| //===- InstructionCombining.cpp - Combine multiple instructions -----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // InstructionCombining - Combine instructions to form fewer, simple |
| // instructions. This pass does not modify the CFG. This pass is where |
| // algebraic simplification happens. |
| // |
| // This pass combines things like: |
| // %Y = add i32 %X, 1 |
| // %Z = add i32 %Y, 1 |
| // into: |
| // %Z = add i32 %X, 2 |
| // |
| // This is a simple worklist driven algorithm. |
| // |
| // This pass guarantees that the following canonicalizations are performed on |
| // the program: |
| // 1. If a binary operator has a constant operand, it is moved to the RHS |
| // 2. Bitwise operators with constant operands are always grouped so that |
| // shifts are performed first, then or's, then and's, then xor's. |
| // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible |
| // 4. All cmp instructions on boolean values are replaced with logical ops |
| // 5. add X, X is represented as (X*2) => (X << 1) |
| // 6. Multiplies with a power-of-two constant argument are transformed into |
| // shifts. |
| // ... etc. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "instcombine" |
| #include "llvm/Transforms/Scalar.h" |
| #include "InstCombine.h" |
| #include "llvm/IntrinsicInst.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/MemoryBuiltins.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/GetElementPtrTypeIterator.h" |
| #include "llvm/Support/PatternMatch.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/Statistic.h" |
| #include <algorithm> |
| #include <climits> |
| using namespace llvm; |
| using namespace llvm::PatternMatch; |
| |
| STATISTIC(NumCombined , "Number of insts combined"); |
| STATISTIC(NumConstProp, "Number of constant folds"); |
| STATISTIC(NumDeadInst , "Number of dead inst eliminated"); |
| STATISTIC(NumSunkInst , "Number of instructions sunk"); |
| |
| |
| char InstCombiner::ID = 0; |
| static RegisterPass<InstCombiner> |
| X("instcombine", "Combine redundant instructions"); |
| |
| void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addPreservedID(LCSSAID); |
| AU.setPreservesCFG(); |
| } |
| |
| |
| /// ShouldChangeType - Return true if it is desirable to convert a computation |
| /// from 'From' to 'To'. We don't want to convert from a legal to an illegal |
| /// type for example, or from a smaller to a larger illegal type. |
| bool InstCombiner::ShouldChangeType(const Type *From, const Type *To) const { |
| assert(isa<IntegerType>(From) && isa<IntegerType>(To)); |
| |
| // If we don't have TD, we don't know if the source/dest are legal. |
| if (!TD) return false; |
| |
| unsigned FromWidth = From->getPrimitiveSizeInBits(); |
| unsigned ToWidth = To->getPrimitiveSizeInBits(); |
| bool FromLegal = TD->isLegalInteger(FromWidth); |
| bool ToLegal = TD->isLegalInteger(ToWidth); |
| |
| // If this is a legal integer from type, and the result would be an illegal |
| // type, don't do the transformation. |
| if (FromLegal && !ToLegal) |
| return false; |
| |
| // Otherwise, if both are illegal, do not increase the size of the result. We |
| // do allow things like i160 -> i64, but not i64 -> i160. |
| if (!FromLegal && !ToLegal && ToWidth > FromWidth) |
| return false; |
| |
| return true; |
| } |
| |
| |
| // SimplifyCommutative - This performs a few simplifications for commutative |
| // operators: |
| // |
| // 1. Order operands such that they are listed from right (least complex) to |
| // left (most complex). This puts constants before unary operators before |
| // binary operators. |
| // |
| // 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2)) |
| // 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2)) |
| // |
| bool InstCombiner::SimplifyCommutative(BinaryOperator &I) { |
| bool Changed = false; |
| if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) |
| Changed = !I.swapOperands(); |
| |
| if (!I.isAssociative()) return Changed; |
| |
| Instruction::BinaryOps Opcode = I.getOpcode(); |
| if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0))) |
| if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) { |
| if (isa<Constant>(I.getOperand(1))) { |
| Constant *Folded = ConstantExpr::get(I.getOpcode(), |
| cast<Constant>(I.getOperand(1)), |
| cast<Constant>(Op->getOperand(1))); |
| I.setOperand(0, Op->getOperand(0)); |
| I.setOperand(1, Folded); |
| return true; |
| } |
| |
| if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1))) |
| if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) && |
| Op->hasOneUse() && Op1->hasOneUse()) { |
| Constant *C1 = cast<Constant>(Op->getOperand(1)); |
| Constant *C2 = cast<Constant>(Op1->getOperand(1)); |
| |
| // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2)) |
| Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2); |
| Instruction *New = BinaryOperator::Create(Opcode, Op->getOperand(0), |
| Op1->getOperand(0), |
| Op1->getName(), &I); |
| Worklist.Add(New); |
| I.setOperand(0, New); |
| I.setOperand(1, Folded); |
| return true; |
| } |
| } |
| return Changed; |
| } |
| |
| // dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction |
| // if the LHS is a constant zero (which is the 'negate' form). |
| // |
| Value *InstCombiner::dyn_castNegVal(Value *V) const { |
| if (BinaryOperator::isNeg(V)) |
| return BinaryOperator::getNegArgument(V); |
| |
| // Constants can be considered to be negated values if they can be folded. |
| if (ConstantInt *C = dyn_cast<ConstantInt>(V)) |
| return ConstantExpr::getNeg(C); |
| |
| if (ConstantVector *C = dyn_cast<ConstantVector>(V)) |
| if (C->getType()->getElementType()->isInteger()) |
| return ConstantExpr::getNeg(C); |
| |
| return 0; |
| } |
| |
| // dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the |
| // instruction if the LHS is a constant negative zero (which is the 'negate' |
| // form). |
| // |
