| //===- LoopIndexSplit.cpp - Loop Index Splitting Pass ---------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements Loop Index Splitting Pass. This pass handles three |
| // kinds of loops. |
| // |
| // [1] A loop may be eliminated if the body is executed exactly once. |
| // For example, |
| // |
| // for (i = 0; i < N; ++i) { |
| // if (i == X) { |
| // body; |
| // } |
| // } |
| // |
| // is transformed to |
| // |
| // i = X; |
| // body; |
| // |
| // [2] A loop's iteration space may be shrunk if the loop body is executed |
| // for a proper sub-range of the loop's iteration space. For example, |
| // |
| // for (i = 0; i < N; ++i) { |
| // if (i > A && i < B) { |
| // ... |
| // } |
| // } |
| // |
| // is transformed to iterators from A to B, if A > 0 and B < N. |
| // |
| // [3] A loop may be split if the loop body is dominated by a branch. |
| // For example, |
| // |
| // for (i = LB; i < UB; ++i) { if (i < SV) A; else B; } |
| // |
| // is transformed into |
| // |
| // AEV = BSV = SV |
| // for (i = LB; i < min(UB, AEV); ++i) |
| // A; |
| // for (i = max(LB, BSV); i < UB; ++i); |
| // B; |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "loop-index-split" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/IntrinsicInst.h" |
| #include "llvm/LLVMContext.h" |
| #include "llvm/Analysis/LoopPass.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Analysis/Dominators.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/Cloning.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/ADT/Statistic.h" |
| |
| using namespace llvm; |
| |
| STATISTIC(NumIndexSplit, "Number of loop index split"); |
| STATISTIC(NumIndexSplitRemoved, "Number of loops eliminated by loop index split"); |
| STATISTIC(NumRestrictBounds, "Number of loop iteration space restricted"); |
| |
| namespace { |
| |
| class LoopIndexSplit : public LoopPass { |
| public: |
| static char ID; // Pass ID, replacement for typeid |
| LoopIndexSplit() : LoopPass(&ID) {} |
| |
| // Index split Loop L. Return true if loop is split. |
| bool runOnLoop(Loop *L, LPPassManager &LPM); |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addPreserved<ScalarEvolution>(); |
| AU.addRequiredID(LCSSAID); |
| AU.addPreservedID(LCSSAID); |
| AU.addRequired<LoopInfo>(); |
| AU.addPreserved<LoopInfo>(); |
| AU.addRequiredID(LoopSimplifyID); |
| AU.addPreservedID(LoopSimplifyID); |
| AU.addRequired<DominatorTree>(); |
| AU.addRequired<DominanceFrontier>(); |
| AU.addPreserved<DominatorTree>(); |
| AU.addPreserved<DominanceFrontier>(); |
| } |
| |
| private: |
| /// processOneIterationLoop -- Eliminate loop if loop body is executed |
| /// only once. For example, |
| /// for (i = 0; i < N; ++i) { |
| /// if ( i == X) { |
| /// ... |
| /// } |
| /// } |
| /// |
| bool processOneIterationLoop(); |
| |
| // -- Routines used by updateLoopIterationSpace(); |
| |
| /// updateLoopIterationSpace -- Update loop's iteration space if loop |
| /// body is executed for certain IV range only. For example, |
| /// |
| /// for (i = 0; i < N; ++i) { |
| /// if ( i > A && i < B) { |
| /// ... |
| /// } |
| /// } |
| /// is transformed to iterators from A to B, if A > 0 and B < N. |
| /// |
| bool updateLoopIterationSpace(); |
| |
| /// restrictLoopBound - Op dominates loop body. Op compares an IV based value |
| /// with a loop invariant value. Update loop's lower and upper bound based on |
| /// the loop invariant value. |
| bool restrictLoopBound(ICmpInst &Op); |
| |
| // --- Routines used by splitLoop(). --- / |
| |
| bool splitLoop(); |
| |
| /// removeBlocks - Remove basic block DeadBB and all blocks dominated by |
| /// DeadBB. This routine is used to remove split condition's dead branch, |
| /// dominated by DeadBB. LiveBB dominates split conidition's other branch. |
| void removeBlocks(BasicBlock *DeadBB, Loop *LP, BasicBlock *LiveBB); |
| |
| /// moveExitCondition - Move exit condition EC into split condition block. |
| void moveExitCondition(BasicBlock *CondBB, BasicBlock *ActiveBB, |
| BasicBlock *ExitBB, ICmpInst *EC, ICmpInst *SC, |
| PHINode *IV, Instruction *IVAdd, Loop *LP, |
| unsigned); |
| |
| /// updatePHINodes - CFG has been changed. |
| /// Before |
| /// - ExitBB's single predecessor was Latch |
| /// - Latch's second successor was Header |
| /// Now |
| /// - ExitBB's single predecessor was Header |
| /// - Latch's one and only successor was Header |
| /// |
| /// Update ExitBB PHINodes' to reflect this change. |
| void updatePHINodes(BasicBlock *ExitBB, BasicBlock *Latch, |
| BasicBlock *Header, |
| PHINode *IV, Instruction *IVIncrement, Loop *LP); |
| |
| // --- Utility routines --- / |
| |
| /// cleanBlock - A block is considered clean if all non terminal |
| /// instructions are either PHINodes or IV based values. |
| bool cleanBlock(BasicBlock *BB); |
| |
| /// IVisLT - If Op is comparing IV based value with an loop invariant and |
| /// IV based value is less than the loop invariant then return the loop |
| /// invariant. Otherwise return NULL. |
| Value * IVisLT(ICmpInst &Op); |
| |
| /// IVisLE - If Op is comparing IV based value with an loop invariant and |
| /// IV based value is less than or equal to the loop invariant then |
| /// return the loop invariant. Otherwise return NULL. |
| Value * IVisLE(ICmpInst &Op); |
| |
| /// IVisGT - If Op is comparing IV based value with an loop invariant and |
| /// IV based value is greater than the loop invariant then return the loop |
| /// invariant. Otherwise return NULL. |
| Value * IVisGT(ICmpInst &Op); |
| |
