| //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the visit functions for load, store and alloca. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "InstCombine.h" |
| #include "llvm/IntrinsicInst.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/ADT/Statistic.h" |
| using namespace llvm; |
| |
| STATISTIC(NumDeadStore, "Number of dead stores eliminated"); |
| |
| Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) { |
| // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 |
| if (AI.isArrayAllocation()) { // Check C != 1 |
| if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { |
| const Type *NewTy = |
| ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); |
| assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!"); |
| AllocaInst *New = Builder->CreateAlloca(NewTy, 0, AI.getName()); |
| New->setAlignment(AI.getAlignment()); |
| |
| // Scan to the end of the allocation instructions, to skip over a block of |
| // allocas if possible...also skip interleaved debug info |
| // |
| BasicBlock::iterator It = New; |
| while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) ++It; |
| |
| // Now that I is pointing to the first non-allocation-inst in the block, |
| // insert our getelementptr instruction... |
| // |
| Value *NullIdx =Constant::getNullValue(Type::getInt32Ty(AI.getContext())); |
| Value *Idx[2]; |
| Idx[0] = NullIdx; |
| Idx[1] = NullIdx; |
| Value *V = GetElementPtrInst::CreateInBounds(New, Idx, Idx + 2, |
| New->getName()+".sub", It); |
| |
| // Now make everything use the getelementptr instead of the original |
| // allocation. |
| return ReplaceInstUsesWith(AI, V); |
| } else if (isa<UndefValue>(AI.getArraySize())) { |
| return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); |
| } |
| } |
| |
| if (TD && isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized()) { |
| // If alloca'ing a zero byte object, replace the alloca with a null pointer. |
| // Note that we only do this for alloca's, because malloc should allocate |
| // and return a unique pointer, even for a zero byte allocation. |
| if (TD->getTypeAllocSize(AI.getAllocatedType()) == 0) |
| return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); |
| |
| // If the alignment is 0 (unspecified), assign it the preferred alignment. |
| if (AI.getAlignment() == 0) |
| AI.setAlignment(TD->getPrefTypeAlignment(AI.getAllocatedType())); |
| } |
| |
| return 0; |
| } |
| |
| |
| /// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible. |
| static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI, |
| const TargetData *TD) { |
| User *CI = cast<User>(LI.getOperand(0)); |
| Value *CastOp = CI->getOperand(0); |
| |
| const PointerType *DestTy = cast<PointerType>(CI->getType()); |
| const Type *DestPTy = DestTy->getElementType(); |
| if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) { |
| |
| // If the address spaces don't match, don't eliminate the cast. |
| if (DestTy->getAddressSpace() != SrcTy->getAddressSpace()) |
| return 0; |
| |
| const Type *SrcPTy = SrcTy->getElementType(); |
| |
| if (DestPTy->isInteger() || isa<PointerType>(DestPTy) || |
| isa<VectorType>(DestPTy)) { |
| // If the source is an array, the code below will not succeed. Check to |
| // see if a trivial 'gep P, 0, 0' will help matters. Only do this for |
| // constants. |
| if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy)) |
| if (Constant *CSrc = dyn_cast<Constant>(CastOp)) |
| if (ASrcTy->getNumElements() != 0) { |
| Value *Idxs[2]; |
| Idxs[0] = Constant::getNullValue(Type::getInt32Ty(LI.getContext())); |
| Idxs[1] = Idxs[0]; |
| CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2); |
| SrcTy = cast<PointerType>(CastOp->getType()); |
| SrcPTy = SrcTy->getElementType(); |
| } |
| |
| if (IC.getTargetData() && |