| Value *InstCombiner::dyn_castFNegVal(Value *V) const { |
| if (BinaryOperator::isFNeg(V)) |
| return BinaryOperator::getFNegArgument(V); |
| |
| // Constants can be considered to be negated values if they can be folded. |
| if (ConstantFP *C = dyn_cast<ConstantFP>(V)) |
| return ConstantExpr::getFNeg(C); |
| |
| if (ConstantVector *C = dyn_cast<ConstantVector>(V)) |
| if (C->getType()->getElementType()->isFloatingPoint()) |
| return ConstantExpr::getFNeg(C); |
| |
| return 0; |
| } |
| |
| static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO, |
| InstCombiner *IC) { |
| if (CastInst *CI = dyn_cast<CastInst>(&I)) |
| return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType()); |
| |
| // Figure out if the constant is the left or the right argument. |
| bool ConstIsRHS = isa<Constant>(I.getOperand(1)); |
| Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); |
| |
| if (Constant *SOC = dyn_cast<Constant>(SO)) { |
| if (ConstIsRHS) |
| return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); |
| return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); |
| } |
| |
| Value *Op0 = SO, *Op1 = ConstOperand; |
| if (!ConstIsRHS) |
| std::swap(Op0, Op1); |
| |
| if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) |
| return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1, |
| SO->getName()+".op"); |
| if (ICmpInst *CI = dyn_cast<ICmpInst>(&I)) |
| return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1, |
| SO->getName()+".cmp"); |
| if (FCmpInst *CI = dyn_cast<FCmpInst>(&I)) |
| return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1, |
| SO->getName()+".cmp"); |
| llvm_unreachable("Unknown binary instruction type!"); |
| } |
| |
| // FoldOpIntoSelect - Given an instruction with a select as one operand and a |
| // constant as the other operand, try to fold the binary operator into the |
| // select arguments. This also works for Cast instructions, which obviously do |
| // not have a second operand. |
| Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) { |
| // Don't modify shared select instructions |
| if (!SI->hasOneUse()) return 0; |
| Value *TV = SI->getOperand(1); |
| Value *FV = SI->getOperand(2); |
| |
| if (isa<Constant>(TV) || isa<Constant>(FV)) { |
| // Bool selects with constant operands can be folded to logical ops. |
| if (SI->getType()->isInteger(1)) return 0; |
| |
| Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this); |
| Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this); |
| |
| return SelectInst::Create(SI->getCondition(), SelectTrueVal, |
| SelectFalseVal); |
| } |
| return 0; |
| } |
| |
| |
| /// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which |
| /// has a PHI node as operand #0, see if we can fold the instruction into the |
| /// PHI (which is only possible if all operands to the PHI are constants). |
| /// |
| /// If AllowAggressive is true, FoldOpIntoPhi will allow certain transforms |
| /// that would normally be unprofitable because they strongly encourage jump |
| /// threading. |
| Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I, |
| bool AllowAggressive) { |
| AllowAggressive = false; |
| PHINode *PN = cast<PHINode>(I.getOperand(0)); |
| unsigned NumPHIValues = PN->getNumIncomingValues(); |
| if (NumPHIValues == 0 || |
| // We normally only transform phis with a single use, unless we're trying |
| // hard to make jump threading happen. |
| (!PN->hasOneUse() && !AllowAggressive)) |
| return 0; |
| |
| |
| // Check to see if all of the operands of the PHI are simple constants |
| // (constantint/constantfp/undef). If there is one non-constant value, |
| // remember the BB it is in. If there is more than one or if *it* is a PHI, |
| // bail out. We don't do arbitrary constant expressions here because moving |
| // their computation can be expensive without a cost model. |
| BasicBlock *NonConstBB = 0; |
| for (unsigned i = 0; i != NumPHIValues; ++i) |
| if (!isa<Constant>(PN->getIncomingValue(i)) || |
| isa<ConstantExpr>(PN->getIncomingValue(i))) { |
| if (NonConstBB) return 0; // More than one non-const value. |
| if (isa<PHINode>(PN->getIncomingValue(i))) return 0; // Itself a phi. |
| NonConstBB = PN->getIncomingBlock(i); |
| |
| // If the incoming non-constant value is in I's block, we have an infinite |
| // loop. |
| if (NonConstBB == I.getParent()) |
| return 0; |
| } |
| |
| // If there is exactly one non-constant value, we can insert a copy of the |
| // operation in that block. However, if this is a critical edge, we would be |
| // inserting the computation one some other paths (e.g. inside a loop). Only |
| // do this if the pred block is unconditionally branching into the phi block. |
| if (NonConstBB != 0 && !AllowAggressive) { |
| BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); |
| if (!BI || !BI->isUnconditional()) return 0; |
| } |
| |
| // Okay, we can do the transformation: create the new PHI node. |
| PHINode *NewPN = PHINode::Create(I.getType(), ""); |
| NewPN->reserveOperandSpace(PN->getNumOperands()/2); |
| InsertNewInstBefore(NewPN, *PN); |
| NewPN->takeName(PN); |
| |
| // Next, add all of the operands to the PHI. |
| if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { |
| // We only currently try to fold the condition of a select when it is a phi, |
| // not the true/false values. |
| Value *TrueV = SI->getTrueValue(); |
| Value *FalseV = SI->getFalseValue(); |
| BasicBlock *PhiTransBB = PN->getParent(); |
| for (unsigned i = 0; i != NumPHIValues; ++i) { |
| BasicBlock *ThisBB = PN->getIncomingBlock(i); |
| Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); |
| Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); |
| Value *InV = 0; |
| if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) { |
| InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; |
| } else { |
| assert(PN->getIncomingBlock(i) == NonConstBB); |