| /// IVisGE - If Op is comparing IV based value with an loop invariant and |
| /// IV based value is greater than or equal to the loop invariant then |
| /// return the loop invariant. Otherwise return NULL. |
| Value * IVisGE(ICmpInst &Op); |
| |
| private: |
| |
| // Current Loop information. |
| Loop *L; |
| LPPassManager *LPM; |
| LoopInfo *LI; |
| DominatorTree *DT; |
| DominanceFrontier *DF; |
| |
| PHINode *IndVar; |
| ICmpInst *ExitCondition; |
| ICmpInst *SplitCondition; |
| Value *IVStartValue; |
| Value *IVExitValue; |
| Instruction *IVIncrement; |
| SmallPtrSet<Value *, 4> IVBasedValues; |
| }; |
| } |
| |
| char LoopIndexSplit::ID = 0; |
| static RegisterPass<LoopIndexSplit> |
| X("loop-index-split", "Index Split Loops"); |
| |
| Pass *llvm::createLoopIndexSplitPass() { |
| return new LoopIndexSplit(); |
| } |
| |
| // Index split Loop L. Return true if loop is split. |
| bool LoopIndexSplit::runOnLoop(Loop *IncomingLoop, LPPassManager &LPM_Ref) { |
| L = IncomingLoop; |
| LPM = &LPM_Ref; |
| |
| // If LoopSimplify form is not available, stay out of trouble. |
| if (!L->isLoopSimplifyForm()) |
| return false; |
| |
| // FIXME - Nested loops make dominator info updates tricky. |
| if (!L->getSubLoops().empty()) |
| return false; |
| |
| DT = &getAnalysis<DominatorTree>(); |
| LI = &getAnalysis<LoopInfo>(); |
| DF = &getAnalysis<DominanceFrontier>(); |
| |
| // Initialize loop data. |
| IndVar = L->getCanonicalInductionVariable(); |
| if (!IndVar) return false; |
| |
| bool P1InLoop = L->contains(IndVar->getIncomingBlock(1)); |
| IVStartValue = IndVar->getIncomingValue(!P1InLoop); |
| IVIncrement = dyn_cast<Instruction>(IndVar->getIncomingValue(P1InLoop)); |
| if (!IVIncrement) return false; |
| |
| IVBasedValues.clear(); |
| IVBasedValues.insert(IndVar); |
| IVBasedValues.insert(IVIncrement); |
| for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); |
| I != E; ++I) |
| for(BasicBlock::iterator BI = (*I)->begin(), BE = (*I)->end(); |
| BI != BE; ++BI) { |
| if (BinaryOperator *BO = dyn_cast<BinaryOperator>(BI)) |
| if (BO != IVIncrement |
| && (BO->getOpcode() == Instruction::Add |
| || BO->getOpcode() == Instruction::Sub)) |
| if (IVBasedValues.count(BO->getOperand(0)) |
| && L->isLoopInvariant(BO->getOperand(1))) |
| IVBasedValues.insert(BO); |
| } |
| |
| // Reject loop if loop exit condition is not suitable. |
| BasicBlock *ExitingBlock = L->getExitingBlock(); |
| if (!ExitingBlock) |
| return false; |
| BranchInst *EBR = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); |
| if (!EBR) return false; |
| ExitCondition = dyn_cast<ICmpInst>(EBR->getCondition()); |
| if (!ExitCondition) return false; |
| if (ExitingBlock != L->getLoopLatch()) return false; |
| IVExitValue = ExitCondition->getOperand(1); |
| if (!L->isLoopInvariant(IVExitValue)) |
| IVExitValue = ExitCondition->getOperand(0); |
| if (!L->isLoopInvariant(IVExitValue)) |
| return false; |
| if (!IVBasedValues.count( |
| ExitCondition->getOperand(IVExitValue == ExitCondition->getOperand(0)))) |
| return false; |
| |
| // If start value is more then exit value where induction variable |
| // increments by 1 then we are potentially dealing with an infinite loop. |
| // Do not index split this loop. |
| if (ConstantInt *SV = dyn_cast<ConstantInt>(IVStartValue)) |
| if (ConstantInt *EV = dyn_cast<ConstantInt>(IVExitValue)) |
| if (SV->getSExtValue() > EV->getSExtValue()) |
| return false; |
| |
| if (processOneIterationLoop()) |
| return true; |
| |
| if (updateLoopIterationSpace()) |
| return true; |
| |
| if (splitLoop()) |
| return true; |
| |
| return false; |
| } |
| |
| // --- Helper routines --- |
| // isUsedOutsideLoop - Returns true iff V is used outside the loop L. |
| static bool isUsedOutsideLoop(Value *V, Loop *L) { |
| for(Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E; ++UI) |
| if (!L->contains(cast<Instruction>(*UI))) |
| return true; |
| return false; |
| } |
| |
| // Return V+1 |
| static Value *getPlusOne(Value *V, bool Sign, Instruction *InsertPt, |
| LLVMContext &Context) { |
| Constant *One = ConstantInt::get(V->getType(), 1, Sign); |
| return BinaryOperator::CreateAdd(V, One, "lsp", InsertPt); |
| } |
| |
| // Return V-1 |
| static Value *getMinusOne(Value *V, bool Sign, Instruction *InsertPt, |
| LLVMContext &Context) { |
| Constant *One = ConstantInt::get(V->getType(), 1, Sign); |
| return BinaryOperator::CreateSub(V, One, "lsp", InsertPt); |
| } |
| |
| // Return min(V1, V1) |
| static Value *getMin(Value *V1, Value *V2, bool Sign, Instruction *InsertPt) { |
| |
| Value *C = new ICmpInst(InsertPt, |
| Sign ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, |
| V1, V2, "lsp"); |
| return SelectInst::Create(C, V1, V2, "lsp", InsertPt); |
| } |
| |
| // Return max(V1, V2) |
| static Value *getMax(Value *V1, Value *V2, bool Sign, Instruction *InsertPt) { |
| |
| Value *C = new ICmpInst(InsertPt, |
| Sign ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, |
| V1, V2, "lsp"); |
| return SelectInst::Create(C, V2, V1, "lsp", InsertPt); |
| } |
| |
| /// processOneIterationLoop -- Eliminate loop if loop body is executed |
| /// only once. For example, |
| /// for (i = 0; i < N; ++i) { |
| /// if ( i == X) { |
| /// ... |
| /// } |
| /// } |
| /// |
| bool LoopIndexSplit::processOneIterationLoop() { |
| SplitCondition = NULL; |
| BasicBlock *Latch = L->getLoopLatch(); |
| BasicBlock *Header = L->getHeader(); |
| BranchInst *BR = dyn_cast<BranchInst>(Header->getTerminator()); |
| if (!BR) return false; |