| (SrcPTy->isInteger() || isa<PointerType>(SrcPTy) || |
| isa<VectorType>(SrcPTy)) && |
| // Do not allow turning this into a load of an integer, which is then |
| // casted to a pointer, this pessimizes pointer analysis a lot. |
| (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) && |
| IC.getTargetData()->getTypeSizeInBits(SrcPTy) == |
| IC.getTargetData()->getTypeSizeInBits(DestPTy)) { |
| |
| // Okay, we are casting from one integer or pointer type to another of |
| // the same size. Instead of casting the pointer before the load, cast |
| // the result of the loaded value. |
| LoadInst *NewLoad = |
| IC.Builder->CreateLoad(CastOp, LI.isVolatile(), CI->getName()); |
| NewLoad->setAlignment(LI.getAlignment()); |
| // Now cast the result of the load. |
| return new BitCastInst(NewLoad, LI.getType()); |
| } |
| } |
| } |
| return 0; |
| } |
| |
| Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { |
| Value *Op = LI.getOperand(0); |
| |
| // Attempt to improve the alignment. |
| if (TD) { |
| unsigned KnownAlign = |
| GetOrEnforceKnownAlignment(Op, TD->getPrefTypeAlignment(LI.getType())); |
| if (KnownAlign > |
| (LI.getAlignment() == 0 ? TD->getABITypeAlignment(LI.getType()) : |
| LI.getAlignment())) |
| LI.setAlignment(KnownAlign); |
| } |
| |
| // load (cast X) --> cast (load X) iff safe. |
| if (isa<CastInst>(Op)) |
| if (Instruction *Res = InstCombineLoadCast(*this, LI, TD)) |
| return Res; |
| |
| // None of the following transforms are legal for volatile loads. |
| if (LI.isVolatile()) return 0; |
| |
| // Do really simple store-to-load forwarding and load CSE, to catch cases |
| // where there are several consequtive memory accesses to the same location, |
| // separated by a few arithmetic operations. |
| BasicBlock::iterator BBI = &LI; |
| if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6)) |
| return ReplaceInstUsesWith(LI, AvailableVal); |
| |
| // load(gep null, ...) -> unreachable |
| if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { |
| const Value *GEPI0 = GEPI->getOperand(0); |
| // TODO: Consider a target hook for valid address spaces for this xform. |
| if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){ |
| // Insert a new store to null instruction before the load to indicate |
| // that this code is not reachable. We do this instead of inserting |
| // an unreachable instruction directly because we cannot modify the |
| // CFG. |
| new StoreInst(UndefValue::get(LI.getType()), |
| Constant::getNullValue(Op->getType()), &LI); |
| return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType())); |
| } |
| } |
| |
| // load null/undef -> unreachable |
| // TODO: Consider a target hook for valid address spaces for this xform. |
| if (isa<UndefValue>(Op) || |
| (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) { |
| // Insert a new store to null instruction before the load to indicate that |
| // this code is not reachable. We do this instead of inserting an |
| // unreachable instruction directly because we cannot modify the CFG. |
| new StoreInst(UndefValue::get(LI.getType()), |
| Constant::getNullValue(Op->getType()), &LI); |
| return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType())); |
| } |
| |
| // Instcombine load (constantexpr_cast global) -> cast (load global) |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op)) |
| if (CE->isCast()) |
| if (Instruction *Res = InstCombineLoadCast(*this, LI, TD)) |
| return Res; |
| |
| if (Op->hasOneUse()) { |
| // Change select and PHI nodes to select values instead of addresses: this |
| // helps alias analysis out a lot, allows many others simplifications, and |
| // exposes redundancy in the code. |
| // |
| // Note that we cannot do the transformation unless we know that the |
| // introduced loads cannot trap! Something like this is valid as long as |