| InV = SelectInst::Create(PN->getIncomingValue(i), TrueVInPred, |
| FalseVInPred, |
| "phitmp", NonConstBB->getTerminator()); |
| Worklist.Add(cast<Instruction>(InV)); |
| } |
| NewPN->addIncoming(InV, ThisBB); |
| } |
| } else if (I.getNumOperands() == 2) { |
| Constant *C = cast<Constant>(I.getOperand(1)); |
| for (unsigned i = 0; i != NumPHIValues; ++i) { |
| Value *InV = 0; |
| if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) { |
| if (CmpInst *CI = dyn_cast<CmpInst>(&I)) |
| InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); |
| else |
| InV = ConstantExpr::get(I.getOpcode(), InC, C); |
| } else { |
| assert(PN->getIncomingBlock(i) == NonConstBB); |
| if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) |
| InV = BinaryOperator::Create(BO->getOpcode(), |
| PN->getIncomingValue(i), C, "phitmp", |
| NonConstBB->getTerminator()); |
| else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) |
| InV = CmpInst::Create(CI->getOpcode(), |
| CI->getPredicate(), |
| PN->getIncomingValue(i), C, "phitmp", |
| NonConstBB->getTerminator()); |
| else |
| llvm_unreachable("Unknown binop!"); |
| |
| Worklist.Add(cast<Instruction>(InV)); |
| } |
| NewPN->addIncoming(InV, PN->getIncomingBlock(i)); |
| } |
| } else { |
| CastInst *CI = cast<CastInst>(&I); |
| const Type *RetTy = CI->getType(); |
| for (unsigned i = 0; i != NumPHIValues; ++i) { |
| Value *InV; |
| if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) { |
| InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); |
| } else { |
| assert(PN->getIncomingBlock(i) == NonConstBB); |
| InV = CastInst::Create(CI->getOpcode(), PN->getIncomingValue(i), |
| I.getType(), "phitmp", |
| NonConstBB->getTerminator()); |
| Worklist.Add(cast<Instruction>(InV)); |
| } |
| NewPN->addIncoming(InV, PN->getIncomingBlock(i)); |
| } |
| } |
| return ReplaceInstUsesWith(I, NewPN); |
| } |
| |
| /// FindElementAtOffset - Given a type and a constant offset, determine whether |
| /// or not there is a sequence of GEP indices into the type that will land us at |
| /// the specified offset. If so, fill them into NewIndices and return the |
| /// resultant element type, otherwise return null. |
| const Type *InstCombiner::FindElementAtOffset(const Type *Ty, int64_t Offset, |
| SmallVectorImpl<Value*> &NewIndices) { |
| if (!TD) return 0; |
| if (!Ty->isSized()) return 0; |
| |
| // Start with the index over the outer type. Note that the type size |
| // might be zero (even if the offset isn't zero) if the indexed type |
| // is something like [0 x {int, int}] |
| const Type *IntPtrTy = TD->getIntPtrType(Ty->getContext()); |
| int64_t FirstIdx = 0; |
| if (int64_t TySize = TD->getTypeAllocSize(Ty)) { |
| FirstIdx = Offset/TySize; |
| Offset -= FirstIdx*TySize; |
| |
| // Handle hosts where % returns negative instead of values [0..TySize). |
| if (Offset < 0) { |
| --FirstIdx; |
| Offset += TySize; |
| assert(Offset >= 0); |
| } |
| assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset"); |
| } |
| |
| NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx)); |
| |
| // Index into the types. If we fail, set OrigBase to null. |
| while (Offset) { |
| // Indexing into tail padding between struct/array elements. |
| if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty)) |
| return 0; |
| |
| if (const StructType *STy = dyn_cast<StructType>(Ty)) { |
| const StructLayout *SL = TD->getStructLayout(STy); |
| assert(Offset < (int64_t)SL->getSizeInBytes() && |
| "Offset must stay within the indexed type"); |
| |
| unsigned Elt = SL->getElementContainingOffset(Offset); |
| NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), |
| Elt)); |
| |
| Offset -= SL->getElementOffset(Elt); |
| Ty = STy->getElementType(Elt); |
| } else if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) { |
| uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType()); |
| assert(EltSize && "Cannot index into a zero-sized array"); |
| NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize)); |
| Offset %= EltSize; |
| Ty = AT->getElementType(); |
| } else { |
| // Otherwise, we can't index into the middle of this atomic type, bail. |
| return 0; |
| } |
| } |
| |
| return Ty; |
| } |
| |
| |
| |
| Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { |
| SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end()); |
| |
| if (Value *V = SimplifyGEPInst(&Ops[0], Ops.size(), TD)) |
| return ReplaceInstUsesWith(GEP, V); |
| |
| Value *PtrOp = GEP.getOperand(0); |
| |
| if (isa<UndefValue>(GEP.getOperand(0))) |
| return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType())); |
| |
| // Eliminate unneeded casts for indices. |
| if (TD) { |
| bool MadeChange = false; |
| unsigned PtrSize = TD->getPointerSizeInBits(); |
| |
| gep_type_iterator GTI = gep_type_begin(GEP); |
| for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); |
| I != E; ++I, ++GTI) { |
| if (!isa<SequentialType>(*GTI)) continue; |
| |
| // If we are using a wider index than needed for this platform, shrink it |
| // to what we need. If narrower, sign-extend it to what we need. This |
| // explicit cast can make subsequent optimizations more obvious. |
| unsigned OpBits = cast<IntegerType>((*I)->getType())->getBitWidth(); |
| if (OpBits == PtrSize) |
| continue; |
| |
| *I = Builder->CreateIntCast(*I, TD->getIntPtrType(GEP.getContext()),true); |
| MadeChange = true; |
| } |
| if (MadeChange) return &GEP; |
| } |
| |
| // Combine Indices - If the source pointer to this getelementptr instruction |
| // is a getelementptr instruction, combine the indices of the two |
| // getelementptr instructions into a single instruction. |
| // |
| if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) { |
| // Note that if our source is a gep chain itself that we wait for that |
| // chain to be resolved before we perform this transformation. This |
| // avoids us creating a TON of code in some cases. |