| if (!isa<BranchInst>(Latch->getTerminator())) return false; |
| if (BR->isUnconditional()) return false; |
| SplitCondition = dyn_cast<ICmpInst>(BR->getCondition()); |
| if (!SplitCondition) return false; |
| if (SplitCondition == ExitCondition) return false; |
| if (SplitCondition->getPredicate() != ICmpInst::ICMP_EQ) return false; |
| if (BR->getOperand(1) != Latch) return false; |
| if (!IVBasedValues.count(SplitCondition->getOperand(0)) |
| && !IVBasedValues.count(SplitCondition->getOperand(1))) |
| return false; |
| |
| // If IV is used outside the loop then this loop traversal is required. |
| // FIXME: Calculate and use last IV value. |
| if (isUsedOutsideLoop(IVIncrement, L)) |
| return false; |
| |
| // If BR operands are not IV or not loop invariants then skip this loop. |
| Value *OPV = SplitCondition->getOperand(0); |
| Value *SplitValue = SplitCondition->getOperand(1); |
| if (!L->isLoopInvariant(SplitValue)) |
| std::swap(OPV, SplitValue); |
| if (!L->isLoopInvariant(SplitValue)) |
| return false; |
| Instruction *OPI = dyn_cast<Instruction>(OPV); |
| if (!OPI) |
| return false; |
| if (OPI->getParent() != Header || isUsedOutsideLoop(OPI, L)) |
| return false; |
| Value *StartValue = IVStartValue; |
| Value *ExitValue = IVExitValue;; |
| |
| if (OPV != IndVar) { |
| // If BR operand is IV based then use this operand to calculate |
| // effective conditions for loop body. |
| BinaryOperator *BOPV = dyn_cast<BinaryOperator>(OPV); |
| if (!BOPV) |
| return false; |
| if (BOPV->getOpcode() != Instruction::Add) |
| return false; |
| StartValue = BinaryOperator::CreateAdd(OPV, StartValue, "" , BR); |
| ExitValue = BinaryOperator::CreateAdd(OPV, ExitValue, "" , BR); |
| } |
| |
| if (!cleanBlock(Header)) |
| return false; |
| |
| if (!cleanBlock(Latch)) |
| return false; |
| |
| // If the merge point for BR is not loop latch then skip this loop. |
| if (BR->getSuccessor(0) != Latch) { |
| DominanceFrontier::iterator DF0 = DF->find(BR->getSuccessor(0)); |
| assert (DF0 != DF->end() && "Unable to find dominance frontier"); |
| if (!DF0->second.count(Latch)) |
| return false; |
| } |
| |
| if (BR->getSuccessor(1) != Latch) { |
| DominanceFrontier::iterator DF1 = DF->find(BR->getSuccessor(1)); |
| assert (DF1 != DF->end() && "Unable to find dominance frontier"); |
| if (!DF1->second.count(Latch)) |
| return false; |
| } |
| |
| // Now, Current loop L contains compare instruction |
| // that compares induction variable, IndVar, against loop invariant. And |
| // entire (i.e. meaningful) loop body is dominated by this compare |
| // instruction. In such case eliminate |
| // loop structure surrounding this loop body. For example, |
| // for (int i = start; i < end; ++i) { |
| // if ( i == somevalue) { |
| // loop_body |
| // } |
| // } |
| // can be transformed into |
| // if (somevalue >= start && somevalue < end) { |
| // i = somevalue; |
| // loop_body |
| // } |
| |
| // Replace index variable with split value in loop body. Loop body is executed |
| // only when index variable is equal to split value. |
| IndVar->replaceAllUsesWith(SplitValue); |
| |
| // Replace split condition in header. |
| // Transform |
| // SplitCondition : icmp eq i32 IndVar, SplitValue |
| // into |
| // c1 = icmp uge i32 SplitValue, StartValue |
| // c2 = icmp ult i32 SplitValue, ExitValue |
| // and i32 c1, c2 |
| Instruction *C1 = new ICmpInst(BR, ExitCondition->isSigned() ? |
| ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, |
| SplitValue, StartValue, "lisplit"); |
| |
| CmpInst::Predicate C2P = ExitCondition->getPredicate(); |
| BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator()); |
| if (LatchBR->getOperand(1) != Header) |
| C2P = CmpInst::getInversePredicate(C2P); |
| Instruction *C2 = new ICmpInst(BR, C2P, SplitValue, ExitValue, "lisplit"); |
| Instruction *NSplitCond = BinaryOperator::CreateAnd(C1, C2, "lisplit", BR); |
| |
| SplitCondition->replaceAllUsesWith(NSplitCond); |
| SplitCondition->eraseFromParent(); |
| |
| // Remove Latch to Header edge. |
| BasicBlock *LatchSucc = NULL; |
| Header->removePredecessor(Latch); |
| for (succ_iterator SI = succ_begin(Latch), E = succ_end(Latch); |
| SI != E; ++SI) { |
| if (Header != *SI) |
| LatchSucc = *SI; |
| } |
| |
| // Clean up latch block. |
| Value *LatchBRCond = LatchBR->getCondition(); |
| LatchBR->setUnconditionalDest(LatchSucc); |
| RecursivelyDeleteTriviallyDeadInstructions(LatchBRCond); |
| |
| LPM->deleteLoopFromQueue(L); |
| |
| // Update Dominator Info. |
| // Only CFG change done is to remove Latch to Header edge. This |
| // does not change dominator tree because Latch did not dominate |
| // Header. |
| if (DF) { |
| DominanceFrontier::iterator HeaderDF = DF->find(Header); |
| if (HeaderDF != DF->end()) |
| DF->removeFromFrontier(HeaderDF, Header); |
| |
| DominanceFrontier::iterator LatchDF = DF->find(Latch); |
| if (LatchDF != DF->end()) |
| DF->removeFromFrontier(LatchDF, Header); |
| } |
| |
| ++NumIndexSplitRemoved; |
| return true; |
| } |
| |
| /// restrictLoopBound - Op dominates loop body. Op compares an IV based value |
| /// with a loop invariant value. Update loop's lower and upper bound based on |
| /// the loop invariant value. |
| bool LoopIndexSplit::restrictLoopBound(ICmpInst &Op) { |
| bool Sign = Op.isSigned(); |
| Instruction *PHTerm = L->getLoopPreheader()->getTerminator(); |
| |
| if (IVisGT(*ExitCondition) || IVisGE(*ExitCondition)) { |
| BranchInst *EBR = |
| cast<BranchInst>(ExitCondition->getParent()->getTerminator()); |
| ExitCondition->setPredicate(ExitCondition->getInversePredicate()); |