| // the condition is always false: load (select bool %C, int* null, int* %G), |
| // but it would not be valid if we transformed it to load from null |
| // unconditionally. |
| // |
| if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { |
| // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). |
| unsigned Align = LI.getAlignment(); |
| if (isSafeToLoadUnconditionally(SI->getOperand(1), SI, Align, TD) && |
| isSafeToLoadUnconditionally(SI->getOperand(2), SI, Align, TD)) { |
| LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1), |
| SI->getOperand(1)->getName()+".val"); |
| LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2), |
| SI->getOperand(2)->getName()+".val"); |
| V1->setAlignment(Align); |
| V2->setAlignment(Align); |
| return SelectInst::Create(SI->getCondition(), V1, V2); |
| } |
| |
| // load (select (cond, null, P)) -> load P |
| if (Constant *C = dyn_cast<Constant>(SI->getOperand(1))) |
| if (C->isNullValue()) { |
| LI.setOperand(0, SI->getOperand(2)); |
| return &LI; |
| } |
| |
| // load (select (cond, P, null)) -> load P |
| if (Constant *C = dyn_cast<Constant>(SI->getOperand(2))) |
| if (C->isNullValue()) { |
| LI.setOperand(0, SI->getOperand(1)); |
| return &LI; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| /// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P |
| /// when possible. This makes it generally easy to do alias analysis and/or |
| /// SROA/mem2reg of the memory object. |
| static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) { |
| User *CI = cast<User>(SI.getOperand(1)); |
| Value *CastOp = CI->getOperand(0); |
| |
| const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType(); |
| const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType()); |
| if (SrcTy == 0) return 0; |
| |
| const Type *SrcPTy = SrcTy->getElementType(); |
| |
| if (!DestPTy->isInteger() && !isa<PointerType>(DestPTy)) |
| return 0; |
| |
| /// NewGEPIndices - If SrcPTy is an aggregate type, we can emit a "noop gep" |
| /// to its first element. This allows us to handle things like: |
| /// store i32 xxx, (bitcast {foo*, float}* %P to i32*) |
| /// on 32-bit hosts. |
| SmallVector<Value*, 4> NewGEPIndices; |
| |
| // If the source is an array, the code below will not succeed. Check to |
| // see if a trivial 'gep P, 0, 0' will help matters. Only do this for |
| // constants. |
| if (isa<ArrayType>(SrcPTy) || isa<StructType>(SrcPTy)) { |
| // Index through pointer. |
| Constant *Zero = Constant::getNullValue(Type::getInt32Ty(SI.getContext())); |
| NewGEPIndices.push_back(Zero); |
| |
| while (1) { |
| if (const StructType *STy = dyn_cast<StructType>(SrcPTy)) { |
| if (!STy->getNumElements()) /* Struct can be empty {} */ |
| break; |
| NewGEPIndices.push_back(Zero); |
| SrcPTy = STy->getElementType(0); |
| } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcPTy)) { |
| NewGEPIndices.push_back(Zero); |
| SrcPTy = ATy->getElementType(); |
| } else { |
| break; |
| } |
| } |
| |
| SrcTy = PointerType::get(SrcPTy, SrcTy->getAddressSpace()); |
| } |
| |
| if (!SrcPTy->isInteger() && !isa<PointerType>(SrcPTy)) |
| return 0; |
| |
| // If the pointers point into different address spaces or if they point to |
| // values with different sizes, we can't do the transformation. |
| if (!IC.getTargetData() || |
| SrcTy->getAddressSpace() != |
| cast<PointerType>(CI->getType())->getAddressSpace() || |
| IC.getTargetData()->getTypeSizeInBits(SrcPTy) != |
| IC.getTargetData()->getTypeSizeInBits(DestPTy)) |
| return 0; |
| |
| // Okay, we are casting from one integer or pointer type to another of |
| // the same size. Instead of casting the pointer before |
| // the store, cast the value to be stored. |
| Value *NewCast; |
| Value *SIOp0 = SI.getOperand(0); |