| // |
| if (GetElementPtrInst *SrcGEP = |
| dyn_cast<GetElementPtrInst>(Src->getOperand(0))) |
| if (SrcGEP->getNumOperands() == 2) |
| return 0; // Wait until our source is folded to completion. |
| |
| SmallVector<Value*, 8> Indices; |
| |
| // Find out whether the last index in the source GEP is a sequential idx. |
| bool EndsWithSequential = false; |
| for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); |
| I != E; ++I) |
| EndsWithSequential = !isa<StructType>(*I); |
| |
| // Can we combine the two pointer arithmetics offsets? |
| if (EndsWithSequential) { |
| // Replace: gep (gep %P, long B), long A, ... |
| // With: T = long A+B; gep %P, T, ... |
| // |
| Value *Sum; |
| Value *SO1 = Src->getOperand(Src->getNumOperands()-1); |
| Value *GO1 = GEP.getOperand(1); |
| if (SO1 == Constant::getNullValue(SO1->getType())) { |
| Sum = GO1; |
| } else if (GO1 == Constant::getNullValue(GO1->getType())) { |
| Sum = SO1; |
| } else { |
| // If they aren't the same type, then the input hasn't been processed |
| // by the loop above yet (which canonicalizes sequential index types to |
| // intptr_t). Just avoid transforming this until the input has been |
| // normalized. |
| if (SO1->getType() != GO1->getType()) |
| return 0; |
| Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum"); |
| } |
| |
| // Update the GEP in place if possible. |
| if (Src->getNumOperands() == 2) { |
| GEP.setOperand(0, Src->getOperand(0)); |
| GEP.setOperand(1, Sum); |
| return &GEP; |
| } |
| Indices.append(Src->op_begin()+1, Src->op_end()-1); |
| Indices.push_back(Sum); |
| Indices.append(GEP.op_begin()+2, GEP.op_end()); |
| } else if (isa<Constant>(*GEP.idx_begin()) && |
| cast<Constant>(*GEP.idx_begin())->isNullValue() && |
| Src->getNumOperands() != 1) { |
| // Otherwise we can do the fold if the first index of the GEP is a zero |
| Indices.append(Src->op_begin()+1, Src->op_end()); |
| Indices.append(GEP.idx_begin()+1, GEP.idx_end()); |
| } |
| |
| if (!Indices.empty()) |
| return (GEP.isInBounds() && Src->isInBounds()) ? |
| GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices.begin(), |
| Indices.end(), GEP.getName()) : |
| GetElementPtrInst::Create(Src->getOperand(0), Indices.begin(), |
| Indices.end(), GEP.getName()); |
| } |
| |
| // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). |
| Value *StrippedPtr = PtrOp->stripPointerCasts(); |
| if (StrippedPtr != PtrOp) { |
| const PointerType *StrippedPtrTy =cast<PointerType>(StrippedPtr->getType()); |
| |
| bool HasZeroPointerIndex = false; |
| if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) |
| HasZeroPointerIndex = C->isZero(); |
| |
| // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... |
| // into : GEP [10 x i8]* X, i32 0, ... |
| // |
| // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... |
| // into : GEP i8* X, ... |
| // |
| // This occurs when the program declares an array extern like "int X[];" |
| if (HasZeroPointerIndex) { |
| const PointerType *CPTy = cast<PointerType>(PtrOp->getType()); |
| if (const ArrayType *CATy = |
| dyn_cast<ArrayType>(CPTy->getElementType())) { |
| // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? |
| if (CATy->getElementType() == StrippedPtrTy->getElementType()) { |
| // -> GEP i8* X, ... |
| SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end()); |
| GetElementPtrInst *Res = |
| GetElementPtrInst::Create(StrippedPtr, Idx.begin(), |
| Idx.end(), GEP.getName()); |
| Res->setIsInBounds(GEP.isInBounds()); |
| return Res; |
| } |
| |
| if (const ArrayType *XATy = |
| dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){ |
| // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? |
| if (CATy->getElementType() == XATy->getElementType()) { |
| // -> GEP [10 x i8]* X, i32 0, ... |
| // At this point, we know that the cast source type is a pointer |
| // to an array of the same type as the destination pointer |
| // array. Because the array type is never stepped over (there |
| // is a leading zero) we can fold the cast into this GEP. |
| GEP.setOperand(0, StrippedPtr); |
| return &GEP; |
| } |
| } |
| } |
| } else if (GEP.getNumOperands() == 2) { |
| // Transform things like: |
| // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V |
| // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast |
| const Type *SrcElTy = StrippedPtrTy->getElementType(); |
| const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType(); |
| if (TD && isa<ArrayType>(SrcElTy) && |
| TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) == |
| TD->getTypeAllocSize(ResElTy)) { |
| Value *Idx[2]; |
| Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext())); |
| Idx[1] = GEP.getOperand(1); |
| Value *NewGEP = GEP.isInBounds() ? |
| Builder->CreateInBoundsGEP(StrippedPtr, Idx, Idx + 2, GEP.getName()) : |
| Builder->CreateGEP(StrippedPtr, Idx, Idx + 2, GEP.getName()); |
| // V and GEP are both pointer types --> BitCast |
| return new BitCastInst(NewGEP, GEP.getType()); |
| } |
| |
| // Transform things like: |
| // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp |
| // (where tmp = 8*tmp2) into: |
| // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast |
| |
| if (TD && isa<ArrayType>(SrcElTy) && ResElTy->isInteger(8)) { |
| uint64_t ArrayEltSize = |
| TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()); |
| |
| // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We |
| // allow either a mul, shift, or constant here. |
| Value *NewIdx = 0; |
| ConstantInt *Scale = 0; |
| if (ArrayEltSize == 1) { |
| NewIdx = GEP.getOperand(1); |
| Scale = ConstantInt::get(cast<IntegerType>(NewIdx->getType()), 1); |
| } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) { |
| NewIdx = ConstantInt::get(CI->getType(), 1); |
| Scale = CI; |
| } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){ |
| if (Inst->getOpcode() == Instruction::Shl && |
| isa<ConstantInt>(Inst->getOperand(1))) { |
| ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1)); |
| uint32_t ShAmtVal = ShAmt->getLimitedValue(64); |
| Scale = ConstantInt::get(cast<IntegerType>(Inst->getType()), |
| 1ULL << ShAmtVal); |
| NewIdx = Inst->getOperand(0); |
| } else if (Inst->getOpcode() == Instruction::Mul && |
| isa<ConstantInt>(Inst->getOperand(1))) { |
| Scale = cast<ConstantInt>(Inst->getOperand(1)); |
| NewIdx = Inst->getOperand(0); |
| } |
| } |
| |
| // If the index will be to exactly the right offset with the scale taken |
| // out, perform the transformation. Note, we don't know whether Scale is |
| // signed or not. We'll use unsigned version of division/modulo |
| // operation after making sure Scale doesn't have the sign bit set. |
| if (ArrayEltSize && Scale && Scale->getSExtValue() >= 0LL && |
| Scale->getZExtValue() % ArrayEltSize == 0) { |
| Scale = ConstantInt::get(Scale->getType(), |
| Scale->getZExtValue() / ArrayEltSize); |
| if (Scale->getZExtValue() != 1) { |
| Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(), |
| false /*ZExt*/); |
| NewIdx = Builder->CreateMul(NewIdx, C, "idxscale"); |
| } |
| |
| // Insert the new GEP instruction. |
| Value *Idx[2]; |
| Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext())); |
| Idx[1] = NewIdx; |
| Value *NewGEP = GEP.isInBounds() ? |
| Builder->CreateInBoundsGEP(StrippedPtr, Idx, Idx + 2,GEP.getName()): |
| Builder->CreateGEP(StrippedPtr, Idx, Idx + 2, GEP.getName()); |
| // The NewGEP must be pointer typed, so must the old one -> BitCast |
| return new BitCastInst(NewGEP, GEP.getType()); |
| } |
| } |
| } |
| } |
| |
| /// See if we can simplify: |
| /// X = bitcast A* to B* |
| /// Y = gep X, <...constant indices...> |
| /// into a gep of the original struct. This is important for SROA and alias |
| /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. |
| if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) { |
| if (TD && |
| !isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices()) { |
| // Determine how much the GEP moves the pointer. We are guaranteed to get |
| // a constant back from EmitGEPOffset. |
| ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(&GEP)); |
| int64_t Offset = OffsetV->getSExtValue(); |
| |
| // If this GEP instruction doesn't move the pointer, just replace the GEP |
| // with a bitcast of the real input to the dest type. |
| if (Offset == 0) { |
| // If the bitcast is of an allocation, and the allocation will be |
| // converted to match the type of the cast, don't touch this. |
| if (isa<AllocaInst>(BCI->getOperand(0)) || |
| isMalloc(BCI->getOperand(0))) { |
| // See if the bitcast simplifies, if so, don't nuke this GEP yet. |
| if (Instruction *I = visitBitCast(*BCI)) { |
| if (I != BCI) { |
| I->takeName(BCI); |
| BCI->getParent()->getInstList().insert(BCI, I); |
| ReplaceInstUsesWith(*BCI, I); |
| } |
| return &GEP; |
| } |
| } |
| return new BitCastInst(BCI->getOperand(0), GEP.getType()); |
| } |
| |
| // Otherwise, if the offset is non-zero, we need to find out if there is a |
| // field at Offset in 'A's type. If so, we can pull the cast through the |
| // GEP. |
| SmallVector<Value*, 8> NewIndices; |
| const Type *InTy = |
| cast<PointerType>(BCI->getOperand(0)->getType())->getElementType(); |
| if (FindElementAtOffset(InTy, Offset, NewIndices)) { |
| Value *NGEP = GEP.isInBounds() ? |
| Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices.begin(), |
| NewIndices.end()) : |
| Builder->CreateGEP(BCI->getOperand(0), NewIndices.begin(), |
| NewIndices.end()); |
| |
| if (NGEP->getType() == GEP.getType()) |
| return ReplaceInstUsesWith(GEP, NGEP); |
| NGEP->takeName(&GEP); |
| return new BitCastInst(NGEP, GEP.getType()); |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| Instruction *InstCombiner::visitFree(Instruction &FI) { |
| Value *Op = FI.getOperand(1); |
| |
| // free undef -> unreachable. |
| if (isa<UndefValue>(Op)) { |
| // Insert a new store to null because we cannot modify the CFG here. |
| new StoreInst(ConstantInt::getTrue(FI.getContext()), |
| UndefValue::get(Type::getInt1PtrTy(FI.getContext())), &FI); |
| return EraseInstFromFunction(FI); |
| } |
| |
| // If we have 'free null' delete the instruction. This can happen in stl code |
| // when lots of inlining happens. |
| if (isa<ConstantPointerNull>(Op)) |
| return EraseInstFromFunction(FI); |
| |
| // If we have a malloc call whose only use is a free call, delete both. |
| if (isMalloc(Op)) { |
| if (CallInst* CI = extractMallocCallFromBitCast(Op)) { |
| if (Op->hasOneUse() && CI->hasOneUse()) { |
| EraseInstFromFunction(FI); |
| EraseInstFromFunction(*CI); |
| return EraseInstFromFunction(*cast<Instruction>(Op)); |
| } |
| } else { |
| // Op is a call to malloc |
| if (Op->hasOneUse()) { |
| EraseInstFromFunction(FI); |
| return EraseInstFromFunction(*cast<Instruction>(Op)); |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| |
| |
| Instruction *InstCombiner::visitBranchInst(BranchInst &BI) { |
| // Change br (not X), label True, label False to: br X, label False, True |
| Value *X = 0; |
| BasicBlock *TrueDest; |
| BasicBlock *FalseDest; |
| if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) && |
| !isa<Constant>(X)) { |
| // Swap Destinations and condition... |
| BI.setCondition(X); |
| BI.setSuccessor(0, FalseDest); |
| BI.setSuccessor(1, TrueDest); |
| return &BI; |
| } |
| |
| // Cannonicalize fcmp_one -> fcmp_oeq |
| FCmpInst::Predicate FPred; Value *Y; |
| if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)), |
| TrueDest, FalseDest)) && |
| BI.getCondition()->hasOneUse()) |
| if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE || |
| FPred == FCmpInst::FCMP_OGE) { |
| FCmpInst *Cond = cast<FCmpInst>(BI.getCondition()); |
| Cond->setPredicate(FCmpInst::getInversePredicate(FPred)); |
| |
| // Swap Destinations and condition. |
| BI.setSuccessor(0, FalseDest); |