| BasicBlock *T = EBR->getSuccessor(0); |
| EBR->setSuccessor(0, EBR->getSuccessor(1)); |
| EBR->setSuccessor(1, T); |
| } |
| |
| LLVMContext &Context = Op.getContext(); |
| |
| // New upper and lower bounds. |
| Value *NLB = NULL; |
| Value *NUB = NULL; |
| if (Value *V = IVisLT(Op)) { |
| // Restrict upper bound. |
| if (IVisLE(*ExitCondition)) |
| V = getMinusOne(V, Sign, PHTerm, Context); |
| NUB = getMin(V, IVExitValue, Sign, PHTerm); |
| } else if (Value *V = IVisLE(Op)) { |
| // Restrict upper bound. |
| if (IVisLT(*ExitCondition)) |
| V = getPlusOne(V, Sign, PHTerm, Context); |
| NUB = getMin(V, IVExitValue, Sign, PHTerm); |
| } else if (Value *V = IVisGT(Op)) { |
| // Restrict lower bound. |
| V = getPlusOne(V, Sign, PHTerm, Context); |
| NLB = getMax(V, IVStartValue, Sign, PHTerm); |
| } else if (Value *V = IVisGE(Op)) |
| // Restrict lower bound. |
| NLB = getMax(V, IVStartValue, Sign, PHTerm); |
| |
| if (!NLB && !NUB) |
| return false; |
| |
| if (NLB) { |
| unsigned i = IndVar->getBasicBlockIndex(L->getLoopPreheader()); |
| IndVar->setIncomingValue(i, NLB); |
| } |
| |
| if (NUB) { |
| unsigned i = (ExitCondition->getOperand(0) != IVExitValue); |
| ExitCondition->setOperand(i, NUB); |
| } |
| return true; |
| } |
| |
| /// updateLoopIterationSpace -- Update loop's iteration space if loop |
| /// body is executed for certain IV range only. For example, |
| /// |
| /// for (i = 0; i < N; ++i) { |
| /// if ( i > A && i < B) { |
| /// ... |
| /// } |
| /// } |
| /// is transformed to iterators from A to B, if A > 0 and B < N. |
| /// |
| bool LoopIndexSplit::updateLoopIterationSpace() { |
| SplitCondition = NULL; |
| if (ExitCondition->getPredicate() == ICmpInst::ICMP_NE |
| || ExitCondition->getPredicate() == ICmpInst::ICMP_EQ) |
| return false; |
| BasicBlock *Latch = L->getLoopLatch(); |
| BasicBlock *Header = L->getHeader(); |
| BranchInst *BR = dyn_cast<BranchInst>(Header->getTerminator()); |
| if (!BR) return false; |
| if (!isa<BranchInst>(Latch->getTerminator())) return false; |
| if (BR->isUnconditional()) return false; |
| BinaryOperator *AND = dyn_cast<BinaryOperator>(BR->getCondition()); |
| if (!AND) return false; |
| if (AND->getOpcode() != Instruction::And) return false; |
| ICmpInst *Op0 = dyn_cast<ICmpInst>(AND->getOperand(0)); |
| ICmpInst *Op1 = dyn_cast<ICmpInst>(AND->getOperand(1)); |
| if (!Op0 || !Op1) |
| return false; |
| IVBasedValues.insert(AND); |
| IVBasedValues.insert(Op0); |
| IVBasedValues.insert(Op1); |
| if (!cleanBlock(Header)) return false; |
| BasicBlock *ExitingBlock = ExitCondition->getParent(); |
| if (!cleanBlock(ExitingBlock)) return false; |
| |
| // If the merge point for BR is not loop latch then skip this loop. |
| if (BR->getSuccessor(0) != Latch) { |
| DominanceFrontier::iterator DF0 = DF->find(BR->getSuccessor(0)); |
| assert (DF0 != DF->end() && "Unable to find dominance frontier"); |
| if (!DF0->second.count(Latch)) |
| return false; |
| } |
| |
| if (BR->getSuccessor(1) != Latch) { |
| DominanceFrontier::iterator DF1 = DF->find(BR->getSuccessor(1)); |
| assert (DF1 != DF->end() && "Unable to find dominance frontier"); |
| if (!DF1->second.count(Latch)) |
| return false; |
| } |
| |
| // Verify that loop exiting block has only two predecessor, where one pred |
| // is split condition block. The other predecessor will become exiting block's |
| // dominator after CFG is updated. TODO : Handle CFG's where exiting block has |
| // more then two predecessors. This requires extra work in updating dominator |
| // information. |
| BasicBlock *ExitingBBPred = NULL; |
| for (pred_iterator PI = pred_begin(ExitingBlock), PE = pred_end(ExitingBlock); |
| PI != PE; ++PI) { |
| BasicBlock *BB = *PI; |
| if (Header == BB) |
| continue; |
| if (ExitingBBPred) |
| return false; |
| else |
| ExitingBBPred = BB; |
| } |
| |
| if (!restrictLoopBound(*Op0)) |
| return false; |
| |
| if (!restrictLoopBound(*Op1)) |
| return false; |
| |
| // Update CFG. |
| if (BR->getSuccessor(0) == ExitingBlock) |
| BR->setUnconditionalDest(BR->getSuccessor(1)); |
| else |
| BR->setUnconditionalDest(BR->getSuccessor(0)); |
| |
| AND->eraseFromParent(); |
| if (Op0->use_empty()) |
| Op0->eraseFromParent(); |
| if (Op1->use_empty()) |
| Op1->eraseFromParent(); |
| |
| // Update domiantor info. Now, ExitingBlock has only one predecessor, |
| // ExitingBBPred, and it is ExitingBlock's immediate domiantor. |
| DT->changeImmediateDominator(ExitingBlock, ExitingBBPred); |
| |
| BasicBlock *ExitBlock = ExitingBlock->getTerminator()->getSuccessor(1); |
| if (L->contains(ExitBlock)) |
| ExitBlock = ExitingBlock->getTerminator()->getSuccessor(0); |
| |
| // If ExitingBlock is a member of the loop basic blocks' DF list then |
| // replace ExitingBlock with header and exit block in the DF list |
| DominanceFrontier::iterator ExitingBlockDF = DF->find(ExitingBlock); |
| for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); |
| I != E; ++I) { |
| BasicBlock *BB = *I; |
| if (BB == Header || BB == ExitingBlock) |
| continue; |
| DominanceFrontier::iterator BBDF = DF->find(BB); |
| DominanceFrontier::DomSetType::iterator DomSetI = BBDF->second.begin(); |
| DominanceFrontier::DomSetType::iterator DomSetE = BBDF->second.end(); |
| while (DomSetI != DomSetE) { |
| DominanceFrontier::DomSetType::iterator CurrentItr = DomSetI; |
| ++DomSetI; |
| BasicBlock *DFBB = *CurrentItr; |
| if (DFBB == ExitingBlock) { |
| BBDF->second.erase(DFBB); |
| for (DominanceFrontier::DomSetType::iterator |