| Instruction::CastOps opcode = Instruction::BitCast; |
| const Type* CastSrcTy = SIOp0->getType(); |
| const Type* CastDstTy = SrcPTy; |
| if (isa<PointerType>(CastDstTy)) { |
| if (CastSrcTy->isInteger()) |
| opcode = Instruction::IntToPtr; |
| } else if (isa<IntegerType>(CastDstTy)) { |
| if (isa<PointerType>(SIOp0->getType())) |
| opcode = Instruction::PtrToInt; |
| } |
| |
| // SIOp0 is a pointer to aggregate and this is a store to the first field, |
| // emit a GEP to index into its first field. |
| if (!NewGEPIndices.empty()) |
| CastOp = IC.Builder->CreateInBoundsGEP(CastOp, NewGEPIndices.begin(), |
| NewGEPIndices.end()); |
| |
| NewCast = IC.Builder->CreateCast(opcode, SIOp0, CastDstTy, |
| SIOp0->getName()+".c"); |
| return new StoreInst(NewCast, CastOp); |
| } |
| |
| /// equivalentAddressValues - Test if A and B will obviously have the same |
| /// value. This includes recognizing that %t0 and %t1 will have the same |
| /// value in code like this: |
| /// %t0 = getelementptr \@a, 0, 3 |
| /// store i32 0, i32* %t0 |
| /// %t1 = getelementptr \@a, 0, 3 |
| /// %t2 = load i32* %t1 |
| /// |
| static bool equivalentAddressValues(Value *A, Value *B) { |
| // Test if the values are trivially equivalent. |
| if (A == B) return true; |
| |
| // Test if the values come form identical arithmetic instructions. |
| // This uses isIdenticalToWhenDefined instead of isIdenticalTo because |
| // its only used to compare two uses within the same basic block, which |
| // means that they'll always either have the same value or one of them |
| // will have an undefined value. |
| if (isa<BinaryOperator>(A) || |
| isa<CastInst>(A) || |
| isa<PHINode>(A) || |
| isa<GetElementPtrInst>(A)) |
| if (Instruction *BI = dyn_cast<Instruction>(B)) |
| if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) |
| return true; |
| |
| // Otherwise they may not be equivalent. |
| return false; |
| } |
| |
| // If this instruction has two uses, one of which is a llvm.dbg.declare, |
| // return the llvm.dbg.declare. |
| DbgDeclareInst *InstCombiner::hasOneUsePlusDeclare(Value *V) { |
| if (!V->hasNUses(2)) |
| return 0; |
| for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); |
| UI != E; ++UI) { |
| if (DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(UI)) |
| return DI; |
| if (isa<BitCastInst>(UI) && UI->hasOneUse()) { |
| if (DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(UI->use_begin())) |
| return DI; |
| } |
| } |
| return 0; |
| } |
| |
| Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { |
| Value *Val = SI.getOperand(0); |
| Value *Ptr = SI.getOperand(1); |
| |
| // If the RHS is an alloca with a single use, zapify the store, making the |
| // alloca dead. |
| // If the RHS is an alloca with a two uses, the other one being a |
| // llvm.dbg.declare, zapify the store and the declare, making the |
| // alloca dead. We must do this to prevent declares from affecting |
| // codegen. |
| if (!SI.isVolatile()) { |
| if (Ptr->hasOneUse()) { |
| if (isa<AllocaInst>(Ptr)) |
| return EraseInstFromFunction(SI); |
| if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { |
| if (isa<AllocaInst>(GEP->getOperand(0))) { |
| if (GEP->getOperand(0)->hasOneUse()) |
| return EraseInstFromFunction(SI); |
| if (DbgDeclareInst *DI = hasOneUsePlusDeclare(GEP->getOperand(0))) { |
| EraseInstFromFunction(*DI); |
| return EraseInstFromFunction(SI); |
| } |
| } |
| } |
| } |
| if (DbgDeclareInst *DI = hasOneUsePlusDeclare(Ptr)) { |
| EraseInstFromFunction(*DI); |
| return EraseInstFromFunction(SI); |
| } |
| } |
| |
| // Attempt to improve the alignment. |
| if (TD) { |
| unsigned KnownAlign = |
| GetOrEnforceKnownAlignment(Ptr, TD->getPrefTypeAlignment(Val->getType())); |
| if (KnownAlign > |
| (SI.getAlignment() == 0 ? TD->getABITypeAlignment(Val->getType()) : |