| BI.setSuccessor(1, TrueDest); |
| Worklist.Add(Cond); |
| return &BI; |
| } |
| |
| // Cannonicalize icmp_ne -> icmp_eq |
| ICmpInst::Predicate IPred; |
| if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)), |
| TrueDest, FalseDest)) && |
| BI.getCondition()->hasOneUse()) |
| if (IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE || |
| IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE || |
| IPred == ICmpInst::ICMP_SGE) { |
| ICmpInst *Cond = cast<ICmpInst>(BI.getCondition()); |
| Cond->setPredicate(ICmpInst::getInversePredicate(IPred)); |
| // Swap Destinations and condition. |
| BI.setSuccessor(0, FalseDest); |
| BI.setSuccessor(1, TrueDest); |
| Worklist.Add(Cond); |
| return &BI; |
| } |
| |
| return 0; |
| } |
| |
| Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) { |
| Value *Cond = SI.getCondition(); |
| if (Instruction *I = dyn_cast<Instruction>(Cond)) { |
| if (I->getOpcode() == Instruction::Add) |
| if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) { |
| // change 'switch (X+4) case 1:' into 'switch (X) case -3' |
| for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) |
| SI.setOperand(i, |
| ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)), |
| AddRHS)); |
| SI.setOperand(0, I->getOperand(0)); |
| Worklist.Add(I); |
| return &SI; |
| } |
| } |
| return 0; |
| } |
| |
| Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { |
| Value *Agg = EV.getAggregateOperand(); |
| |
| if (!EV.hasIndices()) |
| return ReplaceInstUsesWith(EV, Agg); |
| |
| if (Constant *C = dyn_cast<Constant>(Agg)) { |
| if (isa<UndefValue>(C)) |
| return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType())); |
| |
| if (isa<ConstantAggregateZero>(C)) |
| return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType())); |
| |
| if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) { |
| // Extract the element indexed by the first index out of the constant |
| Value *V = C->getOperand(*EV.idx_begin()); |
| if (EV.getNumIndices() > 1) |
| // Extract the remaining indices out of the constant indexed by the |
| // first index |
| return ExtractValueInst::Create(V, EV.idx_begin() + 1, EV.idx_end()); |
| else |
| return ReplaceInstUsesWith(EV, V); |
| } |
| return 0; // Can't handle other constants |
| } |
| if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { |
| // We're extracting from an insertvalue instruction, compare the indices |
| const unsigned *exti, *exte, *insi, *inse; |
| for (exti = EV.idx_begin(), insi = IV->idx_begin(), |
| exte = EV.idx_end(), inse = IV->idx_end(); |
| exti != exte && insi != inse; |
| ++exti, ++insi) { |
| if (*insi != *exti) |
| // The insert and extract both reference distinctly different elements. |
| // This means the extract is not influenced by the insert, and we can |
| // replace the aggregate operand of the extract with the aggregate |
| // operand of the insert. i.e., replace |
| // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 |
| // %E = extractvalue { i32, { i32 } } %I, 0 |
| // with |
| // %E = extractvalue { i32, { i32 } } %A, 0 |
| return ExtractValueInst::Create(IV->getAggregateOperand(), |
| EV.idx_begin(), EV.idx_end()); |
| } |
| if (exti == exte && insi == inse) |
| // Both iterators are at the end: Index lists are identical. Replace |
| // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 |
| // %C = extractvalue { i32, { i32 } } %B, 1, 0 |
| // with "i32 42" |
| return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand()); |
| if (exti == exte) { |
| // The extract list is a prefix of the insert list. i.e. replace |
| // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 |
| // %E = extractvalue { i32, { i32 } } %I, 1 |
| // with |
| // %X = extractvalue { i32, { i32 } } %A, 1 |
| // %E = insertvalue { i32 } %X, i32 42, 0 |
| // by switching the order of the insert and extract (though the |
| // insertvalue should be left in, since it may have other uses). |
| Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(), |
| EV.idx_begin(), EV.idx_end()); |
| return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), |
| insi, inse); |
| } |
| if (insi == inse) |
| // The insert list is a prefix of the extract list |
| // We can simply remove the common indices from the extract and make it |
| // operate on the inserted value instead of the insertvalue result. |
| // i.e., replace |
| // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 |
| // %E = extractvalue { i32, { i32 } } %I, 1, 0 |
| // with |
| // %E extractvalue { i32 } { i32 42 }, 0 |
| return ExtractValueInst::Create(IV->getInsertedValueOperand(), |
| exti, exte); |
| } |
| if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) { |
| // We're extracting from an intrinsic, see if we're the only user, which |
| // allows us to simplify multiple result intrinsics to simpler things that |
| // just get one value.. |
| if (II->hasOneUse()) { |
| // Check if we're grabbing the overflow bit or the result of a 'with |
| // overflow' intrinsic. If it's the latter we can remove the intrinsic |
| // and replace it with a traditional binary instruction. |
| switch (II->getIntrinsicID()) { |
| case Intrinsic::uadd_with_overflow: |
| case Intrinsic::sadd_with_overflow: |
| if (*EV.idx_begin() == 0) { // Normal result. |
| Value *LHS = II->getOperand(1), *RHS = II->getOperand(2); |
| II->replaceAllUsesWith(UndefValue::get(II->getType())); |
| EraseInstFromFunction(*II); |
| return BinaryOperator::CreateAdd(LHS, RHS); |
| } |
| break; |
| case Intrinsic::usub_with_overflow: |
| case Intrinsic::ssub_with_overflow: |
| if (*EV.idx_begin() == 0) { // Normal result. |
| Value *LHS = II->getOperand(1), *RHS = II->getOperand(2); |
| II->replaceAllUsesWith(UndefValue::get(II->getType())); |
| EraseInstFromFunction(*II); |
| return BinaryOperator::CreateSub(LHS, RHS); |
| } |
| break; |
| case Intrinsic::umul_with_overflow: |
