| //===-- Half-precision tan(x) function ------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "src/math/tanf16.h" |
| #include "hdr/errno_macros.h" |
| #include "hdr/fenv_macros.h" |
| #include "sincosf16_utils.h" |
| #include "src/__support/FPUtil/FEnvImpl.h" |
| #include "src/__support/FPUtil/FPBits.h" |
| #include "src/__support/FPUtil/cast.h" |
| #include "src/__support/FPUtil/except_value_utils.h" |
| #include "src/__support/FPUtil/multiply_add.h" |
| #include "src/__support/macros/optimization.h" |
| |
| namespace LIBC_NAMESPACE_DECL { |
| |
| constexpr size_t N_EXCEPTS = 9; |
| |
| constexpr fputil::ExceptValues<float16, N_EXCEPTS> TANF16_EXCEPTS{{ |
| // (input, RZ output, RU offset, RD offset, RN offset) |
| {0x2894, 0x2894, 1, 0, 1}, |
| {0x3091, 0x3099, 1, 0, 0}, |
| {0x3098, 0x30a0, 1, 0, 0}, |
| {0x55ed, 0x3911, 1, 0, 0}, |
| {0x607b, 0xc638, 0, 1, 1}, |
| {0x674e, 0x3b7d, 1, 0, 0}, |
| {0x6807, 0x4014, 1, 0, 1}, |
| {0x6f4d, 0xbe19, 0, 1, 1}, |
| {0x7330, 0xcb62, 0, 1, 0}, |
| }}; |
| |
| LLVM_LIBC_FUNCTION(float16, tanf16, (float16 x)) { |
| using FPBits = fputil::FPBits<float16>; |
| FPBits xbits(x); |
| |
| uint16_t x_u = xbits.uintval(); |
| uint16_t x_abs = x_u & 0x7fff; |
| bool x_sign = x_u >> 15; |
| float xf = x; |
| |
| // Handle exceptional values |
| if (auto r = TANF16_EXCEPTS.lookup_odd(x_abs, x_sign); |
| LIBC_UNLIKELY(r.has_value())) |
| return r.value(); |
| |
| // |x| <= 0x1.d1p-5 |
| if (LIBC_UNLIKELY(x_abs <= 0x2b44)) { |
| // |x| <= 0x1.398p-11 |
| if (LIBC_UNLIKELY(x_abs <= 0x10e6)) { |
| // tan(+/-0) = +/-0 |
| if (LIBC_UNLIKELY(x_abs == 0)) |
| return x; |
| |
| int rounding = fputil::quick_get_round(); |
| |
| // Exhaustive tests show that, when: |
| // x > 0, and rounding upward or |
| // x < 0, and rounding downward then, |
| // tan(x) = x * 2^-11 + x |
| if ((xbits.is_pos() && rounding == FE_UPWARD) || |
| (xbits.is_neg() && rounding == FE_DOWNWARD)) |
| return fputil::cast<float16>(fputil::multiply_add(xf, 0x1.0p-11f, xf)); |
| return x; |
| } |
| |
| float xsq = xf * xf; |
| |
| // Degree-6 minimax odd polynomial of tan(x) generated by Sollya with: |
| // > P = fpminimax(tan(x)/x, [|0, 2, 4, 6|], [|1, SG...|], [0, pi/32]); |
| float result = fputil::polyeval(xsq, 0x1p0f, 0x1.555556p-2f, 0x1.110ee4p-3f, |
| 0x1.be80f6p-5f); |
| |
| return fputil::cast<float16>(xf * result); |
| } |
| |
| // tan(+/-inf) = NaN, and tan(NaN) = NaN |
| if (LIBC_UNLIKELY(x_abs >= 0x7c00)) { |
| // x = +/-inf |
| if (x_abs == 0x7c00) { |
| fputil::set_errno_if_required(EDOM); |
| fputil::raise_except_if_required(FE_INVALID); |
| } |
| |
| return x + FPBits::quiet_nan().get_val(); |
| } |
| |
| // Range reduction: |
| // For |x| > pi/32, we perform range reduction as follows: |
| // Find k and y such that: |
| // x = (k + y) * pi/32; |
| // k is an integer, |y| < 0.5 |
| // |
| // This is done by performing: |
| // k = round(x * 32/pi) |
| // y = x * 32/pi - k |
| // |
| // Once k and y are computed, we then deduce the answer by the formula: |
| // tan(x) = sin(x) / cos(x) |
| // = (sin_y * cos_k + cos_y * sin_k) / (cos_y * cos_k - sin_y * sin_k) |
| float sin_k, cos_k, sin_y, cosm1_y; |
| sincosf16_eval(xf, sin_k, cos_k, sin_y, cosm1_y); |
| |
| // Note that, cosm1_y = cos_y - 1: |
| using fputil::multiply_add; |
| return fputil::cast<float16>( |
| multiply_add(sin_y, cos_k, multiply_add(cosm1_y, sin_k, sin_k)) / |
| multiply_add(sin_y, -sin_k, multiply_add(cosm1_y, cos_k, cos_k))); |
| } |
| |
| } // namespace LIBC_NAMESPACE_DECL |