
| static constexpr bool VALUE = true; |
| }; |
| #endif // LIBC_TYPES_LONG_DOUBLE_IS_X86_FLOAT80 |
| |
| template <typename T> |
| LIBC_INLINE void normalize(int &exponent, |
| typename FPBits<T>::StorageType &mantissa) { |
| const int shift = |
| cpp::countl_zero(mantissa) - |
| (8 * static_cast<int>(sizeof(mantissa)) - 1 - FPBits<T>::FRACTION_LEN); |
| exponent -= shift; |
| mantissa <<= shift; |
| } |
| |
| #ifdef LIBC_TYPES_LONG_DOUBLE_IS_FLOAT64 |
| template <> |
| LIBC_INLINE void normalize<long double>(int &exponent, uint64_t &mantissa) { |
| normalize<double>(exponent, mantissa); |
| } |
| #elif !defined(LIBC_TYPES_LONG_DOUBLE_IS_X86_FLOAT80) |
| template <> |
| LIBC_INLINE void normalize<long double>(int &exponent, UInt128 &mantissa) { |
| const uint64_t hi_bits = static_cast<uint64_t>(mantissa >> 64); |
| const int shift = |
| hi_bits ? (cpp::countl_zero(hi_bits) - 15) |
| : (cpp::countl_zero(static_cast<uint64_t>(mantissa)) + 49); |
| exponent -= shift; |
| mantissa <<= shift; |
| } |
| #endif |
| |
| } // namespace internal |
| |
| // Correctly rounded IEEE 754 SQRT for all rounding modes. |
| // Shift-and-add algorithm. |
| template <typename T> |
| LIBC_INLINE cpp::enable_if_t<cpp::is_floating_point_v<T>, T> sqrt(T x) { |
| |
| if constexpr (internal::SpecialLongDouble<T>::VALUE) { |
| // Special 80-bit long double. |
| return x86::sqrt(x); |
| } else { |
| // IEEE floating points formats. |
| using FPBits_t = typename fputil::FPBits<T>; |
| using StorageType = typename FPBits_t::StorageType; |
| constexpr StorageType ONE = StorageType(1) << FPBits_t::FRACTION_LEN; |
| constexpr auto FLT_NAN = FPBits_t::quiet_nan().get_val(); |
| |
| FPBits_t bits(x); |
| |
| if (bits == FPBits_t::inf(Sign::POS) || bits.is_zero() || bits.is_nan()) { |
| // sqrt(+Inf) = +Inf |
| // sqrt(+0) = +0 |
| // sqrt(-0) = -0 |
| // sqrt(NaN) = NaN |
| // sqrt(-NaN) = -NaN |
| return x; |
| } else if (bits.is_neg()) { |
| // sqrt(-Inf) = NaN |
| // sqrt(-x) = NaN |
| return FLT_NAN; |
| } else { |
| int x_exp = bits.get_exponent(); |
| StorageType x_mant = bits.get_mantissa(); |
| |
| // Step 1a: Normalize denormal input and append hidden bit to the mantissa |
| if (bits.is_subnormal()) { |
| ++x_exp; // let x_exp be the correct exponent of ONE bit. |
| internal::normalize<T>(x_exp, x_mant); |
| } else { |
| x_mant |= ONE; |
| } |
| |
| // Step 1b: Make sure the exponent is even. |
| if (x_exp & 1) { |
| --x_exp; |
| x_mant <<= 1; |
| } |
| |
| // After step 1b, x = 2^(x_exp) * x_mant, where x_exp is even, and |
| // 1 <= x_mant < 4. So sqrt(x) = 2^(x_exp / 2) * y, with 1 <= y < 2. |
| // Notice that the output of sqrt is always in the normal range. |
| // To perform shift-and-add algorithm to find y, let denote: |
| // y(n) = 1.y_1 y_2 ... y_n, we can define the nth residue to be: |
| // r(n) = 2^n ( x_mant - y(n)^2 ). |
| // That leads to the following recurrence formula: |
| // r(n) = 2*r(n-1) - y_n*[ 2*y(n-1) + 2^(-n-1) ] |
| // with the initial conditions: y(0) = 1, and r(0) = x - 1. |
| // So the nth digit y_n of the mantissa of sqrt(x) can be found by: |
| // y_n = 1 if 2*r(n-1) >= 2*y(n - 1) + 2^(-n-1) |
| // 0 otherwise. |
| StorageType y = ONE; |
| StorageType r = x_mant - ONE; |
| |
| for (StorageType current_bit = ONE >> 1; current_bit; current_bit >>= 1) { |
| r <<= 1; |
| StorageType tmp = (y << 1) + current_bit; // 2*y(n - 1) + 2^(-n-1) |
| if (r >= tmp) { |
| r -= tmp; |
| y += current_bit; |
| } |
| } |
| |
| // We compute one more iteration in order to round correctly. |
| bool lsb = static_cast<bool>(y & 1); // Least significant bit |
| bool rb = false; // Round bit |
| r <<= 2; |
| StorageType tmp = (y << 2) + 1; |
| if (r >= tmp) { |
| r -= tmp; |
| rb = true; |
| } |
| |
| // Remove hidden bit and append the exponent field. |
| x_exp = ((x_exp >> 1) + FPBits_t::EXP_BIAS); |
| |
| y = (y - ONE) | |
| (static_cast<StorageType>(x_exp) << FPBits_t::FRACTION_LEN); |
| |
| switch (quick_get_round()) { |
| case FE_TONEAREST: |
| // Round to nearest, ties to even |
| if (rb && (lsb || (r != 0))) |
| ++y; |
| break; |
| case FE_UPWARD: |
| if (rb || (r != 0)) |
| ++y; |
| break; |
| } |
| |
| return cpp::bit_cast<T>(y); |
| } |
| } |
| } |
| |
| } // namespace fputil |
| } // namespace LIBC_NAMESPACE |
| |
| #endif // LLVM_LIBC_SRC___SUPPORT_FPUTIL_GENERIC_SQRT_H |