| case Intrinsic::smul_with_overflow: |
| if (*EV.idx_begin() == 0) { // Normal result. |
| Value *LHS = II->getOperand(1), *RHS = II->getOperand(2); |
| II->replaceAllUsesWith(UndefValue::get(II->getType())); |
| EraseInstFromFunction(*II); |
| return BinaryOperator::CreateMul(LHS, RHS); |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| } |
| // Can't simplify extracts from other values. Note that nested extracts are |
| // already simplified implicitely by the above (extract ( extract (insert) ) |
| // will be translated into extract ( insert ( extract ) ) first and then just |
| // the value inserted, if appropriate). |
| return 0; |
| } |
| |
| |
| |
| |
| /// TryToSinkInstruction - Try to move the specified instruction from its |
| /// current block into the beginning of DestBlock, which can only happen if it's |
| /// safe to move the instruction past all of the instructions between it and the |
| /// end of its block. |
| static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { |
| assert(I->hasOneUse() && "Invariants didn't hold!"); |
| |
| // Cannot move control-flow-involving, volatile loads, vaarg, etc. |
| if (isa<PHINode>(I) || I->mayHaveSideEffects() || isa<TerminatorInst>(I)) |
| return false; |
| |
| // Do not sink alloca instructions out of the entry block. |
| if (isa<AllocaInst>(I) && I->getParent() == |
| &DestBlock->getParent()->getEntryBlock()) |
| return false; |
| |
| // We can only sink load instructions if there is nothing between the load and |
| // the end of block that could change the value. |
| if (I->mayReadFromMemory()) { |
| for (BasicBlock::iterator Scan = I, E = I->getParent()->end(); |
| Scan != E; ++Scan) |
| if (Scan->mayWriteToMemory()) |
| return false; |
| } |
| |
| BasicBlock::iterator InsertPos = DestBlock->getFirstNonPHI(); |
| |
| I->moveBefore(InsertPos); |
| ++NumSunkInst; |
| return true; |
| } |
| |
| |
| /// AddReachableCodeToWorklist - Walk the function in depth-first order, adding |
| /// all reachable code to the worklist. |
| /// |
| /// This has a couple of tricks to make the code faster and more powerful. In |
| /// particular, we constant fold and DCE instructions as we go, to avoid adding |
| /// them to the worklist (this significantly speeds up instcombine on code where |
| /// many instructions are dead or constant). Additionally, if we find a branch |
| /// whose condition is a known constant, we only visit the reachable successors. |
| /// |
| static bool AddReachableCodeToWorklist(BasicBlock *BB, |
| SmallPtrSet<BasicBlock*, 64> &Visited, |
| InstCombiner &IC, |
| const TargetData *TD) { |
| bool MadeIRChange = false; |
| SmallVector<BasicBlock*, 256> Worklist; |
| Worklist.push_back(BB); |
| |
| std::vector<Instruction*> InstrsForInstCombineWorklist; |
| InstrsForInstCombineWorklist.reserve(128); |
| |
| SmallPtrSet<ConstantExpr*, 64> FoldedConstants; |
| |
| do { |
| BB = Worklist.pop_back_val(); |
| |
| // We have now visited this block! If we've already been here, ignore it. |
| if (!Visited.insert(BB)) continue; |
| |
| for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { |
| Instruction *Inst = BBI++; |
| |
| // DCE instruction if trivially dead. |
| if (isInstructionTriviallyDead(Inst)) { |
| ++NumDeadInst; |
| DEBUG(errs() << "IC: DCE: " << *Inst << '\n'); |
| Inst->eraseFromParent(); |
| continue; |
| } |
| |
| // ConstantProp instruction if trivially constant. |
| if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0))) |
| if (Constant *C = ConstantFoldInstruction(Inst, TD)) { |
| DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " |
| << *Inst << '\n'); |
| Inst->replaceAllUsesWith(C); |
| ++NumConstProp; |
| Inst->eraseFromParent(); |
| continue; |
| } |
| |
| if (TD) { |
| // See if we can constant fold its operands. |
| for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end(); |
| i != e; ++i) { |
| ConstantExpr *CE = dyn_cast<ConstantExpr>(i); |
| if (CE == 0) continue; |
| |
| // If we already folded this constant, don't try again. |
| if (!FoldedConstants.insert(CE)) |
| continue; |
| |
| Constant *NewC = ConstantFoldConstantExpression(CE, TD); |
| if (NewC && NewC != CE) { |
| *i = NewC; |
| MadeIRChange = true; |
| } |
| } |
| } |
| |
| InstrsForInstCombineWorklist.push_back(Inst); |
| } |
| |
| // Recursively visit successors. If this is a branch or switch on a |
| // constant, only visit the reachable successor. |
| TerminatorInst *TI = BB->getTerminator(); |
| if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { |
| if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { |
| bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); |
| BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); |
| Worklist.push_back(ReachableBB); |
| continue; |
| } |
| } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { |
| if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { |
| // See if this is an explicit destination. |
| for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i) |
| if (SI->getCaseValue(i) == Cond) { |
| BasicBlock *ReachableBB = SI->getSuccessor(i); |
| Worklist.push_back(ReachableBB); |
| continue; |
| } |
| |
| // Otherwise it is the default destination. |
| Worklist.push_back(SI->getSuccessor(0)); |
| continue; |
| } |
| } |
| |
| for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) |
| Worklist.push_back(TI->getSuccessor(i)); |
| } while (!Worklist.empty()); |
| |
| // Once we've found all of the instructions to add to instcombine's worklist, |
| // add them in reverse order. This way instcombine will visit from the top |
| // of the function down. This jives well with the way that it adds all uses |
| // of instructions to the worklist after doing a transformation, thus avoiding |
| // some N^2 behavior in pathological cases. |
| IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0], |
| InstrsForInstCombineWorklist.size()); |
| |
| return MadeIRChange; |
| } |