| EBI = ExitingBlockDF->second.begin(), |
| EBE = ExitingBlockDF->second.end(); EBI != EBE; ++EBI) |
| BBDF->second.insert(*EBI); |
| } |
| } |
| } |
| NumRestrictBounds++; |
| return true; |
| } |
| |
| /// removeBlocks - Remove basic block DeadBB and all blocks dominated by DeadBB. |
| /// This routine is used to remove split condition's dead branch, dominated by |
| /// DeadBB. LiveBB dominates split conidition's other branch. |
| void LoopIndexSplit::removeBlocks(BasicBlock *DeadBB, Loop *LP, |
| BasicBlock *LiveBB) { |
| |
| // First update DeadBB's dominance frontier. |
| SmallVector<BasicBlock *, 8> FrontierBBs; |
| DominanceFrontier::iterator DeadBBDF = DF->find(DeadBB); |
| if (DeadBBDF != DF->end()) { |
| SmallVector<BasicBlock *, 8> PredBlocks; |
| |
| DominanceFrontier::DomSetType DeadBBSet = DeadBBDF->second; |
| for (DominanceFrontier::DomSetType::iterator DeadBBSetI = DeadBBSet.begin(), |
| DeadBBSetE = DeadBBSet.end(); DeadBBSetI != DeadBBSetE; ++DeadBBSetI) |
| { |
| BasicBlock *FrontierBB = *DeadBBSetI; |
| FrontierBBs.push_back(FrontierBB); |
| |
| // Rremove any PHI incoming edge from blocks dominated by DeadBB. |
| PredBlocks.clear(); |
| for(pred_iterator PI = pred_begin(FrontierBB), PE = pred_end(FrontierBB); |
| PI != PE; ++PI) { |
| BasicBlock *P = *PI; |
| if (P == DeadBB || DT->dominates(DeadBB, P)) |
| PredBlocks.push_back(P); |
| } |
| |
| for(BasicBlock::iterator FBI = FrontierBB->begin(), FBE = FrontierBB->end(); |
| FBI != FBE; ++FBI) { |
| if (PHINode *PN = dyn_cast<PHINode>(FBI)) { |
| for(SmallVector<BasicBlock *, 8>::iterator PI = PredBlocks.begin(), |
| PE = PredBlocks.end(); PI != PE; ++PI) { |
| BasicBlock *P = *PI; |
| PN->removeIncomingValue(P); |
| } |
| } |
| else |
| break; |
| } |
| } |
| } |
| |
| // Now remove DeadBB and all nodes dominated by DeadBB in df order. |
| SmallVector<BasicBlock *, 32> WorkList; |
| DomTreeNode *DN = DT->getNode(DeadBB); |
| for (df_iterator<DomTreeNode*> DI = df_begin(DN), |
| E = df_end(DN); DI != E; ++DI) { |
| BasicBlock *BB = DI->getBlock(); |
| WorkList.push_back(BB); |
| BB->replaceAllUsesWith(UndefValue::get( |
| Type::getLabelTy(DeadBB->getContext()))); |
| } |
| |
| while (!WorkList.empty()) { |
| BasicBlock *BB = WorkList.pop_back_val(); |
| LPM->deleteSimpleAnalysisValue(BB, LP); |
| for(BasicBlock::iterator BBI = BB->begin(), BBE = BB->end(); |
| BBI != BBE; ) { |
| Instruction *I = BBI; |
| ++BBI; |
| I->replaceAllUsesWith(UndefValue::get(I->getType())); |
| LPM->deleteSimpleAnalysisValue(I, LP); |
| I->eraseFromParent(); |
| } |
| DT->eraseNode(BB); |
| DF->removeBlock(BB); |
| LI->removeBlock(BB); |
| BB->eraseFromParent(); |
| } |
| |
| // Update Frontier BBs' dominator info. |
| while (!FrontierBBs.empty()) { |
| BasicBlock *FBB = FrontierBBs.pop_back_val(); |
| BasicBlock *NewDominator = FBB->getSinglePredecessor(); |
| if (!NewDominator) { |
| pred_iterator PI = pred_begin(FBB), PE = pred_end(FBB); |
| NewDominator = *PI; |
| ++PI; |
| if (NewDominator != LiveBB) { |
| for(; PI != PE; ++PI) { |
| BasicBlock *P = *PI; |
| if (P == LiveBB) { |
| NewDominator = LiveBB; |
| break; |
| } |
| NewDominator = DT->findNearestCommonDominator(NewDominator, P); |
| } |
| } |
| } |
| assert (NewDominator && "Unable to fix dominator info."); |
| DT->changeImmediateDominator(FBB, NewDominator); |
| DF->changeImmediateDominator(FBB, NewDominator, DT); |
| } |
| |
| } |
| |
| // moveExitCondition - Move exit condition EC into split condition block CondBB. |
| void LoopIndexSplit::moveExitCondition(BasicBlock *CondBB, BasicBlock *ActiveBB, |
| BasicBlock *ExitBB, ICmpInst *EC, |
| ICmpInst *SC, PHINode *IV, |
| Instruction *IVAdd, Loop *LP, |
| unsigned ExitValueNum) { |
| |
| BasicBlock *ExitingBB = EC->getParent(); |
| Instruction *CurrentBR = CondBB->getTerminator(); |
| |
| // Move exit condition into split condition block. |
| EC->moveBefore(CurrentBR); |
| EC->setOperand(ExitValueNum == 0 ? 1 : 0, IV); |
| |
| // Move exiting block's branch into split condition block. Update its branch |
| // destination. |
| BranchInst *ExitingBR = cast<BranchInst>(ExitingBB->getTerminator()); |
| ExitingBR->moveBefore(CurrentBR); |
| BasicBlock *OrigDestBB = NULL; |
| if (ExitingBR->getSuccessor(0) == ExitBB) { |
| OrigDestBB = ExitingBR->getSuccessor(1); |
| ExitingBR->setSuccessor(1, ActiveBB); |
| } |
| else { |
| OrigDestBB = ExitingBR->getSuccessor(0); |
| ExitingBR->setSuccessor(0, ActiveBB); |
| } |
| |
| // Remove split condition and current split condition branch. |
| SC->eraseFromParent(); |
| CurrentBR->eraseFromParent(); |
| |
| // Connect exiting block to original destination. |
| BranchInst::Create(OrigDestBB, ExitingBB); |
| |
| // Update PHINodes |
| updatePHINodes(ExitBB, ExitingBB, CondBB, IV, IVAdd, LP); |
| |
| // Fix dominator info. |
| // ExitBB is now dominated by CondBB |
| DT->changeImmediateDominator(ExitBB, CondBB); |
| DF->changeImmediateDominator(ExitBB, CondBB, DT); |
| |
| // Blocks outside the loop may have been in the dominance frontier of blocks |
| // inside the condition; this is now impossible because the blocks inside the |
| // condition no loger dominate the exit. Remove the relevant blocks from |
| // the dominance frontiers. |
| for (Loop::block_iterator I = LP->block_begin(), E = LP->block_end(); |
| I != E; ++I) { |
| if (*I == CondBB || !DT->dominates(CondBB, *I)) continue; |
| DominanceFrontier::iterator BBDF = DF->find(*I); |
| DominanceFrontier::DomSetType::iterator DomSetI = BBDF->second.begin(); |