| SI.getAlignment())) |
| SI.setAlignment(KnownAlign); |
| } |
| |
| // Do really simple DSE, to catch cases where there are several consecutive |
| // stores to the same location, separated by a few arithmetic operations. This |
| // situation often occurs with bitfield accesses. |
| BasicBlock::iterator BBI = &SI; |
| for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; |
| --ScanInsts) { |
| --BBI; |
| // Don't count debug info directives, lest they affect codegen, |
| // and we skip pointer-to-pointer bitcasts, which are NOPs. |
| if (isa<DbgInfoIntrinsic>(BBI) || |
| (isa<BitCastInst>(BBI) && isa<PointerType>(BBI->getType()))) { |
| ScanInsts++; |
| continue; |
| } |
| |
| if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { |
| // Prev store isn't volatile, and stores to the same location? |
| if (!PrevSI->isVolatile() &&equivalentAddressValues(PrevSI->getOperand(1), |
| SI.getOperand(1))) { |
| ++NumDeadStore; |
| ++BBI; |
| EraseInstFromFunction(*PrevSI); |
| continue; |
| } |
| break; |
| } |
| |
| // If this is a load, we have to stop. However, if the loaded value is from |
| // the pointer we're loading and is producing the pointer we're storing, |
| // then *this* store is dead (X = load P; store X -> P). |
| if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { |
| if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) && |
| !SI.isVolatile()) |
| return EraseInstFromFunction(SI); |
| |
| // Otherwise, this is a load from some other location. Stores before it |
| // may not be dead. |
| break; |
| } |
| |
| // Don't skip over loads or things that can modify memory. |
| if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory()) |
| break; |
| } |
| |
| |
| if (SI.isVolatile()) return 0; // Don't hack volatile stores. |
| |
| // store X, null -> turns into 'unreachable' in SimplifyCFG |
| if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) { |
| if (!isa<UndefValue>(Val)) { |
| SI.setOperand(0, UndefValue::get(Val->getType())); |
| if (Instruction *U = dyn_cast<Instruction>(Val)) |
| Worklist.Add(U); // Dropped a use. |
| } |
| return 0; // Do not modify these! |
| } |
| |
| // store undef, Ptr -> noop |
| if (isa<UndefValue>(Val)) |
| return EraseInstFromFunction(SI); |
| |
| // If the pointer destination is a cast, see if we can fold the cast into the |
| // source instead. |
| if (isa<CastInst>(Ptr)) |
| if (Instruction *Res = InstCombineStoreToCast(*this, SI)) |
| return Res; |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) |
| if (CE->isCast()) |
| if (Instruction *Res = InstCombineStoreToCast(*this, SI)) |
| return Res; |
| |
| |
| // If this store is the last instruction in the basic block (possibly |
| // excepting debug info instructions), and if the block ends with an |
| // unconditional branch, try to move it to the successor block. |
| BBI = &SI; |
| do { |
| ++BBI; |
| } while (isa<DbgInfoIntrinsic>(BBI) || |
| (isa<BitCastInst>(BBI) && isa<PointerType>(BBI->getType()))); |
| if (BranchInst *BI = dyn_cast<BranchInst>(BBI)) |
| if (BI->isUnconditional()) |
| if (SimplifyStoreAtEndOfBlock(SI)) |
| return 0; // xform done! |
| |
| return 0; |
| } |
| |
| /// SimplifyStoreAtEndOfBlock - Turn things like: |
| /// if () { *P = v1; } else { *P = v2 } |
| /// into a phi node with a store in the successor. |
| /// |
| /// Simplify things like: |
| /// *P = v1; if () { *P = v2; } |
| /// into a phi node with a store in the successor. |
| /// |
| bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) { |
| BasicBlock *StoreBB = SI.getParent(); |
| |
| // Check to see if the successor block has exactly two incoming edges. If |
| // so, see if the other predecessor contains a store to the same location. |
| // if so, insert a PHI node (if needed) and move the stores down. |
| BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); |
| |
| // Determine whether Dest has exactly two predecessors and, if so, compute |
| // the other predecessor. |
| pred_iterator PI = pred_begin(DestBB); |
| BasicBlock *OtherBB = 0; |
| if (*PI != StoreBB) |
| OtherBB = *PI; |
| ++PI; |
| if (PI == pred_end(DestBB)) |
| return false; |
| |
| if (*PI != StoreBB) { |
| if (OtherBB) |
| return false; |
| OtherBB = *PI; |
| } |
| if (++PI != pred_end(DestBB)) |
| return false; |
| |
| // Bail out if all the relevant blocks aren't distinct (this can happen, |
| // for example, if SI is in an infinite loop) |
| if (StoreBB == DestBB || OtherBB == DestBB) |
| return false; |
| |
| // Verify that the other block ends in a branch and is not otherwise empty. |
| BasicBlock::iterator BBI = OtherBB->getTerminator(); |
| BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); |
| if (!OtherBr || BBI == OtherBB->begin()) |
| return false; |
| |
| // If the other block ends in an unconditional branch, check for the 'if then |
| // else' case. there is an instruction before the branch. |
| StoreInst *OtherStore = 0; |
| if (OtherBr->isUnconditional()) { |
| --BBI; |
| // Skip over debugging info. |
| while (isa<DbgInfoIntrinsic>(BBI) || |
| (isa<BitCastInst>(BBI) && isa<PointerType>(BBI->getType()))) { |
| if (BBI==OtherBB->begin()) |
| return false; |
| --BBI; |
| } |
| // If this isn't a store, isn't a store to the same location, or if the |
| // alignments differ, bail out. |
| OtherStore = dyn_cast<StoreInst>(BBI); |
| if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) || |
| OtherStore->getAlignment() != SI.getAlignment()) |
| return false; |
| } else { |
| // Otherwise, the other block ended with a conditional branch. If one of the |
| // destinations is StoreBB, then we have the if/then case. |
| if (OtherBr->getSuccessor(0) != StoreBB && |
| OtherBr->getSuccessor(1) != StoreBB) |
| return false; |
| |
| // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an |
| // if/then triangle. See if there is a store to the same ptr as SI that |
| // lives in OtherBB. |
| for (;; --BBI) { |
| // Check to see if we find the matching store. |
| if ((OtherStore = dyn_cast<StoreInst>(BBI))) { |
| if (OtherStore->getOperand(1) != SI.getOperand(1) || |
| OtherStore->getAlignment() != SI.getAlignment()) |
| return false; |
| break; |
| } |
| // If we find something that may be using or overwriting the stored |
| // value, or if we run out of instructions, we can't do the xform. |
| if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() || |
| BBI == OtherBB->begin()) |
| return false; |
| } |
| |
| // In order to eliminate the store in OtherBr, we have to |
| // make sure nothing reads or overwrites the stored value in |
| // StoreBB. |
| for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { |
| // FIXME: This should really be AA driven. |
| if (I->mayReadFromMemory() || I->mayWriteToMemory()) |
| return false; |
| } |
| } |
| |
| // Insert a PHI node now if we need it. |
| Value *MergedVal = OtherStore->getOperand(0); |
| if (MergedVal != SI.getOperand(0)) { |
| PHINode *PN = PHINode::Create(MergedVal->getType(), "storemerge"); |
| PN->reserveOperandSpace(2); |
| PN->addIncoming(SI.getOperand(0), SI.getParent()); |
| PN->addIncoming(OtherStore->getOperand(0), OtherBB); |
| MergedVal = InsertNewInstBefore(PN, DestBB->front()); |
| } |
| |
| // Advance to a place where it is safe to insert the new store and |
| // insert it. |
| BBI = DestBB->getFirstNonPHI(); |
| InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1), |
| OtherStore->isVolatile(), |
| SI.getAlignment()), *BBI); |
| |
| // Nuke the old stores. |
| EraseInstFromFunction(SI); |
| EraseInstFromFunction(*OtherStore); |
| return true; |
| } |