| |
| bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) { |
| MadeIRChange = false; |
| |
| DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " |
| << F.getNameStr() << "\n"); |
| |
| { |
| // Do a depth-first traversal of the function, populate the worklist with |
| // the reachable instructions. Ignore blocks that are not reachable. Keep |
| // track of which blocks we visit. |
| SmallPtrSet<BasicBlock*, 64> Visited; |
| MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, TD); |
| |
| // Do a quick scan over the function. If we find any blocks that are |
| // unreachable, remove any instructions inside of them. This prevents |
| // the instcombine code from having to deal with some bad special cases. |
| for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) |
| if (!Visited.count(BB)) { |
| Instruction *Term = BB->getTerminator(); |
| while (Term != BB->begin()) { // Remove instrs bottom-up |
| BasicBlock::iterator I = Term; --I; |
| |
| DEBUG(errs() << "IC: DCE: " << *I << '\n'); |
| // A debug intrinsic shouldn't force another iteration if we weren't |
| // going to do one without it. |
| if (!isa<DbgInfoIntrinsic>(I)) { |
| ++NumDeadInst; |
| MadeIRChange = true; |
| } |
| |
| // If I is not void type then replaceAllUsesWith undef. |
| // This allows ValueHandlers and custom metadata to adjust itself. |
| if (!I->getType()->isVoidTy()) |
| I->replaceAllUsesWith(UndefValue::get(I->getType())); |
| I->eraseFromParent(); |
| } |
| } |
| } |
| |
| while (!Worklist.isEmpty()) { |
| Instruction *I = Worklist.RemoveOne(); |
| if (I == 0) continue; // skip null values. |
| |
| // Check to see if we can DCE the instruction. |
| if (isInstructionTriviallyDead(I)) { |
| DEBUG(errs() << "IC: DCE: " << *I << '\n'); |
| EraseInstFromFunction(*I); |
| ++NumDeadInst; |
| MadeIRChange = true; |
| continue; |
| } |
| |
| // Instruction isn't dead, see if we can constant propagate it. |
| if (!I->use_empty() && isa<Constant>(I->getOperand(0))) |
| if (Constant *C = ConstantFoldInstruction(I, TD)) { |
| DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n'); |
| |
| // Add operands to the worklist. |
| ReplaceInstUsesWith(*I, C); |
| ++NumConstProp; |
| EraseInstFromFunction(*I); |
| MadeIRChange = true; |
| continue; |
| } |
| |
| // See if we can trivially sink this instruction to a successor basic block. |
| if (I->hasOneUse()) { |
| BasicBlock *BB = I->getParent(); |
| Instruction *UserInst = cast<Instruction>(I->use_back()); |
| BasicBlock *UserParent; |
| |
| // Get the block the use occurs in. |
| if (PHINode *PN = dyn_cast<PHINode>(UserInst)) |
| UserParent = PN->getIncomingBlock(I->use_begin().getUse()); |
| else |
| UserParent = UserInst->getParent(); |
| |
| if (UserParent != BB) { |
| bool UserIsSuccessor = false; |
| // See if the user is one of our successors. |
| for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) |
| if (*SI == UserParent) { |
| UserIsSuccessor = true; |
| break; |
| } |
| |
| // If the user is one of our immediate successors, and if that successor |
| // only has us as a predecessors (we'd have to split the critical edge |
| // otherwise), we can keep going. |
| if (UserIsSuccessor && UserParent->getSinglePredecessor()) |
| // Okay, the CFG is simple enough, try to sink this instruction. |
| MadeIRChange |= TryToSinkInstruction(I, UserParent); |
| } |
| } |
| |
| // Now that we have an instruction, try combining it to simplify it. |
| Builder->SetInsertPoint(I->getParent(), I); |
| |
| #ifndef NDEBUG |
| std::string OrigI; |
| #endif |
| DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); |
| DEBUG(errs() << "IC: Visiting: " << OrigI << '\n'); |
| |
| if (Instruction *Result = visit(*I)) { |
| ++NumCombined; |
| // Should we replace the old instruction with a new one? |
| if (Result != I) { |
| DEBUG(errs() << "IC: Old = " << *I << '\n' |
| << " New = " << *Result << '\n'); |
| |
| // Everything uses the new instruction now. |
| I->replaceAllUsesWith(Result); |
| |
| // Push the new instruction and any users onto the worklist. |
| Worklist.Add(Result); |
| Worklist.AddUsersToWorkList(*Result); |
| |
| // Move the name to the new instruction first. |
| Result->takeName(I); |
| |
| // Insert the new instruction into the basic block... |
| BasicBlock *InstParent = I->getParent(); |
| BasicBlock::iterator InsertPos = I; |
| |
| if (!isa<PHINode>(Result)) // If combining a PHI, don't insert |
| while (isa<PHINode>(InsertPos)) // middle of a block of PHIs. |
| ++InsertPos; |
| |
| InstParent->getInstList().insert(InsertPos, Result); |
| |
| EraseInstFromFunction(*I); |
| } else { |
| #ifndef NDEBUG |
| DEBUG(errs() << "IC: Mod = " << OrigI << '\n' |
| << " New = " << *I << '\n'); |
| #endif |
| |
| // If the instruction was modified, it's possible that it is now dead. |
| // if so, remove it. |
| if (isInstructionTriviallyDead(I)) { |
| EraseInstFromFunction(*I); |
| } else { |
| Worklist.Add(I); |
| Worklist.AddUsersToWorkList(*I); |
| } |
| } |
| MadeIRChange = true; |
| } |
| } |
| |
| Worklist.Zap(); |
| return MadeIRChange; |
| } |
| |
| |
| bool InstCombiner::runOnFunction(Function &F) { |
| MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID); |
| TD = getAnalysisIfAvailable<TargetData>(); |
| |
| |
| /// Builder - This is an IRBuilder that automatically inserts new |
| /// instructions into the worklist when they are created. |
| IRBuilder<true, TargetFolder, InstCombineIRInserter> |
| TheBuilder(F.getContext(), TargetFolder(TD), |
| InstCombineIRInserter(Worklist)); |
| Builder = &TheBuilder; |
| |
| bool EverMadeChange = false; |
| |
| // Iterate while there is work to do. |
| unsigned Iteration = 0; |
| while (DoOneIteration(F, Iteration++)) |
| EverMadeChange = true; |
| |
| Builder = 0; |
| return EverMadeChange; |
| } |
| |
| FunctionPass *llvm::createInstructionCombiningPass() { |
| return new InstCombiner(); |
| } |