| DominanceFrontier::DomSetType::iterator DomSetE = BBDF->second.end(); |
| while (DomSetI != DomSetE) { |
| DominanceFrontier::DomSetType::iterator CurrentItr = DomSetI; |
| ++DomSetI; |
| BasicBlock *DFBB = *CurrentItr; |
| if (!LP->contains(DFBB)) |
| BBDF->second.erase(DFBB); |
| } |
| } |
| } |
| |
| /// updatePHINodes - CFG has been changed. |
| /// Before |
| /// - ExitBB's single predecessor was Latch |
| /// - Latch's second successor was Header |
| /// Now |
| /// - ExitBB's single predecessor is Header |
| /// - Latch's one and only successor is Header |
| /// |
| /// Update ExitBB PHINodes' to reflect this change. |
| void LoopIndexSplit::updatePHINodes(BasicBlock *ExitBB, BasicBlock *Latch, |
| BasicBlock *Header, |
| PHINode *IV, Instruction *IVIncrement, |
| Loop *LP) { |
| |
| for (BasicBlock::iterator BI = ExitBB->begin(), BE = ExitBB->end(); |
| BI != BE; ) { |
| PHINode *PN = dyn_cast<PHINode>(BI); |
| ++BI; |
| if (!PN) |
| break; |
| |
| Value *V = PN->getIncomingValueForBlock(Latch); |
| if (PHINode *PHV = dyn_cast<PHINode>(V)) { |
| // PHV is in Latch. PHV has one use is in ExitBB PHINode. And one use |
| // in Header which is new incoming value for PN. |
| Value *NewV = NULL; |
| for (Value::use_iterator UI = PHV->use_begin(), E = PHV->use_end(); |
| UI != E; ++UI) |
| if (PHINode *U = dyn_cast<PHINode>(*UI)) |
| if (LP->contains(U)) { |
| NewV = U; |
| break; |
| } |
| |
| // Add incoming value from header only if PN has any use inside the loop. |
| if (NewV) |
| PN->addIncoming(NewV, Header); |
| |
| } else if (Instruction *PHI = dyn_cast<Instruction>(V)) { |
| // If this instruction is IVIncrement then IV is new incoming value |
| // from header otherwise this instruction must be incoming value from |
| // header because loop is in LCSSA form. |
| if (PHI == IVIncrement) |
| PN->addIncoming(IV, Header); |
| else |
| PN->addIncoming(V, Header); |
| } else |
| // Otherwise this is an incoming value from header because loop is in |
| // LCSSA form. |
| PN->addIncoming(V, Header); |
| |
| // Remove incoming value from Latch. |
| PN->removeIncomingValue(Latch); |
| } |
| } |
| |
| bool LoopIndexSplit::splitLoop() { |
| SplitCondition = NULL; |
| if (ExitCondition->getPredicate() == ICmpInst::ICMP_NE |
| || ExitCondition->getPredicate() == ICmpInst::ICMP_EQ) |
| return false; |
| BasicBlock *Header = L->getHeader(); |
| BasicBlock *Latch = L->getLoopLatch(); |
| BranchInst *SBR = NULL; // Split Condition Branch |
| BranchInst *EBR = cast<BranchInst>(ExitCondition->getParent()->getTerminator()); |
| // If Exiting block includes loop variant instructions then this |
| // loop may not be split safely. |
| BasicBlock *ExitingBlock = ExitCondition->getParent(); |
| if (!cleanBlock(ExitingBlock)) return false; |
| |
| LLVMContext &Context = Header->getContext(); |
| |
| for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); |
| I != E; ++I) { |
| BranchInst *BR = dyn_cast<BranchInst>((*I)->getTerminator()); |
| if (!BR || BR->isUnconditional()) continue; |
| ICmpInst *CI = dyn_cast<ICmpInst>(BR->getCondition()); |
| if (!CI || CI == ExitCondition |
| || CI->getPredicate() == ICmpInst::ICMP_NE |
| || CI->getPredicate() == ICmpInst::ICMP_EQ) |
| continue; |
| |
| // Unable to handle triangle loops at the moment. |
| // In triangle loop, split condition is in header and one of the |
| // the split destination is loop latch. If split condition is EQ |
| // then such loops are already handle in processOneIterationLoop(). |
| if (Header == (*I) |
| && (Latch == BR->getSuccessor(0) || Latch == BR->getSuccessor(1))) |
| continue; |
| |
| // If the block does not dominate the latch then this is not a diamond. |
| // Such loop may not benefit from index split. |
| if (!DT->dominates((*I), Latch)) |
| continue; |
| |
| // If split condition branches heads do not have single predecessor, |
| // SplitCondBlock, then is not possible to remove inactive branch. |
| if (!BR->getSuccessor(0)->getSinglePredecessor() |
| || !BR->getSuccessor(1)->getSinglePredecessor()) |
| return false; |
| |
| // If the merge point for BR is not loop latch then skip this condition. |
| if (BR->getSuccessor(0) != Latch) { |
| DominanceFrontier::iterator DF0 = DF->find(BR->getSuccessor(0)); |
| assert (DF0 != DF->end() && "Unable to find dominance frontier"); |
| if (!DF0->second.count(Latch)) |
| continue; |
| } |
| |
| if (BR->getSuccessor(1) != Latch) { |
| DominanceFrontier::iterator DF1 = DF->find(BR->getSuccessor(1)); |
| assert (DF1 != DF->end() && "Unable to find dominance frontier"); |
| if (!DF1->second.count(Latch)) |
| continue; |
| } |
| SplitCondition = CI; |
| SBR = BR; |
| break; |
| } |
| |
| if (!SplitCondition) |
| return false; |
| |
| // If the predicate sign does not match then skip. |
| if (ExitCondition->isSigned() != SplitCondition->isSigned()) |
| return false; |
| |
| unsigned EVOpNum = (ExitCondition->getOperand(1) == IVExitValue); |
| unsigned SVOpNum = IVBasedValues.count(SplitCondition->getOperand(0)); |
| Value *SplitValue = SplitCondition->getOperand(SVOpNum); |
| if (!L->isLoopInvariant(SplitValue)) |
| return false; |
| if (!IVBasedValues.count(SplitCondition->getOperand(!SVOpNum))) |
| return false; |
| |
| // Normalize loop conditions so that it is easier to calculate new loop |
| // bounds. |
| if (IVisGT(*ExitCondition) || IVisGE(*ExitCondition)) { |
| ExitCondition->setPredicate(ExitCondition->getInversePredicate()); |
| BasicBlock *T = EBR->getSuccessor(0); |
| EBR->setSuccessor(0, EBR->getSuccessor(1)); |
| EBR->setSuccessor(1, T); |
| } |
| |
| if (IVisGT(*SplitCondition) || IVisGE(*SplitCondition)) { |
| SplitCondition->setPredicate(SplitCondition->getInversePredicate()); |
| BasicBlock *T = SBR->getSuccessor(0); |
| SBR->setSuccessor(0, SBR->getSuccessor(1)); |
| SBR->setSuccessor(1, T); |
| } |
| |
| //[*] Calculate new loop bounds. |
| Value *AEV = SplitValue; |
| Value *BSV = SplitValue; |
| bool Sign = SplitCondition->isSigned(); |
| Instruction *PHTerm = L->getLoopPreheader()->getTerminator(); |
| |
| if (IVisLT(*ExitCondition)) { |
| if (IVisLT(*SplitCondition)) { |
| /* Do nothing */ |
| } |
| else if (IVisLE(*SplitCondition)) { |
| AEV = getPlusOne(SplitValue, Sign, PHTerm, Context); |
| BSV = getPlusOne(SplitValue, Sign, PHTerm, Context); |
| } else { |
| assert (0 && "Unexpected split condition!"); |
| } |
| } |
| else if (IVisLE(*ExitCondition)) { |
| if (IVisLT(*SplitCondition)) { |
| AEV = getMinusOne(SplitValue, Sign, PHTerm, Context); |
| } |
| else if (IVisLE(*SplitCondition)) { |
| BSV = getPlusOne(SplitValue, Sign, PHTerm, Context); |
| } else { |
| assert (0 && "Unexpected split condition!"); |
| } |
| } else { |
| assert (0 && "Unexpected exit condition!"); |
| } |
| AEV = getMin(AEV, IVExitValue, Sign, PHTerm); |
| BSV = getMax(BSV, IVStartValue, Sign, PHTerm); |
| |
| // [*] Clone Loop |
| DenseMap<const Value *, Value *> ValueMap; |
| Loop *BLoop = CloneLoop(L, LPM, LI, ValueMap, this); |
| Loop *ALoop = L; |
| |
| // [*] ALoop's exiting edge enters BLoop's header. |
| // ALoop's original exit block becomes BLoop's exit block. |
| PHINode *B_IndVar = cast<PHINode>(ValueMap[IndVar]); |
| BasicBlock *A_ExitingBlock = ExitCondition->getParent(); |
| BranchInst *A_ExitInsn = |
| dyn_cast<BranchInst>(A_ExitingBlock->getTerminator()); |
| assert (A_ExitInsn && "Unable to find suitable loop exit branch"); |
| BasicBlock *B_ExitBlock = A_ExitInsn->getSuccessor(1); |
| BasicBlock *B_Header = BLoop->getHeader(); |
| if (ALoop->contains(B_ExitBlock)) { |
| B_ExitBlock = A_ExitInsn->getSuccessor(0); |
| A_ExitInsn->setSuccessor(0, B_Header); |
| } else |
| A_ExitInsn->setSuccessor(1, B_Header); |
| |
| // [*] Update ALoop's exit value using new exit value. |
| ExitCondition->setOperand(EVOpNum, AEV); |
| |
| // [*] Update BLoop's header phi nodes. Remove incoming PHINode's from |
| // original loop's preheader. Add incoming PHINode values from |
| // ALoop's exiting block. Update BLoop header's domiantor info. |
| |
| // Collect inverse map of Header PHINodes. |
| DenseMap<Value *, Value *> InverseMap; |
| for (BasicBlock::iterator BI = ALoop->getHeader()->begin(), |
| BE = ALoop->getHeader()->end(); BI != BE; ++BI) { |
| if (PHINode *PN = dyn_cast<PHINode>(BI)) { |
| PHINode *PNClone = cast<PHINode>(ValueMap[PN]); |
| InverseMap[PNClone] = PN; |
| } else |
| break; |
| } |
| |
| BasicBlock *A_Preheader = ALoop->getLoopPreheader(); |
| for (BasicBlock::iterator BI = B_Header->begin(), BE = B_Header->end(); |
| BI != BE; ++BI) { |
| if (PHINode *PN = dyn_cast<PHINode>(BI)) { |
| // Remove incoming value from original preheader. |
| PN->removeIncomingValue(A_Preheader); |
| |
| // Add incoming value from A_ExitingBlock. |
| if (PN == B_IndVar) |
| PN->addIncoming(BSV, A_ExitingBlock); |
| else { |
| PHINode *OrigPN = cast<PHINode>(InverseMap[PN]); |
| Value *V2 = NULL; |
| // If loop header is also loop exiting block then |
| // OrigPN is incoming value for B loop header. |
| if (A_ExitingBlock == ALoop->getHeader()) |
| V2 = OrigPN; |
| else |
| V2 = OrigPN->getIncomingValueForBlock(A_ExitingBlock); |
| PN->addIncoming(V2, A_ExitingBlock); |
| } |
| } else |
| break; |
| } |
| |
| DT->changeImmediateDominator(B_Header, A_ExitingBlock); |
| DF->changeImmediateDominator(B_Header, A_ExitingBlock, DT); |
| |
| // [*] Update BLoop's exit block. Its new predecessor is BLoop's exit |
| // block. Remove incoming PHINode values from ALoop's exiting block. |
| // Add new incoming values from BLoop's incoming exiting value. |
| // Update BLoop exit block's dominator info.. |
| BasicBlock *B_ExitingBlock = cast<BasicBlock>(ValueMap[A_ExitingBlock]); |
| for (BasicBlock::iterator BI = B_ExitBlock->begin(), BE = B_ExitBlock->end(); |
| BI != BE; ++BI) { |
| if (PHINode *PN = dyn_cast<PHINode>(BI)) { |
| PN->addIncoming(ValueMap[PN->getIncomingValueForBlock(A_ExitingBlock)], |
| B_ExitingBlock); |
| PN->removeIncomingValue(A_ExitingBlock); |
| } else |
| break; |
| } |
| |
| DT->changeImmediateDominator(B_ExitBlock, B_ExitingBlock); |
| DF->changeImmediateDominator(B_ExitBlock, B_ExitingBlock, DT); |
| |
| //[*] Split ALoop's exit edge. This creates a new block which |
| // serves two purposes. First one is to hold PHINode defnitions |
| // to ensure that ALoop's LCSSA form. Second use it to act |
| // as a preheader for BLoop. |
| BasicBlock *A_ExitBlock = SplitEdge(A_ExitingBlock, B_Header, this); |
| |
| //[*] Preserve ALoop's LCSSA form. Create new forwarding PHINodes |
| // in A_ExitBlock to redefine outgoing PHI definitions from ALoop. |
| for(BasicBlock::iterator BI = B_Header->begin(), BE = B_Header->end(); |
| BI != BE; ++BI) { |
| if (PHINode *PN = dyn_cast<PHINode>(BI)) { |
| Value *V1 = PN->getIncomingValueForBlock(A_ExitBlock); |
| PHINode *newPHI = PHINode::Create(PN->getType(), PN->getName()); |
| newPHI->addIncoming(V1, A_ExitingBlock); |
| A_ExitBlock->getInstList().push_front(newPHI); |
| PN->removeIncomingValue(A_ExitBlock); |
| PN->addIncoming(newPHI, A_ExitBlock); |
| } else |
| break; |
| } |
| |
| //[*] Eliminate split condition's inactive branch from ALoop. |
| BasicBlock *A_SplitCondBlock = SplitCondition->getParent(); |
| BranchInst *A_BR = cast<BranchInst>(A_SplitCondBlock->getTerminator()); |
| BasicBlock *A_InactiveBranch = NULL; |
| BasicBlock *A_ActiveBranch = NULL; |
| A_ActiveBranch = A_BR->getSuccessor(0); |
| A_InactiveBranch = A_BR->getSuccessor(1); |
| A_BR->setUnconditionalDest(A_ActiveBranch); |
| removeBlocks(A_InactiveBranch, L, A_ActiveBranch); |
| |
| //[*] Eliminate split condition's inactive branch in from BLoop. |
| BasicBlock *B_SplitCondBlock = cast<BasicBlock>(ValueMap[A_SplitCondBlock]); |
| BranchInst *B_BR = cast<BranchInst>(B_SplitCondBlock->getTerminator()); |
| BasicBlock *B_InactiveBranch = NULL; |
| BasicBlock *B_ActiveBranch = NULL; |
| B_ActiveBranch = B_BR->getSuccessor(1); |
| B_InactiveBranch = B_BR->getSuccessor(0); |
| B_BR->setUnconditionalDest(B_ActiveBranch); |
| removeBlocks(B_InactiveBranch, BLoop, B_ActiveBranch); |
| |
| BasicBlock *A_Header = ALoop->getHeader(); |
| if (A_ExitingBlock == A_Header) |
| return true; |
| |
| //[*] Move exit condition into split condition block to avoid |
| // executing dead loop iteration. |
| ICmpInst *B_ExitCondition = cast<ICmpInst>(ValueMap[ExitCondition]); |
| Instruction *B_IndVarIncrement = cast<Instruction>(ValueMap[IVIncrement]); |
| ICmpInst *B_SplitCondition = cast<ICmpInst>(ValueMap[SplitCondition]); |
| |
| moveExitCondition(A_SplitCondBlock, A_ActiveBranch, A_ExitBlock, ExitCondition, |
| cast<ICmpInst>(SplitCondition), IndVar, IVIncrement, |
| ALoop, EVOpNum); |
| |
| moveExitCondition(B_SplitCondBlock, B_ActiveBranch, |
| B_ExitBlock, B_ExitCondition, |
| B_SplitCondition, B_IndVar, B_IndVarIncrement, |
| BLoop, EVOpNum); |
| |
| NumIndexSplit++; |
| return true; |
| } |
| |
| /// cleanBlock - A block is considered clean if all non terminal instructions |
| /// are either, PHINodes, IV based. |
| bool LoopIndexSplit::cleanBlock(BasicBlock *BB) { |
| Instruction *Terminator = BB->getTerminator(); |
| for(BasicBlock::iterator BI = BB->begin(), BE = BB->end(); |
| BI != BE; ++BI) { |
| Instruction *I = BI; |
| |
| if (isa<PHINode>(I) || I == Terminator || I == ExitCondition |
| || I == SplitCondition || IVBasedValues.count(I) |
| || isa<DbgInfoIntrinsic>(I)) |
| continue; |
| |
| if (I->mayHaveSideEffects()) |
| return false; |
| |
| // I is used only inside this block then it is OK. |
| bool usedOutsideBB = false; |
| for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); |
| UI != UE; ++UI) { |
| Instruction *U = cast<Instruction>(UI); |
| if (U->getParent() != BB) |
| usedOutsideBB = true; |
| } |
| if (!usedOutsideBB) |
| continue; |
| |
| // Otherwise we have a instruction that may not allow loop spliting. |
| return false; |
| } |
| return true; |
| } |
| |
| /// IVisLT - If Op is comparing IV based value with an loop invariant and |
| /// IV based value is less than the loop invariant then return the loop |
| /// invariant. Otherwise return NULL. |
| Value * LoopIndexSplit::IVisLT(ICmpInst &Op) { |
| ICmpInst::Predicate P = Op.getPredicate(); |
| if ((P == ICmpInst::ICMP_SLT || P == ICmpInst::ICMP_ULT) |
| && IVBasedValues.count(Op.getOperand(0)) |
| && L->isLoopInvariant(Op.getOperand(1))) |
| return Op.getOperand(1); |
| |
| if ((P == ICmpInst::ICMP_SGT || P == ICmpInst::ICMP_UGT) |
| && IVBasedValues.count(Op.getOperand(1)) |
| && L->isLoopInvariant(Op.getOperand(0))) |
| return Op.getOperand(0); |
| |
| return NULL; |
| } |
| |
| /// IVisLE - If Op is comparing IV based value with an loop invariant and |
| /// IV based value is less than or equal to the loop invariant then |
| /// return the loop invariant. Otherwise return NULL. |
| Value * LoopIndexSplit::IVisLE(ICmpInst &Op) { |
| ICmpInst::Predicate P = Op.getPredicate(); |
| if ((P == ICmpInst::ICMP_SLE || P == ICmpInst::ICMP_ULE) |
| && IVBasedValues.count(Op.getOperand(0)) |
| && L->isLoopInvariant(Op.getOperand(1))) |
| return Op.getOperand(1); |
| |
| if ((P == ICmpInst::ICMP_SGE || P == ICmpInst::ICMP_UGE) |
| && IVBasedValues.count(Op.getOperand(1)) |
| && L->isLoopInvariant(Op.getOperand(0))) |
| return Op.getOperand(0); |
| |
| return NULL; |
| } |
| |
| /// IVisGT - If Op is comparing IV based value with an loop invariant and |
| /// IV based value is greater than the loop invariant then return the loop |
| /// invariant. Otherwise return NULL. |
| Value * LoopIndexSplit::IVisGT(ICmpInst &Op) { |
| ICmpInst::Predicate P = Op.getPredicate(); |
| if ((P == ICmpInst::ICMP_SGT || P == ICmpInst::ICMP_UGT) |
| && IVBasedValues.count(Op.getOperand(0)) |
| && L->isLoopInvariant(Op.getOperand(1))) |
| return Op.getOperand(1); |
| |
| if ((P == ICmpInst::ICMP_SLT || P == ICmpInst::ICMP_ULT) |
| && IVBasedValues.count(Op.getOperand(1)) |
| && L->isLoopInvariant(Op.getOperand(0))) |
| return Op.getOperand(0); |
| |
| return NULL; |
| } |
| |
| /// IVisGE - If Op is comparing IV based value with an loop invariant and |
| /// IV based value is greater than or equal to the loop invariant then |
| /// return the loop invariant. Otherwise return NULL. |
| Value * LoopIndexSplit::IVisGE(ICmpInst &Op) { |
| ICmpInst::Predicate P = Op.getPredicate(); |
| if ((P == ICmpInst::ICMP_SGE || P == ICmpInst::ICMP_UGE) |
| && IVBasedValues.count(Op.getOperand(0)) |
| && L->isLoopInvariant(Op.getOperand(1))) |
| return Op.getOperand(1); |
| |
| if ((P == ICmpInst::ICMP_SLE || P == ICmpInst::ICMP_ULE) |
| && IVBasedValues.count(Op.getOperand(1)) |
| && L->isLoopInvariant(Op.getOperand(0))) |
| return Op.getOperand(0); |
| |
| return NULL; |
| } |
| |